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Today’s lecture outline

* motivation and the ACID properties
* schedules (,interleaved” transaction execution)
= serializability
= conflicts
= (non)recoverable schedule
* |ocking protocols
= 2PL, strict 2PL, conservative 2PL
= deadlock and prevention
= phantom
» alternative protocols



Motivation

* problem: we need to execute complex database operations
= e.g., stored procedures, triggers, etc.
" in a multi-user and parallel environment

e database transaction
= sequence of actions on database objects (+ others like arithmetic, etc.)

* example:

= Let us have a bank database with table Accounts and the following
transaction to transfer the money (pseudocode):

transaction PaymentOrder (amount, fromAcc, toAcc)

{

. SELECT Balance INTO X FROM Accounts WHERE accNr = fromAcc;

. if (X < amount) AbortTransaction(“Not enough money!”) ;

. UPDATE Accounts SET Balance = Balance - amount WHERE accNr = fromAcc;
. UPDATE Accounts SET Balance = Balance + amount WHERE accNr = toAcc;

. CommitTransaction;

-~ UbdWNRr
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Transaction management in DBMS

» application launches transactions
* transaction manager executes transactions

e scheduler dynamically schedules the parallel transaction
execution, producing a schedule (history)

* data manager executes partial operation of transactions

[ — DBMS
| >
transaction transaction data database
application manager | scheduler [ manager o

T
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Transaction management in DBMS

transaction termination

: successful — terminated by COMMIT command in the transaction code
- the performed actions are confirmed

o unsuccessful — transaction is cancelled

1.  termination by the transaction code — ABORT (or ROLLBACK) command
. user can be notified

2. system abort — DBMS aborts the transaction

*  some integrity constraint is violated — user is notified

* by transaction scheduler (e.g., a deadlock occurs) — user is not notified
3. system failure — HW failure, power loss — transaction must be restarted

e main objectives of transaction management
: enforcement of ACID properties
2 maximal performance (throughput)

- parallel/concurrent execution of transactions
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ACID — desired properties of transaction management

e Atomicity — partial execution is not allowed (all or nothing)
= prevents from incorrect transaction termination (or failure)
= consistency at the DBMS level

= any transaction will bring the database from one consistent (valid) state to another
= consistency at application level

e Consistency

e Isolation
= transactions executed in parallel do not “see” effects of each other unless committed
= parallel/concurrent execution is necessary to achieve high throughput

* Durability

= once a transaction has been committed, it will remain so, even in the event of power
loss, crashes, or errors

= logging necessary (log/journal maintained)



Transaction

* an executed transaction is a sequence of actions
T = <A;!, A2, ... , COMMIT or ABORT>

* basic database actions (operations)

» for now consider a static database (no inserts/deletes, just updates), let A be a
database object (table, row, attribute in row)

— we omit other actions such as control construct (if, for), etc. Example:
* READ(A) —reads A from database Subtract 5 from A (some attribute),
e  WRITE(A) — writes A to database such that A>o.
_ _ T = <READ(A), /] action 1
e COMMIT — confirms executed actions if (A <5) then ABORT
as valid, terminates transaction else WRITE(A - 5), // action 2
. COMMIT> /] action 3
* ABORT — cancels executed actions, or
terminates transaction (with error) | T=<ReAD(), /I action 1
if (A <5) then ABORT /] action 2
* SQL commands SELECT, INSERT, UPDATE, else ... >

could be viewed as transactions implemented
using the basic actions (in SQL command ROLLBACK is used instead of abort)
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Transaction programs vs. schedules

* database program
= “design-time” (not running) piece of code (that will be executed as a transaction)
= j.e., nonlinear —branching, loops, jumps
* schedule (history) is a sorted list of actions coming from several
transactions (i.e., transactions as interleaved)
= runtime” history of already concurrently executed actions of several transactions
= j.e., linear — sequence of primitive operations, w/o control constructs

T T2 T3
READ(A)
«— = \WRITE(A)
READ(B)
WRITE(A) ——
> gReanl — N
COMMIT
ABORT ¢—
—>  comMmIT



Serial schedules

» specific schedule, where all actions of a transaction are coupled together

" no action interleaving

* given a set S of transactions, we can obtain |S|! serial schedules

= from the definition of ACID properties, all the schedules are equivalent — it does not
matter if one transaction is executed before or after another one
— if it matters, they are not independent and so they should be merged into single transactions

° example:
T1 T2 T3
READ(A) |
WRITE(A) i
ABORT
—»  WRITE(A)
¥ COMMIT
READ(B) |
READ(C) i
COMMIT
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Why to interleave transactions?

* every schedule leads to interleaved sequential execution of transactions
(there is no parallel execution of database operations)

= simplified model justified by single storage device

* Question: So why to interleave transactions when the number of steps is the
same as in a serial schedule?

* two reasons

= parallel execution of non-database operations with database operations
= response proportional to transaction complexity (e.g., OldestEmployee vs. ComputeTaxes)

* example

T1 T2 T3
READ(A) print(‘Start T2') A=c
A=A+ t!WRnE(A)
print(A) READ(B) +— print(Written’)
WRITE(A) / X :=B;

T ) READ(C) —
print(*error’) X:=X+C iCOMM|T

ABORT ==

——) COMMIT
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Serializability

a schedule is serializable if its execution leads to consistent database
state, i.e., if the schedule is equivalent to any serial schedule
= for now we consider only committed transactions and a static database

= note that non-database operations are not considered so that consistency cannot be
provided for non-database state (e.g., print on console)

= it does not matter which serial schedule is equivalent (independent transactions)
strong property

= secures the Isolation and Consistency in ACID
view serializability extends serializability by including aborted
transactions and dynamic database

= however, testing is NP-complete, so it is not used in practice
= instead, conflict serializability + other techniques are used
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“Dangers” caused by interleaving

* to achieve serializability (i.e., consistency and isolation), the action of
interleaving cannot be arbitrary

* there exist 3 types of local dependencies in the schedule, so-called conflict

pairs
» four possibilities of reading/writing the same resource in schedule
= read-read — ok, by reading the transactions do not affect each other

= write-read (WR) —T1 writes, then T2 reads — reading uncommitted data
= read-write (RW) —T1 reads, then T2 writes — unrepeatable reading
= write-write (WW) —T1 writes, then T2 writes — overwrite of uncommitted data

Read(A)
\ erte(A)

Read(A)
Write(A)

ww



Conflicts (WR)

* reading uncommitted data (write-read conflict)

= transaction T2 reads A that was earlier updated by transaction T1,
but T1 did not commit so far, i.e., T2 reads potentially inconsistent data
— so-called dirty read

Example:  T1 transfers 1000 USD from account A to account B (A = 12000, B = 10000)
T2 adds 1% per account

T1 T2
R(A) //A=12000
A:=A-1000
W(A) // database is now inconsistent — account B still contains the old balance
—> R(A) // uncommitted data is read
R(B)
A:=1.01*A
B:=1.01*B
W(A)
w(B)
COMMIT
R(B) // B=10100
B :=B + 1000
w(B)
COMMIT // inconsistent database, A =11110, B=11100



Conflicts (RW)

* unrepeatable read (read-write conflict)

= transaction T2 writes A that was read earlier by T1 that didn’t finish yet

= T1 cannot repeat the reading of A (A now contains another value)
— so-called unrepeatable read

Example: T1 transfers 1000 USD from account A to account B (A = 12000, B = 10000)
T2 adds 1% per account
Tl T2
R(A) // A =12000
R(A)
R(B)
A:=1.01*A
B:=1.01*B
W(A) // update of A
W(B)
coOMMIT
// database now contains A =12120
R(B)
A:=A-1000
W(A)
B := B+ 1000
W(B)

COMMIT // inconsistent database, A = 11000, B =11100




Conflicts (WW)

* overwrite of uncommitted data (write-write conflict)
= transaction T2 overwrites A that was earlier written by T1 that still runs

= |oss of update (original value of A is lost)
— so-called blind write (update of unread data)

Example: Set the same price to all DVDs.
(let’s have two instances of this transaction, one setting price to 10 USD, second 15 USD)

Tl T2
DVD1 =15
W(DVD1)

DVD2 =10

W(DVD2)

\ DVD2 := 15

W(DVD2) //overwrite of uncommitted data
COMMIT

DVD1 :=10

W(DVD1)

COMMIT // inconsistent database, DVD1 = 10, DVD2 = 15



Conflict serializability

* two schedules are conflict equivalent if they share the set of conflict pairs

* aschedule is conflict serializable if it is conflict-equivalent to some serial schedule,

IH

i.e., there are no “real” conflicts

= more restrictive than serializability (defined only by consistency preservation)

» conflict serializability alone does not consider:

) Example: schedule, that is serializable
= cancelled transactions

(serial schedule <T1, T2, T3>),
— ABORT/ROLLBACK, so the

but is not conflict serializable

schedule could be unrecoverable (writes in T1 and T2 are in wrong order)
= dynamic database (inserting / deleting database objects) o - "
— so-called phantom may occur R(A)
= hence, conflict serializability is not sufficient condition W(A)
to provide ACID (view serializability is ultimate condition) W(A) /COMMIT
COMMIT
W(A)
COMMIT
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Detection of conflict serializability

* precedence graph (also serializability graph) on a schedule
= nodes T,are committed transactions
= edges represent RW, WR, WW conflicts in the schedule Example: conflict serializable

» schedule is conflict serializable ;?A) T2 T3
if its precedence graph is acyclic o
COMMIT
Example: not conflict serializable W(A)
T1 T2 T3 COMMIT
R(A) W(A)

W(A) RW COMMIT
e e

W(A) WW @
RW
COMMIT WW,\< /
W(A) RW WW WW, /
COMMIT @ RW @ RW
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Unrecoverable schedule

e at this moment we extend the transaction model by ABORT which brings
another “danger” — unrecoverable schedule
= one transaction aborts so that undos of every write must be done, however,

this cannot be done for already committed transactions that read changes
caused by the aborted transaction

Example: Tz transfers 1000 USD from A to B,

— durability property of ACID ¥2 adds annual interegl’_cs
1 2
* in recoverable schedule R(A)
a transaction T is committed Cv:(;:)b\ -1000 4
after all other transactions _ R(A)

. . — *
that affected T commit (i.e., they CS:;?;EGSG' Salah
changed data later read by T) W(A)

undone! - | = R(B)
e if reading changed data is allowed B:=B *1.01
only for committed transactions, cascade aborts W(B)
: COMMIT
we also avoid cascade aborts of ABORT l

transactions
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Protocols for concurrent transaction scheduling

e transaction scheduler works under some protocol that allows to guarantee the

ACID properties and maximal throughput

* pessimistic control (highly concurrent workloads)
= locking protocols
= time stamps
» optimistic control (not very concurrent workloads)
* why protocol?
= the scheduler cannot create the entire schedule beforehand
= scheduling is performed in local time context — dynamic
transaction execution, branching parts in code

T

1 T2 13
DB client(s) R(A) R(C) R(A)

W(B) W(C) R(B)
W(A) R(C)

Schedule
Ta T2 13
R(A)

R(C)
R(A)
W(CQ)
R(B)
W(B)
W(A)
R(C)




Locking protocols

* locking of database entities can be used to control the order of reads and
writes and so to secure the conflict serializability

e exclusive locks
= X(A) locks A so that reads and writes of A are allowed only to the lock owner/creator
= can be granted to just one transaction
* shared locks
= S(A) —only reads of A are allowed
= can be granted to (shared by) multiple transactions
* unlocking by U(A)
* if alock that is not available is required for a transaction, the transaction execution
is suspended and waits for releasing the lock
= inthe schedule, the lock request is denoted, followed by empty rows of waiting
* the un/locking code is added by the transaction scheduler
= j.e., operation on locks appear just in the schedules, not in the original transaction code
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Example: schedule with locking

T1 T2
X(A)
X(C)
W(A)
Wie S(A)
W(C)
uia) T2 X(C)._‘ COMMIT
S(A)
s(B) r—t
RIA)  eesseessrsssssssssssssssesssssssssersssssssssssssssssssssssssees
R(E) X(A) S(A)
u(c) X(0) M H
A T2 SB) g—e  X(B)
S(A
COMMIT
wi<) X(C) COMMIT
R(A) >
U(B
u:cj order of actions in schedule
U(A)
X(B)
W(B)
u(B)
COMMIT



Two-phase locking protocol (2PL)

2PL protocol applies two rules for building the schedule:

1) if atransaction wants to read (write) an entity A, it must first acquire a
shared (exclusive) lock on A

2)  transaction cannot requests a lock, if it already released one
(regardless of the locked entity)

Two obvious phases — locking and unlocking

Example: 2PL adjustment of the second transaction in the previous schedule

X(A)
o—_
—_
o—o X(B
X(C)

COMMIT/ABORT
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Properties of 2PL

e the 2PL restriction of schedule ensures that the precedence graph is acyclic,
i.e., the schedule is conflict serializable

e 2PL does not guarantee recoverable schedules

Example: 2PL-compliant schedule, but not recoverable, if T1 aborts

T1 T2
X(A)
R(A)
W(A)
U(A)
X(A)
R(A)
A:=A*1.01
W(A)
() RW, WR, WW
U(A)
R(B)
B:=B *1.01
D
U(B)
COMMIT

ABORT / COMMIT




Strict 2PL

Strict 2PL protocol makes the second rule of 2PL stronger, so that both rules become:

1) if a transaction wants to read (write) an entity A, it must first acquire a shared
(exclusive) lock on A

2) all locks are released at the transaction termination

Example: strict 2PL adjustment of second transaction in the previous example

X(A)

X(B)

X(C)
COMMIT/ABORT

Insertions of U(A) are not needed (implicit at the time of COMMIT/ABORT).
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Properties of strict 2PL

e the 2PL restriction of schedule ensures that the precedence graph is acyclic,
i.e., the schedule is conflict serializable

* moreover, strict 2PL ensures
= schedule recoverability
= avoids cascade aborts

Example: schedule built using strict 2PL
T1 T2

S(A)
R(A)

X(C)
R(C)

COMMIT
w(C)

ABORT / COMMIT



Deadlock

e during transaction execution it may happen that transaction T, requests a lock that was
already granted to T,, but T, cannot release it because it waits for another lock kept by T,

= could be generalized to multiple transactions,
T1 waits for T,, T, waits for T, ..., T, waits for T,

e strict 2PL cannot prevent from deadlock (not speaking about the weaker protocols)

Example:
T1 T2 T3 T4
S(A) . ;
R(A) all transactions wait for a lock

— no one can release a lock
— scheduler cannot schedule
S(B)

nor execute transactions
waiting for a lock ’ SR((?) — deadlock

.....
waiting for a lock "+ X(B)
X(A)
waiting for a lock waiting for a lock



Deadlock detection

* deadlock can be detected by repeated checking the waits-for graph

e waits-for graph is a dynamic graph that captures the waiting of
transactions for locks

= nodes are active transactions
= an edge denotes waiting of transaction for lock kept by another transaction
= acyclein the graph = deadlock

Example: waits-for graph for the previous example

(a) T3 requests X(A) (b) T3 does not request X(A)

O D)
e & @



Deadlock resolution and prevention

* deadlocks are usually not very frequent, so the resolution could be simple
= abort of the waiting transaction and its restart (user will not notice)
= testing waits-for graph — if a deadlock occurs, abort and restart
a transaction in the cycle

— such transaction is aborted, that
* holds the smallest number of locks
* performed the least amount of work
* is far from completion

— an aborted transaction is not aborted again (if another deadlock occurs)
e deadlocks could be prevented
= prioritizing
— each transaction has a priority (e.g., time stamp); if T1 requests a lock kept by T2,
the lock manager chooses between two strategies

*  wait-die —if T1 has higher priority, it can wait, if not, it is aborted and restarted
* wound-wait —if T1 has higher priority, T2 is aborted, otherwise T1 waits



Coffman Conditions

e Deadlocks can arise if all of the following conditions
hold simultaneously in a system

Mutual exclusion — resources can be held in a non-shareable mode

Resource holding (hold and wait) — additional resources may be
requested even when already some resources are held

No preemption — resources can be released only voluntarily

Circular wait — transactions can request and wait for resources in
cycles

* Unfulfillment of any of these conditions is enough to prevent
deadlocks from occurring
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Phantom

e now consider dynamic database

= allowing inserts and deletes

* if one transaction works with some set of data entities, while another
transaction changes this set (inserts or deletes), it could lead to
inconsistent database (inserializable schedule)

= Why? T1 locks all entities that at the given moment are relevant
— e.g., fulfill some WHERE condition of a SELECT command

= during execution of T1 a new transaction T2 could logically extend the set of
entities
— i.e., at that moment the number of locks defined by WHERE would be larger
— so that some entities are locked and some are not

e applied also to strict 2PL
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Example — phantom

T1: find the oldest male and female employees
(SELECT * FROM Employees ...) + INSERT INTO Statistics ...

T2: insert new employee Phill and delete employee Eve (employee replacement)
(INSERT INTO Employees ..., DELETE FROM Employees ...)

Initial state of the database: {[Peter, 52, m], [John, 46, m], [Eve, 55, f], [Dana, 30, f]}

T1 T2
lock men, i.e.,
S(Peter)
S(John)
M = max{R(Peter), R(John)}
Insert(Phill, 72, m) phantom
a new male employee can be
X(Eve) inserted, although all men
Delete(Eve) should be locked
coMMIT

lock women, i.e.,

S(Dana)

F = max{R(Dana)}

Insert(M, F) // result is inserted into table Statistics
COMMIT

Although the schedule is strict 2PL compliant, the result [Peter, Dana] is not correct as it does
not follow the serial schedule T1, T2, resulting in [Peter, Eve], nor T2, T1, resulting [Phill, Dana].



Phantom — prevention

* if there do not exist indexes, everything relevant must be locked

= e.g., entire table or even multiple tables must be locked

» if there exist indexes (e.g., B*-trees) on the entities defined by the ,lock
condition® it is possible to “watch for phantom® at the index level — index
locking

= external attempt for the set modification is identified by the index locks updated

= as an index usually maintains just one attribute, its applicability is limited

» generalization of index locking is predicate locking, when the locks are
requested for the logical sets, not particular data instances

= however, this is hard to implement and so not used much in practice
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Optimistic (not locking) protocols

. if concurrently executed transactions are not often in conflict (not
competing for resources), the locking overhead is unnecessarily large
. 3-phase optimistic protocol
1. Read: transaction reads data from database but writes into its private local
data space

2. Validation: if the transaction wants to commit, it forwards the private data
space to the transaction manager (i.e., request on database update)
- the transaction manager decides if the update is in conflict with another
transaction
* if thereis a conflict, the transaction is aborted and restarted
* if not, the last phase takes place:

3.  Write: the private data space is copied into the database
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