B4M36DS2: Database Systems 2

http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-1-B4M36DS2/

Lecture 9

Graph Databases: Principles

Lecturer: **Martin Svoboda**, Author: **Irena Holubová** svoboda@ksi.mff.cuni.cz

28. 11. 2016

Charles University in Prague, Faculty of Mathematics and Physics **Czech Technical University in Prague**, Faculty of Electrical Engineering

Graph Databases

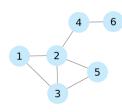
A bit of theory

- Data: a set of entities and their relationships
 - □ e.g., social networks, travelling routes, ...
 - □ We need to efficiently represent graphs
- Basic operations: finding the neighbours of a node, checking if two nodes are connected by an edge, updating the graph structure, ...
 - ☐ We need efficient graph operations
- \blacksquare G = (V, E) is commonly modelled as
 - □ set of nodes (vertices) V
 - □ set of edges E
 - \square n = |V|, m = |E|
- Which data structure should be used?

Adjacency Matrix

- Bi-dimensional array A of n x n Boolean values
 - □ Indexes of the array = node identifiers of the graph
 - \Box The Boolean junction A_{ij} of the two indices indicates whether the two nodes are connected
- Variants:
 - □ Directed graphs
 - □ Weighted graphs
 - □ ...

Adjacency Matrix



Pros:

- □ Adding/removing edges
- ☐ Checking if two nodes are connected

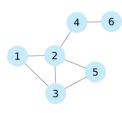
Cons:

- □ Quadratic space with respect to *n*
 - We usually have sparse graphs → lots of 0 values
- ☐ Addition of nodes is expensive
- Retrieval of all the neighbouring nodes takes linear time with respect to n

Adjacency List

- A set of lists where each accounts for the neighbours of one node
 - □ A vector of *n* pointers to adjacency lists
- Undirected graph:
 - □ An edge connects nodes i and j => the list of neighbours of i contains the node j and vice versa
- Often compressed
 - Exploitation of regularities in graphs, difference from other nodes, ...

Adjacency List



 $N1 \rightarrow \{N2, N3\}$ $N2 \rightarrow \{N1, N3, N5\}$ $N3 \rightarrow \{N1, N2, N5\}$ $N4 \rightarrow \{N2, N6\}$ $N5 \rightarrow \{N2, N3\}$

N6 → {N4}

Pros:

- Obtaining the neighbours of a node
- Cheap addition of nodes to the structure
- More compact representation of sparse matrices

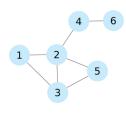
Cons:

- Checking if there is an edge between two nodes
 - Optimization: sorted lists => logarithmic scan, but also logarithmic insertion

Incidence Matrix

- Bi-dimensional Boolean matrix of *n* rows and *m* columns
 - □ A column represents an edge
 - Nodes that are connected by a certain edge
 - □ A row represents a node
 - All edges that are connected to the node

Incidence Matrix



pros:

 □ For representing hypergraphs, where one edge connects an arbitrary number of nodes

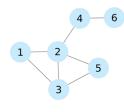
Cons:

□ Requires *n x m* bits

Laplacian Matrix

- Bi-dimensional array of n x n integers
 - □ Diagonal of the Laplacian matrix indicates the degree of the node
 - ☐ The rest of positions are set to -1 if the two vertices are connected, 0 otherwise

Laplacian Matrix



- Pros:
 - Allows analyzing the graph structure by means of spectral analysis
 - Calculates the eigenvalues

$$\begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 4 & -1 & -1 & -1 & 0 \\ -1 & -1 & 3 & 0 & -1 & 0 \\ 0 & -1 & 0 & 2 & 0 & -1 \\ 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

Graph Traversals

Single Step

- Single step traversal from element i to element j, where i, j ∈ (V ∪ E)
- Expose explicit adjacencies in the graph
 - \Box e_{out} : traverse to the outgoing edges of the vertices
 - \Box e_{in} : traverse to the incoming edges of the vertices
 - \square v_{out} : traverse to the outgoing vertices of the edges
 - \Box v_{in} : traverse to the incoming vertices of the edges
 - \Box e_{lab} : allow (or filter) all edges with the label
 - \Box \in : get element property values for key r
 - \Box e_p : allow (or filter) all elements with the property s for key r
 - $\Box \in =$: allow (or filter) all elements that are the provided element

O 1 T

Graph Traversals

Composition

- Single step traversals can compose complex traversals of arbitrary length
 - □ e.g., find all friends of Alberto
 - □ "Traverse to the outgoing edges of vertex i (representing Alberto), then only allow those edges with the label friend, then traverse to the incoming (i.e. head) vertices on those friend-labeled edges. Finally, of those vertices, return their name property."

$$f(i) = (\in^{name} \circ v_{in} \circ e_{lab}^{friend} \circ e_{out})(i)$$

Improving Data Locality

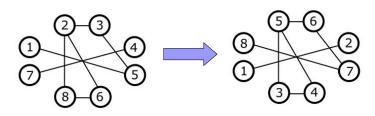
- Idea: take into account computer architecture in the data structures to reach a good performance
 - The way data is laid out physically in memory determines the locality to be obtained
 - Spatial locality = once a certain data item has been accessed, the nearby data items are likely to be accessed in the following computations
 - e.g., graph traversal
- Strategy: in graph adjacency matrix representation, exchange rows and columns to improve the cache hit ratio

Breadth First Search Layout (BFSL)

- Trivial algorithm
- Input: sequence of vertices of a graph
- Output: a permutation of the vertices which obtains better cache performance for graph traversals
- BFSL algorithm:
 - 1. Selects a node (at random) that is the origin of the traversal
 - Traverses the graph following a breadth first search algorithm, generating a list of vertex identifiers in the order they are visited
 - Takes the generated list and assigns the node identifiers sequentially
- Pros: optimal when starting from the selected node
- Cons: starting from other nodes

Bandwidth of a Matrix

- Graphs ↔ matrices
- Locality problem = minimum bandwidth problem
 - □ Bandwidth of a row in a matrix = the maximum distance between nonzero elements, with the condition that one is on the left of the diagonal and the other on the right of the diagonal
 - ☐ Bandwidth of a matrix = maximum of the bandwidth of its rows
- Matrices with low bandwidths are more cache friendly
 - □ Non zero elements (edges) are clustered across the diagonal
- Bandwidth minimization problem (BMP) is NP hard
 - □ For large matrices (graphs) the solutions are only approximated

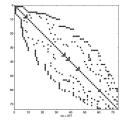


(1	0 1 1 0 0	0	0	1	0	0	0
0	1	1	0	0	1	0	1
0	1	1	0	1	0	0	0
0	0	0	1	0	0	1	0
1	0	1	0	1	0	0	0
0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	0
0	0	0	0	0	1	0	1

$\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0
0	0	1	1	1	0	0	0
0	0	1	1	1	0	0	0
0	0	1	1	1	1	0	0
0	0	0	0	1	1	1	0
0	0	0	0	0	1	1	1
0	0	0	0	0	0	1	1

Cuthill-McKee (1969)

- Popular bandwidth minimization technique for sparse matrices
- Re-labels the vertices of a matrix according to a sequence, with the aim of a heuristically guided traversal
- Algorithm:
 - Node with the first identifier (where the traversal starts) is the node with <u>the smallest degree</u> in the whole graph
 - Other nodes are labeled sequentially as they are visited by BFS traversal
 - In addition, the heuristic prefers those nodes that have the smallest degree



Graph Partitioning

- Some graphs are too large to be fully loaded into the main memory of a single computer
 - Usage of secondary storage degrades the performance of graph applications
 - Scalable solution <u>distributes</u> the graph on multiple computers
- We need to partition the graph reasonably
 - ☐ Usually for particular (set of) operation(s)
 - ☐ The shortest path, finding frequent patterns, BFS, spanning tree search, ...

One and Two Dimensional Graph Partitioning

- Aim: partitioning the graph to solve <u>BFS</u> more efficiently
 - ☐ Distributed into shared-nothing parallel system
 - □ Partitioning of the <u>adjacency matrix</u>
- 1D partitioning
 - □ Matrix rows are randomly assigned to the P nodes (processors) in the system
 - □ Each vertex and the edges emanating from it are owned by one processor

One and Two Dimensional Graph Partitioning

- BFS with 1D partitioning
 - Input: starting node s having level 0
 - Output: every vertex v becomes labeled with its level, denoting its distance from the starting node
 - Each processor has a set of frontier vertices F
 - At the beginning it is node s where the BFS starts
 - The edge lists of the vertices in F are merged to form a set of neighbouring vertices N
 - Some owned by the current processor, some by others
 - Messages are sent to all other processors to (potentially) add these vertices to their frontier set F for the next level
 - A processor may have marked some vertices in a previous iteration => ignores messages regarding them

One and Two Dimensional Graph Partitioning

- 2D partitioning
 - ☐ Processors are logically arranged in an R x C processor mesh
 - □ Adjacency matrix is divided C block columns and R x C block rows
 - □ Each processor owns C blocks
- Note: 1D partitioning = 2D partitioning with C = 1 (or R = 1)
- Consequence: each node communicates with at most R +
 C nodes instead of all P nodes
 - □ In step 2 a message is sent to all processors in the same row
 - □ In step 3 a message is sent to all processors in the same column

	1	2	3	4	5	6	7	8	9	10	11	12
1	0	0	0	0	0	0	0	0	0	1	1	0
2	0	0	1	0	0	-	0	1	0	0	0	0
3	0	1	0	0	0	0	1	1	0	0	0	0
4	0	0	0	0	=.=	0	- 1111	0	0	0	0	1
5	0	0	0	1	0	0	0	0	0	0	0	1
6	0	0	0	0	0	0	1	0	0	0	1	0
7	0	0	1	0	0	1	0	1	0	1	1	0
8	0	1	1	0	0	-	1	0	0	0	0	0
9	0	0	0	0	0_	0	0	0	0	0	1	1
10	1	0	0	0	0	0	1	0	0	0	1	0
11	1	0	0	0	0	1	1	0	1	1	0	0
12	0	0	0	1	1	0	0	0	1	0	0	0

Partitioning of vertices: Processor (i, j) owns vertices corresponding to block row $(j-1) \times R + i$

$$A_{i,j}^{(*)}$$

= block owned by processor (i,j)

$\boxed{A_{1,1}^{(1)}}$	$A_{1,2}^{(1)}$		$A_{1,C}^{(1)}$
$A_{2,1}^{(1)}$	$\left(A_{2,2}^{(1)}\right)$	***	$A_{2,C}^{(1)}$
<u> </u>		٠.	:
$A_{R,1}^{(1)}$	$A_{R,2}^{(1)}$		$A_{R,C}^{(1)}$
	:		
	:		
	:		(2)
$A_{1,1}^{(C)}$	$A_{1,2}^{(C)}$		$A_{1,C}^{(C)}$
$A_{2,1}^{(C)}$	$\left(A_{2,2}^{(C)}\right)$	• • • •	$A_{2,C}^{(C)}$
		1.	:

Types of Graphs

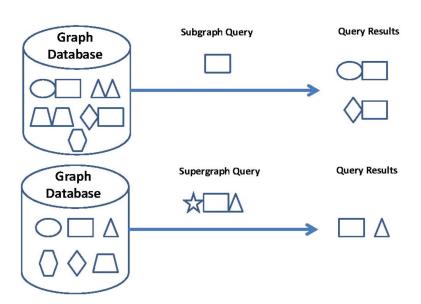
- Single-relational
 - □ Edges are homogeneous in meaning
 - e.g., all edges represent friendship
- Multi-relational (property) graphs
 - □ Edges are typed or labeled
 - . e.g., friendship, business, communication
 - Vertices and edges in a property graph maintain a set of key/value pairs
 - Representation of non-graphical data (properties)
 - e.g., name of a vertex, the weight of an edge

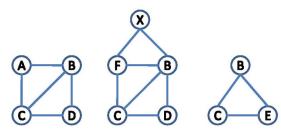
Graph Databases

- A graph database = a set of graphs
- Types of graphs:
 - □ Directed-labeled graphs
 - e.g., XML, RDF, traffic networks
 - Undirected-labeled graphs
 - . e.g., social networks, chemical compounds
- Types of graph databases:
 - □ Non-transactional = few numbers of very large graphs
 - e.g., Web graph, social networks, ...
 - ☐ Transactional = large set of small graphs
 - e.g., chemical compounds, biological pathways, linguistic trees each representing the structure of a sentence...

Transactional Graph Databases Types of Queries

- Sub-graph queries
 - □ Searches for a specific pattern in the graph database
 - □ A small graph or a graph, where some parts are uncertain
 - e.g., vertices with wildcard labels
 - □ More general type: sub-graph isomorphism
- Super-graph queries
 - Searches for the graph database members of which their whole structures are <u>contained</u> in the input query
- Similarity (approximate matching) queries
 - ☐ Finds graphs which are <u>similar</u>, but not necessarily isomorphic to a given query graph
 - Key question: how to measure the similarity





sub-graph:

 $q_1 \colon g_1, \, g_2$ q_2 : \emptyset

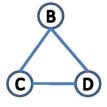
 g_1

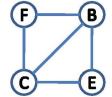
 g_2

 g_3

super-graph:

 $q_1\!\!:\varnothing$ q_2 : g_3





Sub-graph Query Processing

Mining-Based Graph Indexing Techniques

- Idea: if features of query graph q do not exist in data graph G, then G cannot contain q as its sub-graph
- Graph-mining methods extract selected features (sub-structures) from the graph database members
 - An <u>inverted index</u> is created for each feature
- Answering a sub-graph query q:
 - Identifying the set of features of q
 - Using the inverted index to retrieve all graphs that contain the same features of q
- Cons:
 - Effectiveness depends on the quality of mining techniques to effectively identify the set of features
 - Quality of the selected features may degrade over time (after lots of insertions and deletions)
 - Re-identification and re-indexing must be done

Sub-graph Query Processing Non Mining-Based Graph Indexing Techniques

- Focus on indexing whole constructs of the graph database
 - Instead of indexing only some selected features
- Cons:
 - □ Can be less effective in their pruning (filtering) power
 - May need to conduct expensive structure comparisons in the filtering process
- Pros:
 - □ Can handle graph updates with less cost
 - Do not rely on the effectiveness of the selected features
 - Do not need to rebuild whole indexes

Graph Similarity Queries

- Find sub-graphs in the database that are similar to query q
 - Allows for node mismatches, node gaps, structural differences, ...
- Usage: when graph databases are noisy or incomplete
 - Approximate graph matching query-processing techniques can be more useful and effective than exact matching
- Key question: how to measure the similarity?