B4M36DS2: Database Systems 2
http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-1-B4M36DS2/

Lecture 9

Graph Databases: Principles

Lecturer: Martin Svoboda, Author: Irena Holubová svoboda@ksi.mff.cuni.cz
28. 11. 2016

Charles University in Prague, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Electrical Engineering

Graph Databases
 A bit of theory

- Data: a set of entities and their relationships
\square e.g., social networks, travelling routes, ...
\square We need to efficiently represent graphs
- Basic operations: finding the neighbours of a node, checking if two nodes are connected by an edge, updating the graph structure, ...
\square We need efficient graph operations
- $G=(V, E)$ is commonly modelled as
\square set of nodes (vertices) V
\square set of edges E
$\square \mathrm{n}=|\mathrm{V}|, \mathrm{m}=\mid$ 티
- Which data structure should be used?

Adjacency Matrix

- Bi-dimensional array A of $n \times n$ Boolean values
\square Indexes of the array = node identifiers of the graph
\square The Boolean junction $A_{i j}$ of the two indices indicates whether the two nodes are connected
- Variants:
\square Directed graphs
\square Weighted graphs
$\square \ldots$

Adjacency Matrix

- Pros:
\square Adding/removing edges
\square Checking if two nodes are connected
- Cons:
\square Quadratic space with respect to
- We usually have sparse graphs \rightarrow lots of 0 values
\square Addition of nodes is expensive
\square Retrieval of all the neighbouring nodes takes linear time with respect to n

Adjacency List

- A set of lists where each accounts for the neighbours of one node
\square A vector of n pointers to adjacency lists
- Undirected graph:
\square An edge connects nodes i and $j=>$ the list of neighbours of i contains the node j and vice versa
- Often compressed
\square Exploitation of regularities in graphs, difference from other nodes, ...

Adjacency List

- Pros:
\square Obtaining the neighbours of a node
\square Cheap addition of nodes to the structure
\square More compact representation of sparse matrices
- Cons:
\square Checking if there is an edge between two nodes
- Optimization: sorted lists => logarithmic scan, but also logarithmic insertion

Incidence Matrix

- Bi-dimensional Boolean matrix of n rows and m columns
\square A column represents an edge
- Nodes that are connected by a certain edge
\square A row represents a node
- All edges that are connected to the node

Incidence Matrix

- pros:
\square For representing hypergraphs, where one edge connects an arbitrary number of nodes

■ Cons:
\square Requires $n x m$ bits

Laplacian Matrix

- Bi-dimensional array of $n x n$ integers
\square Diagonal of the Laplacian matrix indicates the degree of the node
\square The rest of positions are set to -1 if the two vertices are connected, 0 otherwise

Laplacian Matrix

- Pros:

\square Allows analyzing the graph structure by means of spectral analysis

- Calculates the eigenvalues

$$
\left(\begin{array}{rrrrrr}
2 & -1 & -1 & 0 & 0 & 0 \\
-1 & 4 & -1 & -1 & -1 & 0 \\
-1 & -1 & 3 & 0 & -1 & 0 \\
0 & -1 & 0 & 2 & 0 & -1 \\
0 & -1 & -1 & 0 & 2 & 0 \\
0 & 0 & 0 & -1 & 0 & 1
\end{array}\right)
$$

Graph Traversals Single Step

- Single step traversal from element i to element j, where i, $j \in(V \cup E)$
- Expose explicit adjacencies in the graph
$\square e_{\text {out }}$: traverse to the outgoing edges of the vertices
$\square e_{i n}$: traverse to the incoming edges of the vertices
$\square v_{\text {out }}$: traverse to the outgoing vertices of the edges
$\square v_{\text {in }}$: traverse to the incoming vertices of the edges
$\square e_{\text {lab }}$: allow (or filter) all edges with the label
$\square \in$: get element property values for key r
$\square e_{p}$: allow (or filter) all elements with the property s for key r
$\square \epsilon_{\square}$: allow (or filter) all elements that are the provided element

Graph Traversals
 Composition

- Single step traversals can compose complex traversals of arbitrary length
\square e.g., find all friends of Alberto
\square „Traverse to the outgoing edges of vertex i (representing Alberto), then only allow those edges with the label friend, then traverse to the incoming (i.e. head) vertices on those friend-labeled edges. Finally, of those vertices, return their name property."

$$
f(i)=\left(\epsilon^{\text {name }} \circ v_{\text {in }} \circ e_{\text {lab }}^{\text {friend }} \circ e_{\text {out }}\right)(i)
$$

Improving Data Locality

- Idea: take into account computer architecture in the data structures to reach a good performance
\square The way data is laid out physically in memory determines the locality to be obtained
\square Spatial locality = once a certain data item has been accessed, the nearby data items are likely to be accessed in the following computations
- e.g., graph traversal
- Strategy: in graph adjacency matrix representation, exchange rows and columns to improve the cache hit ratio

Breadth First Search Layout (BFSL)

- Trivial algorithm
- Input: sequence of vertices of a graph
- Output: a permutation of the vertices which obtains better cache performance for graph traversals
- BFSL algorithm:

1. Selects a node (at random) that is the origin of the traversal
2. Traverses the graph following a breadth first search algorithm, generating a list of vertex identifiers in the order they are visited
3. Takes the generated list and assigns the node identifiers sequentially

- Pros: optimal when starting from the selected node
- Cons: starting from other nodes

Bandwidth of a Matrix

- Graphs \leftrightarrow matrices
- Locality problem = minimum bandwidth problem
\square Bandwidth of a row in a matrix = the maximum distance between nonzero elements, with the condition that one is on the left of the diagonal and the other on the right of the diagonal
\square Bandwidth of a matrix = maximum of the bandwidth of its rows
- Matrices with low bandwidths are more cache friendly
\square Non zero elements (edges) are clustered across the diagonal
- Bandwidth minimization problem (BMP) is NP hard
\square For large matrices (graphs) the solutions are only approximated

$\left(\begin{array}{llllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1\end{array}\right)$
($\begin{aligned} & 1 \\ & 1\end{aligned} 1$

Cuthill-McKee (1969)

- Popular bandwidth minimization technique for sparse matrices

- Re-labels the vertices of a matrix according to a sequence, with the aim of a heuristically guided traversal
- Algorithm:

1. Node with the first identifier (where the traversal starts) is the node with the smallest degree in the whole graph
2. Other nodes are labeled sequentially as they are visited by BFS traversal

- In addition, the heuristic prefers those nodes that have the smallest degree

Graph Partitioning

- Some graphs are too large to be fully loaded into the main memory of a single computer
\square Usage of secondary storage degrades the performance of graph applications
\square Scalable solution distributes the graph on multiple computers
- We need to partition the graph reasonably
\square Usually for particular (set of) operation(s)
\square The shortest path, finding frequent patterns, BFS, spanning tree search, ...

One and Two Dimensional Graph Partitioning

- Aim: partitioning the graph to solve BFS more efficiently
\square Distributed into shared-nothing parallel system
\square Partitioning of the adjacency matrix
- 1D partitioning
\square Matrix rows are randomly assigned to the P nodes (processors) in the system
\square Each vertex and the edges emanating from it are owned by one processor

One and Two Dimensional Graph Partitioning

- BFS with 1D partitioning
- Input: starting node s having level 0
- Output: every vertex v becomes labeled with its level, denoting its distance from the starting node

1. Each processor has a set of frontier vertices F

- At the beginning it is node s where the BFS starts

2. The edge lists of the vertices in F are merged to form a set of neighbouring vertices N

- Some owned by the current processor, some by others

3. Messages are sent to all other processors to (potentially) add these vertices to their frontier set F for the next level

- A processor may have marked some vertices in a previous iteration => ignores messages regarding them

One and Two Dimensional Graph Partitioning

- 2D partitioning
\square Processors are logically arranged in an $R x C$ processor mesh
\square Adjacency matrix is divided C block columns and $\mathrm{R} \times \mathrm{C}$ block rows
\square Each processor owns C blocks
- Note: 1D partitioning = 2D partitioning with $C=1$ (or $R=1$)
- Consequence: each node communicates with at most $R+$ C nodes instead of all P nodes
\square In step 2 a message is sent to all processors in the same row
\square In step 3 a message is sent to all processors in the same column

Types of Graphs

- Single-relational

\square Edges are homogeneous in meaning

- e.g., all edges represent friendship
- Multi-relational (property) graphs
\square Edges are typed or labeled
- e.g., friendship, business, communication
\square Vertices and edges in a property graph maintain a set of key/value pairs
- Representation of non-graphical data (properties)
- e.g., name of a vertex, the weight of an edge

Graph Databases

- A graph database = a set of graphs
- Types of graphs:
\square Directed-labeled graphs
- e.g., XML, RDF, traffic networks
\square Undirected-labeled graphs
- e.g., social networks, chemical compounds
- Types of graph databases:
\square Non-transactional = few numbers of very large graphs
- e.g., Web graph, social networks, ...
\square Transactional = large set of small graphs
- e.g., chemical compounds, biological pathways, linguistic trees each representing the structure of a sentence...

Transactional Graph Databases Types of Queries

- Sub-graph queries
\square Searches for a specific pattern in the graph database
\square A small graph or a graph, where some parts are uncertain
- e.g., vertices with wildcard labels
\square More general type: sub-graph isomorphism
- Super-graph queries
\square Searches for the graph database members of which their whole structures are contained in the input query
- Similarity (approximate matching) queries
\square Finds graphs which are similar, but not necessarily isomorphic to a given query graph
\square Key question: how to measure the similarity

sub-graph:
$q_{1}: g_{1}, g_{2}$
$\mathrm{q}_{2}: \varnothing$
g_{2}
super-graph:
$\mathrm{q}_{1}: \varnothing$
$q_{2}: g_{3}$

q_{1}
q_{2}

Sub-graph Query Processing Mining-Based Graph Indexing Techniques

- Idea: if features of query graph q do not exist in data graph G, then G cannot contain q as its sub-graph
- Graph-mining methods extract selected features (sub-structures) from the graph database members

An inverted index is created for each feature
Answering a sub-graph query q :

1. Identifying the set of features of q
2. Using the inverted index to retrieve all graphs that contain the same features of q
Cons:
Effectiveness depends on the quality of mining techniques to effectively identify the set of features
$\square \quad$ Quality of the selected features may degrade over time (after lots of insertions and deletions)

- Re-identification and re-indexing must be done

Sub-graph Query Processing Non Mining-Based Graph Indexing Techniques

- Focus on indexing whole constructs of the graph database
\square Instead of indexing only some selected features
- Cons:
\square Can be less effective in their pruning (filtering) power
\square May need to conduct expensive structure comparisons in the filtering process
- Pros:
\square Can handle graph updates with less cost
- Do not rely on the effectiveness of the selected features
- Do not need to rebuild whole indexes

Graph Similarity Queries

- Find sub-graphs in the database that are similar to query
\square Allows for node mismatches, node gaps, structural differences, ...
- Usage: when graph databases are noisy or incomplete
\square Approximate graph matching query-processing techniques can be more useful and effective than exact matching
- Key question: how to measure the similarity?

