
B4M36DS2: Database Systems 2
hƩp://www.ksi.mff.cuni.cz/˜svoboda/courses/2016-1-B4M36DS2/

Lecture 2

MapReduce, Apache Hadoop
MarƟn Svoboda
svoboda@ksi.mff.cuni.cz

10. 10. 2016

Charles University in Prague, Faculty of MathemaƟcs and Physics
Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-1-B4M36DS2/

Lecture Outline
MapReduce
• Programming model and implementaƟon
• MoƟvaƟon, principles, details, …

Apache Hadoop
• HDFS – Hadoop Distributed File System
• MapReduce

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 2

Programming Models
What is a programming model?
• AbstracƟon of an underlying computer system

Describes a logical view of the provided funcƟonality
Offers a public interface, resources or other constructs
Allows for the expression of algorithms and data structures
Conceals physical reality of the internal implementaƟon
Allows us to work at a (much) higher level of abstracƟon

• The point is
how the intended user thinks in order to solve their tasks
and not necessarily how the system actually works

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 3

Programming Models
Examples
• TradiƟonal von Neumann model

Architecture of a physical computer with several components
such as a central processing unit (CPU), arithmeƟc-logic unit
(ALU), processor registers, program counter, memory unit, etc.
ExecuƟon of a stream of instrucƟons

• Java Virtual Machine (JVM)
• …

Do not confuse programming models with
• Programming paradigms (procedural, funcƟonal, logic, modular,

object-oriented, recursive, generic, data-driven, parallel, …)

• Programming languages (Java, C++, …)

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 4

Programming Models
Parallel Programming Models

Process interacƟon
Mechanisms of mutual communicaƟon of parallel processes

• Shared memory – shared global address space, asynchronous read
and write access, synchronizaƟon primiƟves

• Message passing
• Implicit interacƟon

Problem decomposiƟon
Ways of problem decomposiƟon into tasks executed in parallel

• Task parallelism
• Data parallelism – independent tasks on disjoint parƟƟons of data

• Implicit parallelism

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 5

MapReduce Framework
What is MapReduce?
• Programming model + implementaƟon
• Developed by Google in 2008

Google:
A simple and powerful interface that enables automaƟc par-
allelizaƟon and distribuƟon of large-scale computaƟons,
combined with an implementaƟon of this interface that
achieves high performance on large clusters of commodity
PCs.

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 6

MapReduce Framework
MapReduce programming model
• Cluster of commodity personal computers (nodes)

Each running a host operaƟng system, mutually interconnected
within a network, communicaƟon based on IP addresses, …

• Data is distributed among the nodes
• ComputaƟon tasks executed in parallel across the nodes

ClassificaƟon
• Process interacƟon: message passing
• Problem decomposiƟon: data parallelism

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 7

MapReduce Framework
A bit of history and moƟvaƟon

Google PageRank problem (2003)
• How to rank tens of billions of web pages by their importance

… efficiently in a reasonable amount of Ɵme
… when data is scattered across thousands of computers
… data files can be enormous (terabytes or more)
… data files are updated only occasionally (just appended)
… sending the data between compute nodes is expensive
… hardware failures are rule rather than excepƟon

• Centralized index structure was no longer sufficient
• SoluƟon

Google File System – a distributed file system
MapReduce – a programming model

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 8

MapReduce Model
Basic Idea

Divide-and-conquer paradigm
• Map funcƟon

Breaks down a problem into sub-problems
Processes input data in order to generate a set of intermediate
key-value pairs

• Reduce funcƟon
Receives and combines sub-soluƟons to solve the problem
Processes and possibly reduces intermediate values associated
with the same intermediate key

And that’s all!

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 9

MapReduce Model
Basic Idea

And that’s all!
It means...
• We only need to implement Map and Reduce funcƟons
• Everything else such as

input data distribuƟon,
scheduling of execuƟon tasks,
monitoring of computaƟon progress,
inter-machine communicaƟon,
handling of machine failures,
…

is managed automatically by the framework!

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 10

MapReduce Model
A bit more formally…

Map funcƟon
• Input: a key-value pair
• Output: a set of intermediate key-value pairs

Usually from a different domain
Keys do not have to be unique

• (k1, v1) → list(k2, v2)

Reduce funcƟon
• Input: an intermediate key + a set of values for this key
• Output: a possibly smaller set of values for this key

From the same domain

• (k2, list(v2)) → (k2, list(v2))

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 11

Example: Word Frequency
ImplementaƟon

/**
* Map function
* @param key Document name
* @param value Document contents
*/

map(String key, String value) {
foreach word w in value: emit(w, 1);

}

/**
* Reduce function
* @param key Particular word
* @param values List of count values associated with the word
*/

reduce(String key, Iterator values) {
int result = 0;
foreach v in values: result += v;
emit(key, result);

}

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 12

Example: Word Frequency
ExecuƟon Phases

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 13

ExecuƟon: Phases
Spliƫng
• Input key-value pairs (documents) are parsed and prepared

Mapping
• Map funcƟon is executed for each input document
• Intermediate key-value pairs are emiƩed

Shuffling
• Intermediate key-value pairs are grouped and sorted
according to the keys

Reducing
• Reduce funcƟon is executed for each intermediate key
• Final output is generated

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 14

ExecuƟon: Schema

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 15

ExecuƟon: Components
Input reader
• Reads data from a stable storage (e.g. a distributed file system)
• Splits the data into appropriate size blocks (splits)
• Parses these blocks and prepares input key-value pairs

Map funcƟon
ParƟƟon funcƟon
• Determines Reduce task for an intermediate key-value pair

E.g. hash of the key modulo the overall number of reducers

Compare funcƟon
• Compares two intermediate keys, used during the shuffling

Reduce funcƟon
Output writer
• Writes the output of the Reduce funcƟon to stable storage

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 16

AddiƟonal Aspects
Combine funcƟon
• Analogous purpose and implementaƟon to the
Reduce funcƟon

• ObjecƟve
Decrease the amount of intermediate data⇒
i.e. decrease the amount of data transferred to the reducer

• Executed locally by the mapper before the shuffling phase
• Only works for commutaƟve and associaƟve funcƟons!

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 17

AddiƟonal Aspects
Counters
• Allow to track the progress of a MapReduce job in real Ɵme

Predefined counters
– E.g. numbers of launched Map / Reduce tasks, parsed input

key-value pairs
Custom counters (user-defined)

– Can be associated with any acƟon that a Map or Reduce
funcƟon does

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 18

AddiƟonal Aspects
Fault tolerance
• When a large number of nodes process a large number of data
⇒ fault tolerance is necessary

Worker failure
• Master periodically pings every worker; if no response is received in

a certain amount of Ɵme, master marks the worker as failed
• All its tasks are reset back to their iniƟal idle state and become

eligible for rescheduling on other workers
Master failure
• Strategy A – periodic checkpoints are created; if master fails,

a new copy can then be started
• Strategy B – master failure is considered to be highly unlikely;

users simply resubmit unsuccessful jobs

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 19

AddiƟonal Aspects
Stragglers
• Straggler = node that takes unusually long Ɵme to complete a
task it was assigned

• SoluƟon
When a MapReduce job is close to compleƟon, the master
schedules backup execuƟons of the remaining in-progress tasks
A given task is considered to be completed whenever either the
primary or the backup execuƟon completes

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 20

AddiƟonal Aspects
Task granularity
• Intended numbers of Map and Reduce tasks
• PracƟcal recommendaƟon (Google)

Map tasks
– Choose the number so that each individual Map task has

roughly 16 – 64 MB of input data
Reduce tasks

– Small mulƟple of the number of worker nodes we expect to use
– Note also that the output of each Reduce task ends up

in a separate output file

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 21

Further Examples
URL access frequency
• Input: HTTP server access logs
• Map: parses a log, emits (accessed URL, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of accesses to a given URL

Inverted index
• Input: text documents containing words
• Map: parses a document, emits (word, document ID) pairs
• Reduce: emits all the associated document IDs sorted
• Output: list of documents containing a given word

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 22

Further Examples
Distributed sort
• Input: records to be sorted according to a specific key
• Map: extracts the sorƟng key, emits (key, record) pairs
• Reduce: emits the associated records unchanged

Reverse web-link graph
• Input: web pages with … tags
• Map: emits (target URL, this URL) pairs
• Reduce: emits the associated source URLs unchanged
• Output: list of URLs of web pages targeƟng a given one

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 23

Further Examples
Sources of links between web pages

/**
* Map function
* @param key Source web page URL
* @param value HTML contents of this web page
*/

map(String key, String value) {
foreach <a> tag t in value: emit(t.href, key);

}

/**
* Reduce function
* @param key URL of a particular web page
* @param values List of URLs of web pages targeting this one
*/

reduce(String key, Iterator values) {
emit(key, values);

}

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 24

Use Cases: General PaƩerns
CounƟng, summing, aggregaƟon
• When the overall number of occurrences of certain items or a

different aggregate funcƟon should be calculated

CollaƟng, grouping
• When all items belonging to a certain group should be found,

collected together or processed in another way

Filtering, querying, parsing, validaƟon
• When all items saƟsfying a certain condiƟon should be found,

transformed or processed in another way

SorƟng
• When items should be processed in a parƟcular order with respect

to a certain ordering criterion

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 25

Use Cases: Real-World Problems
Just a few real-world examples…
• Risk modeling, customer churn
• RecommendaƟon engine, customer preferences
• AdverƟsement targeƟng, trade surveillance
• Fraudulent acƟvity threats, security breaches detecƟon
• Hardware or sensor network failure predicƟon
• Search quality analysis
• …

Source: hƩp://www.cloudera.com/

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 26

Apache Hadoop

Apache Hadoop
Open-source soŌware framework
• hƩp://hadoop.apache.org/
• Distributed storage and distributed processing of very large
data sets on clusters built from commodity hardware

Implements a distributed file system
ImplementsMapReduce

• Derived from the original Google MapReduce and GFS
• Developed by Apache SoŌware FoundaƟon
• Implemented in Java
• OperaƟng system: cross-plaƞorm
• IniƟal release in 2011

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 28

http://hadoop.apache.org/

Apache Hadoop
Modules
• Hadoop Common

Common uƟliƟes and support for other modules

• Hadoop Distributed File System (HDFS)
High-throughput distributed file system

• Hadoop Yet Another Resource NegoƟator (YARN)
Cluster resource management
Job scheduling framework

• HadoopMapReduce
YARN-based implementaƟon of the MapReduce model

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 29

Apache Hadoop
Hadoop-related projects
• Apache Cassandra – wide column store

• Apache HBase – wide column store

• Apache Hive – data warehouse infrastructure

• Apache Avro – data serializaƟon system

• Apache Chukwa – data collecƟon system

• ApacheMahout – machine learning and data mining library

• Apache Pig – framework for parallel computaƟon and analysis

• Apache ZooKeeper – coordinaƟon of distributed applicaƟons

• …

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 30

Apache Hadoop
Real-world Hadoop users
• Facebook – internal logs, analyƟcs, machine learning, 2 clusters:

1100 nodes (8 cores, 12 TB storage), 12 PB
300 nodes (8 cores, 12 TB storage), 3 PB

• LinkedIn – 3 clusters:
800 nodes (2×4 cores, 24 GB RAM, 6×2 TB SATA), 9 PB
1900 nodes (2×6 cores, 24 GB RAM, 6×2 TB SATA), 22 PB
1400 nodes (2×6 cores, 32 GB RAM, 6×2 TB SATA), 16 PB

• SpoƟfy – content generaƟon, data aggregaƟon, reporƟng, analysis:
1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs

• Yahoo! – 40000 nodes with Hadoop, biggest cluster:
4500 nodes (2×4 cores, 16 GB RAM, 4×1 TB storage), 17 PB

Source: hƩp://wiki.apache.org/hadoop/PoweredBy

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 31

HDFS
Hadoop Distributed File System

• Open-source, high quality, cross-plaƞorm, pure Java
• Highly scalable, high-throughput, fault-tolerant
• Master-slave architecture
• OpƟmal applicaƟons

MapReduce, web crawlers, data warehouses, …

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 32

HDFS: AssumpƟons
Data characterisƟcs
• Large data sets and files
• Streaming data access
• Batch processing rather than interacƟve users
• Write-once, read-many

Fault tolerance
• HDFS cluster may consist of thousands of nodes

Each component has a non-trivial probability of failure

• ⇒ there is always some component that is non-funcƟonal
I.e. failure is the norm rather than excepƟon, and so
automaƟc failure detecƟon and recovery is essenƟal

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 33

HDFS: File System
Logical view: Linux-based hierarchical file system
• Directories and files
• Contents of files is divided into blocks

Usually 64 MB, configurable per file level

• User and group permissions
• Standard operaƟons are provided

Create, remove, move, rename, copy, …

Namespace
• Contains names of all directories, files, and other metadata

I.e. all data to capture the whole logical view of the file system

• Just a single namespace for the enƟre cluster

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 34

HDFS: Cluster Architecture
Master-slave architecture
• Master: NameNode

Manages the file system namespace
Provides the user interface for all the operaƟons

– Create, remove, move, rename, copy, … file or directory
– Open and close file

Regulates access to files by users
Manages file blocks (mapping of logical to physical blocks)

• Slave: DataNode
Physically stores file blocks within the underlying file system
Serves read/write requests from users

– I.e. user data never flows through the NameNode
Has no knowledge about the file system

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 35

HDFS: ReplicaƟon
ReplicaƟon = maintaining ofmulƟple copies of each file block
• Increases read throughput, increases fault tolerance
• ReplicaƟon factor (number of copies)

Configurable per file level, usually 3

Replica placement
• CriƟcal to reliability and performance
• Rack-aware strategy

Takes the physical locaƟon of nodes into account
Network bandwidth between the nodes on the same rack
is greater than between those in different racks

• Common case (replicaƟon factor 3):
Two replicas on two different nodes in a local rack
Third replica on a node in a different rack

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 36

HDFS: NameNode
How the NameNodeWorks?
• FsImage – data structure describing the whole file system

Contains: namespace + mapping of blocks + system properƟes
Loaded into the system memory (4 GB RAM is sufficient)
Stored in the local file system, periodical checkpoints created

• EditLog – transacƟon log for all the metadata changes
E.g. when a new file is created, replicaƟon factor is changed, …
Stored in the local file system

• Failures
When the NameNode starts up

– FsImage and EditLog are read from the disk, transacƟons from
EditLog are applied, new version of FsImage is flushed on the
disk, EditLog is truncated

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 37

HDFS: DataNode
How each DataNodeWorks?
• Stores physical file blocks

Each block (replica) is stored as a separate local file
HeurisƟcs are used to place these files in local directories

• Periodically sends HeartBeat messages to the NameNode
• Failures

When a DataNode fails or in case of network parƟƟon,
i.e. when the NameNode does not receive a HeartBeat
message within a given Ɵme limit

– The NameNode no longer sends read/write requests to this
node, re-replicaƟon might be iniƟated

When a DataNode starts up
– Generates a list of all its blocks and sends a BlockReport

message to the NameNode

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 38

HDFS: API
Available applicaƟon interfaces
• Java API

Python access or C wrapper also available

• HTTP interface
Browsing the namespace and downloading the contents of files

• FS Shell – command line interface
Intended for the user interacƟon
Bash-inspired commands
E.g.:

– hadoop fs -ls /
– hadoop fs -mkdir /mydir

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 39

Hadoop MapReduce
HadoopMapReduce

• MapReduce programming model implementaƟon
• Requirements

HDFS
– Input and output files for MapReduce jobs

YARN
– Underlying distribuƟon, coordinaƟon, monitoring and

gathering of the results

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 40

Cluster Architecture
Master-slave architecture
• Master: JobTracker

Provides the user interface forMapReduce jobs
Fetches input file data locaƟons from the NameNode
Manages the enƟre execuƟon of jobs

– Provides the progress informaƟon
Schedules individual tasks to idle TaskTrackers

– Map, Reduce, … tasks
– Nodes close to the data are preferred
– Failed tasks or stragglers can be rescheduled

• Slave: TaskTracker
Accepts tasks from the JobTracker
Spawns a separate JVM for each task execuƟon
Indicates the available task slots via HearBeat messages

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 41

ExecuƟon Schema

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 42

Java Interface
Mapper class
• ImplementaƟon of themap funcƟon
• Template parameters

KEYIN, VALUEIN – types of input key-value pairs
KEYOUT, VALUEOUT – types of intermediate key-value pairs

• Intermediate pairs are emiƩed via context.write(k, v)

class MyMapper extends Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@Override
public void map(KEYIN key, VALUEIN value, Context context)

throws IOException, InterruptedException
{

// Implementation
}

}

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 43

Java Interface
Reducer class
• ImplementaƟon of the reduce funcƟon
• Template parameters

KEYIN, VALUEIN – types of intermediate key-value pairs
KEYOUT, VALUEOUT – types of output key-value pairs

• Output pairs are emiƩed via context.write(k, v)

class MyReducer extends Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@Override
public void reduce(KEYIN key, Iterable<VALUEIN> values, Context context)

throws IOException, InterruptedException
{

// Implementation
}

}

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 44

Example
Word Frequency
• Input: Documents with words

Files located at /user/martin/input HDFS directory

• Map: parses a document, emits (word, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of occurrences of a given word

Output will be wriƩen to /user/martin/output

MapReduce job execuƟon

hadoop jar wc.jar WordCount /user/martin/input /user/martin/output

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 45

Example: Mapper Class
public class WordCount {

…
public static class MyMapper

extends Mapper<Object, Text, Text, IntWritable>
{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException

{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);

}
}

}
…

}

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 46

Example: Reducer Class
public class WordCount {

…
public static class MyReducer

extends Reducer<Text, IntWritable, Text, IntWritable>
{

private IntWritable result = new IntWritable();
@Override
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException

{
int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
result.set(sum);
context.write(key, result);

}
}
…

}

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 47

Conslusion
MapReduce criƟcism
• MapReduce is a step backwards

Does not use database schema
Does not use index structures
Does not support advanced query languages
Does not support transacƟons, integrity constraints, views, …
Does not support data mining, business intelligence, …

• MapReduce is not novel
Ideas more than 20 years old and overcome
Message Passing Interface (MPI), Reduce-ScaƩer

The end of MapReduce?

B4M36DS2: Database Systems 2 | Lecture 2: MapReduce, Apache Hadoop | 10. 10. 2016 48

	Programming Models
	Parallel Models

	MapReduce
	Model
	Example
	Execution Phases
	Additional Aspects
	Examples
	Use Cases

	Apache Hadoop
	Projects and Users

	Hadoop FS
	Hadoop MapReduce
	Java Interface
	Example

	Conslusion

