B4M36DS2: Database Systems 2
http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-1-B4M36DS2/

Practical Class 7

Neodj Graph Database

Martin Svoboda
svoboda@ksi.mff.cuni.cz

28. and 29. 11. 2016

Charles University in Prague, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-1-B4M36DS2/

Data Model

Database system structure

| Instance — single graph |

Property graph = directed labeled multigraph

» Collection of vertices (nodes) and edges (relationships)
Graph node

* Has a unique (internal) identifier

* Can be associated with a set of labels

= Allow us to categorize nodes

e Can also be associated with a set of properties
= Allow us to store additional data together with nodes

Data Model

Graph relationship
* Has a unique (internal) identifier
e Has a direction

= Relationships are equally well traversed in either direction!
= Directions can be ignored when querying

Always has a start and end node
= Can be recursive (i.e. loops are allowed)

Is associated with right one type

Can also be associated with a set of properties

Data Model

Node and relationship property
e Key-value pair
= Key is a string
= Value is an atomic value of any primitive data type,
or an array of atomic values of one primitive data type

Primitive data types
* boolean —boolean values true and false
° byte, short, int, long — integers (1B, 2B, 4B, 8B)
e float, double — floating-point numbers (4B, 8B)
e char —one Unicode character

* String - sequence of Unicode characters

B4M36DS2: Database Systems 2 | Practical Class 7: Neo4j Graph Database | 28. and 29. 11. 2016

Traversal Framework

Traversal framework
e Allows us to express and execute graph traversal queries
* Based on callbacks, executed lazily
Traversal description
* Defines rules and other characteristics of a traversal
Traverser

* Initiates and manages a particular graph traversal
according to...

= the provided traversal description, and
= graph node / set of nodes where the traversal starts

* Allows for the iteration over the matching paths, one by one

B4M36DS2: Database Systems 2 | Practical Class 7: Neo4j Graph Database | 28. and 29. 11. 2016

Traversal Framework

Components of a traversal description
e Expanders
= What relationships should be considered
e Order
= Which graph traversal algorithm should be used
¢ Uniqueness
= Whether nodes / relationships can be visited repeatedly

e Evaluators

= When the traversal should be terminated
= What paths should be included in the query result

Tutorial: Neo4j

@neoy)

First Steps

Download Neo4j distribution
e From our NoSQL server...

= 147.32.83.196:22
= /home/NOSQL/neo4j/

— neo4j-community-3.0.7-unix.tar.gz
— neo4j-community-3.0.7-windows.zip
* From Neo4j website...

= https://neodj.com/download/other-releases/
= Neo4j3.0.7

— Community edition
— ZIP/TAR distribution

https://neo4j.com/download/other-releases/

First Steps

Unzip Neodj distribution file
* tar -zxvf neod4j-community-3.0.7-unix.tar.gz

Create a new NetBeans project

e Select Java application as a project type
e Add all the libraries from Neo4j 1ib directory
= Use Add JAR/Folder in the project context menu

Database

Create a new embedded database

import org.neo4j.graphdb.GraphDatabaseService;
import org.neo4j.graphdb.factory.GraphDatabaseFactory;
import java.io.File;

GraphDatabaseService db = new GraphDatabaseFactory()
.newEmbeddedDatabase (new File("MyNeo4jDB"));

Close the database connection

db.shutdown() ;

Transactions

Start a new database transaction

‘import org.neo4j.graphdb.Transaction;

Transaction tx = db.beginTx();
try {

tx.success();

} catch (Exception e) {
tx.failure();

} finally {
tx.close();

Nodes

Create graph nodes for a few actors

* Create nodes, add actor labels, add properties
= trojan, lvan Trojan, 1964
= machacek, Jifri Machacek, 1966
= schneiderova, Jitka Schneiderova, 1973
= sverak, Zdenék Svérak, 1936

e Remember node references

import org.neo4j.graphdb.Node;
import org.neo4j.graphdb.Label;

Node actor = db.createNode();
actor.setProperty("id", "trojan");
actor.setProperty("name", "Ivan Trojan");
actor.setProperty("year", 1964);
actor.addLabel (Label.label("actor"));

Relationships

Define relationship types for our graph

‘import org.neo4j.graphdb.RelationshipType;

private static enum MyTypes implements RelationshipType {
KNOWS
}

Relationships

Create relationships between our actors

e Create relationships of KNOWS type
= trojan — machacek
= trojan — schneiderova
= machacek — trojan
= machacek — schneiderova
= sverak — machacek

e Consider these relationships as symmetric

[
‘import org.neo4j.graphdb.Relationship;
L

actorl.createRelationshipTo(actor2, MyTypes.KNOWS) ;

Graph Traversals

Find all friends of actor Ivan Trojan
* Print full actor names

import org.neo4j.graphdb.traversal.TraversalDescription;
import org.neo4j.graphdb.traversal.Evaluators;

import org.neo4j.graphdb.traversal.Uniqueness;

import org.neo4j.graphdb.traversal.Traverser;

import org.neo4j.graphdb.Direction;

import org.neo4j.graphdb.Path;

TraversalDescription td = db.traversalDescription()
.breadthFirst ()
.relationships(MyTypes.KNOWS, Direction.BOTH)
.evaluator (Evaluators.excludeStartPosition())
.uniqueness (Uniqueness.NODE_GLOBAL) ;

Traverser t = td.traverse(actor);

for (Path p : t) {
System.out.println(p.endNode() .getProperty("name"));

}

Nodes and Relationships

Add nodes for movies into our graph
* Create nodes, add movie labels, add properties

= samotari, Samotafi, 2000
= medvidek, Medvidek, 2007
= vratnelahve, Vratné lahve, 2006

* Remember node references
Create relationships between movies and actors

» Create relationships of PLAYS type

= samotari — trojan

= samotari — machacek

= samotari — schneiderova
medvidek — trojan
vratnelahve — sverak

Graph Traversals

Find all actors that played in Medvidek movie together with
all their friends and friends of friends as well

e Use a single graph traversal, implement a custom evaluator
e Print full actor names

import org.neo4j.graphdb.traversal.Evaluator;
import org.neo4j.graphdb.traversal.Evaluation;

public static class MyEvaluator implements Evaluator {
@Q0verride
public Evaluation evaluate(Path path) {
return ...;
X
¥

td.evaluator (new MyEvaluator());

Cypher Queries

Find all movies
e Express and execute a Cypher query
e Return movie nodes, print movie titles

import org.neo4j.graphdb.Result;
import java.util.Map;

Result result = db.execute("MATCH (n:movie) RETURN n");
while (result.hasNext()) {
Map<String, Object> row = result.next();
Node n = (Node)row.get("n");
System.out.println(n.getProperty("title"));
}

References

Embedded database and traversal framework

¢ https://neodj.com/docs/java-reference/current/
JavaDoc

¢ https://neodj.com/docs/java-reference/current/javadocs/
Cypher query language

e https://neodj.com/docs/developer-manual/current/cypher/
Cypher reference card

¢ https://neodj.com/docs/cypher-refcard/current/

https://neo4j.com/docs/java-reference/current/
https://neo4j.com/docs/java-reference/current/javadocs/
https://neo4j.com/docs/developer-manual/current/cypher/
https://neo4j.com/docs/cypher-refcard/current/

	Overview
	Tutorial

