B4M36DS2: Database Systems 2
http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-1-B4M36DS2/

Practical Class 2

Riak Key-Value Store

Martin Svoboda
svoboda@ksi.mff.cuni.cz

24. and 25. 10. 2016

Charles University in Prague, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/2016-1-B4M36DS2/

Riak Overview

RiakKV
* Highly available distributed key-value store
¢ http://basho.com/products/riak-kv/

Data model

Instance (— bucket types) — buckets — objects

* Bucket = logical collection of objects
e Object = key-value pair with metadata

= Key is a Unicode string
= Value can be anything (text, binary object, image, ...)
= Each object is also associated with metadata

http://basho.com/products/riak-kv/

CRUD Operations

HTTP API

* All the user requests are submitted as HTTP requests with an
appropriately selected method and specifically constructed
URL, headers, and data

URL pattern of HTTP requests for all the CRUD operations

~0-EED-0-ED-0-ED-0- @,
(

\@»@Tf
t @

Optional parameters (depending on the operation)

B4M36DS2: Database Systems 2 | Practical Class 2: Riak Key-Value Store | 24. and 25. 10. 2016

CRUD Operations

Basic operations on objects
e Create: POST or PUT methods

= Inserts a key-value pair into a given bucket
= Key is specified manually, or will be generated automatically

* Read: GET method

= Retrieves a key-value pair from a given bucket

* Update: PUT method
= Updates a key-value pair in a given bucket

* Delete: DELETE method
= Removes a key-value pair from a given bucket

B4M36DS2: Database Systems 2 | Practical Class 2: Riak Key-Value Store | 24. and 25. 10. 2016

HTTP API

cURL tool

* Allows to transfer data from / to a server using HTTP
(or other supported protocols)

Options
e X , ——request
= HTTP request method to be used (GET, ...)
e —-d , ——data

= Data to be sent to the server (implies the POST method)

e -H , ——header
= Extra headers to be included when sending the request

e —-j,-—include
= Include received headers when printing the response

B4M36DS2: Database Systems 2 | Practical Class 2: Riak Key-Value Store | 24. and 25. 10. 2016

Tutorial: RiakKV

sriak

First Steps

Remotely connect to our NoSQL server
* SSH and SFTP access
e PuTTY and WinSCP on Windows
* 147.32.83.196:22
Check Riak cluster status
e curl -v http://localhost:10011/ping
* And with higher permissions...
= riak ping
®* riak-admin test

® riak-admin status
" riak-admin status | grep ring_members

Read and Write Operations

Insert object for a new actor
* Prefix all the bucket names with your 1ogin
curl -i -X PUT
-H 'Content-Type: text/plain'

-d 'Ivan Trojan, 1964'
http://localhost:10011/buckets/login_actors/keys/trojan

Retrieve the previously inserted actor

e Examine the response body and headers as well

curl -i -X GET
http://localhost:10011/buckets/login_actors/keys/trojan

Bucket Operations

List all the buckets

* Only buckets with at least one object will be included

curl -i -X GET
http://localhost:10011/buckets?buckets=true

List all the keys in the bucket of actors

* Note that this operation cannot be executed efficiently

curl -i -X GET
http://localhost:10011/buckets/login_actors/keys?keys=true

Update and Delete Operations

Update our actor object
curl -i -X PUT
-H 'Content-Type: application/json'

-d '{ "name" : "Ivan Trojan", "year" : 1964 }'
http://localhost:10011/buckets/login_actors/keys/trojan

Check the updated actor object

e Use different virtual nodes as well
e localhost:10011, localhost:10012, localhost:10013

Remove the actor object

curl -i -X DELETE
http://localhost:10011/buckets/login_actors/keys/trojan

Sample Data

Insert objects for new actors
e Put the data into login_actors bucket
e Use application/json content type

{ "name" : "Ivan Trojan", "year" : 1964 }
{ "name" : "Ji¥i Mach&lek", "year" : 1966 }
{ "name" : "Jitka Schneiderova", "year" : 1973 }

{ "name" : "Zdenék Svérak", "year" : 1936 }

Sample Data

Insert objects for new movies
e Put the datainto login_movies bucket
e Use application/json content type once again

{
"title" : "Vratné lahve", "year" : 2006,
"actors" : ["Zdené&k Svérak", "Ji¥i Machacek"]
¥
{
"title" : "Samotari", "year" : 2000,
"actors" : ["Jitka Schneiderova", "Ivan Trojan", "Jifi Machaéek"]
}
{
"title" : "Medvidek", "year" : 2007,
"actors" : ["Jifi Macha&ek", "Ivan Trojan"]
}

Links and Link Walking

Links = directed relationships between objects

~0-EED-0-ED-0-ED-0- @,

Lo am
N j’%j‘@}%ﬂ

Parameters
* Bucket—assumes only a given target bucket
e Tag- considers only a given link tag

* Keep—whether the objects should be included in the output

Links and Link Walking

Create new links actor — movie

curl -i -X PUT
-H 'Content-Type: application/json'
-H 'Link: </buckets/login_movies/keys/samotari>; riaktag="tmovie"'
-H 'Link: </buckets/login_movies/keys/medvidek>; riaktag="tmovie"'
-d '{ "name" : "Ivan Trojan", "year" : 1964 }'
http://localhost:10011/buckets/login_actors/keys/trojan

Check the updated actor object

» Verify the presence of links in particular

Traverse the links from the actor
curl -i -X GET

http://localhost:10011/buckets/login_actors/keys/trojan
/login_movies,tmovie,1

Links and Link Walking

Add all the links movie — actor

Express a more complicated link walking

e Find all the actors that appeared in movies where Trojan stared

Search 2.0: Yokozuna

Create a full-text index for the bucket of actors

curl -i -X PUT
-H 'Content-Type: application/json'
-d '{ "schema" : "_yz_default" }'
http://localhost:10011/search/index/login_iactors

curl -i -X PUT
-H 'Content-Type: application/json'
-d '{ "props" : { "search_index" : "login_iactors" } }'
http://localhost:10011/buckets/login_actors/props

Verify the bucket properties

curl -i -X GET
http://localhost:10011/buckets/login_actors/props

Search 2.0: Yokozuna

Reinsert objects for all the actors

Note that the JSON field names were changed so that they
correspond to the Yokozuna JSON extractor and Czech
accented characters were removed

"name_s" : "Ivan Trojan", "year_i" : 1964 }
"name_s" : "Jiri Machacek", "year_i" : 1966 }
"name_s" : "Jitka Schneiderova", "year_i" : 1973 }
"name_s" : "Zdenek Sverak", "year_i" : 1936 }

Search 2.0: Yokozuna

Find all the actors born in 1964
curl -i -X GET

'http://localhost:10011/search/query/
login_iactors?wt=json&omitHeader=true&q=year_i:1964'

Express a more complicated full-text query

¢ Find all the actors that were born in 1960 or later and their
name contains substring de

References

Riak documentation
e http://docs.basho.com/riak/kv/2.1.4/

http://docs.basho.com/riak/kv/2.1.4/

	Overview
	Tutorial

