
Lecturer: Martin Svoboda
svoboda@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

MI-PDB, MIE-PDB: Advanced Database Systems

Authors: Irena Holubová, Martin Svoboda
Faculty of Mathematics and Physics, Charles University in Prague
Course NDBI040: Big Data Management and NoSQL Databases

Document Databases, JSON, MongoDB
17. 5. 2016

Lecture 13:

Document Databases
Basic Characteristics

 Documents are the main concept
 Stored and retrieved

 XML, JSON, …

 Documents are
 Self-describing

 Hierarchical tree data structures

 Can consist of maps, collections, scalar values, nested
documents, …

 Documents in a collection are expected to be similar
 Their schema can differ

 Document databases store documents in the value part
of the key-value store
 Key-value stores where the value is examinable

Document Databases
Suitable Use Cases

Event Logging

 Many different applications want to log events
 Type of data being captured keeps changing

 Events can be sharded by the name of the application or type of event

Content Management Systems, Blogging Platforms

 Managing user comments, user registrations, profiles, web-facing
documents, …

Web Analytics or Real-Time Analytics

 Parts of the document can be updated

 New metrics can be easily added without schema changes

E-Commerce Applications

 Flexible schema for products and orders

 Evolving data models without expensive data migration

Document Databases
When Not to Use

Complex Transactions Spanning Different Operations

 Atomic cross-document operations
 Some document databases do support (e.g., RavenDB)

Queries against Varying Aggregate Structure

 Design of aggregate is constantly changing → we need
to save the aggregates at the lowest level of granularity
 i.e., to normalize the data

Document Databases
Representatives

Lotus Notes

Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

JSON
JavaScript Object Notation

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 7

Introduction

• JSON = JavaScript Object Notation

 Text-based easy-to-read-and-write open standard for
data interchange

‒ Serializing and transmitting structured data

‒ Design goals: simplicity and universality

 Derived from JavaScript, but language independent

‒ Uses conventions of the C-family of languages
(C, C++, C#, Java, JavaScript, Perl, Python, …)

 Filename: *.json

 Media type: application/json

 http://www.json.org/

http://www.json.org/
http://www.json.org/

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 8

Example

{

 "firstName" : "John",

 "lastName" : "Smith",

 "age" : 25,

 "address" : {

 "street" : "21 2nd Street",

 "city" : "New York",

 "state" : "NY",

 "postalCode" : 10021

 },

 "phoneNumbers" : [

 { "type" : "home", "number" : "212 555-1234" },

 { "type" : "fax", "number" : "646 555-4567" }

]

}

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 9

Data Structures

• Built on two general structures

 Object

‒ Collection of name-value pairs

• Realized as an object, record, struct, dictionary, hash table,
keyed list, associative array, …

 Array

‒ List of values

• Realized as an array, vector, list, sequence, …

 All modern programming languages support them

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 10

Data Structures

• Object

 Unordered set of name-value pairs

‒ Called properties of an object

 Examples
‒ { "name" : "Peter", "age" : 30 }

‒ { }

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 11

Data Structures

• Array

 Ordered collection of values

‒ Called items or elements of an array

 Examples
‒ [3, 5, 7, 9]

‒ [15, "word", -5.6]

‒ []

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 12

Values

• Strings

• Numbers

• Nested objects or arrays

• Boolean values

 true and false

• Null value

 Missing information

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 13

Values

• String

 Sequence of Unicode characters

‒ Wrapped in double quotes

‒ Backslash escaping sequences for special characters

 Example: "ab \n cd \" ef \\ gh"

• Number

 Integers or floating point numbers

‒ Decimal system only

‒ Scientific notation allowed

 Examples: 10, -0.5, 1.5e3

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 14

Example

{

 "firstName" : "John",

 "lastName" : "Smith",

 "age" : 25,

 "address" : {

 "street" : "21 2nd Street",

 "city" : "New York",

 "state" : "NY",

 "postalCode" : 10021

 },

 "phoneNumbers" : [

 { "type" : "home", "number" : "212 555-1234" },

 { "type" : "fax", "number" : "646 555-4567" }

]

}

BSON
Binary JSON

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 16

Introduction

• BSON

 Binary-encoded serialization of JSON documents

‒ Allows embedding of JSON objects, arrays and standard
simple data types together with a few new ones

 MongoDB database

‒ NoSQL database built on JSON documents

• http://www.mongodb.com/

‒ Primary data representation = BSON

• Data storage and network transfer format

 Filename: *.bson

 http://bsonspec.org/

http://www.mongodb.com/
http://www.mongodb.com/
http://bsonspec.org/
http://bsonspec.org/
http://bsonspec.org/

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 17

Example

• JSON
 { "hello" : "world" }

• BSON
 \x16\x00\x00\x00 Document size
\x02 String data type
hello\x00 Field name
\x06\x00\x00\x00world\x00 Field value
\x00 End of object

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 18

Grammar

• Document

 Encodes one JSON object (or array or value)
• There can be more documents in one *.bson file

‒ JSON array is first transformed into an object

• E.g.: ["red", "blue"] { "0": "red", "1": "blue" }

 Structure

‒ Total document size in a number of bytes

‒ Sequence of elements

‒ Terminating 0x00

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 19

Grammar

• Element

 Encodes one object property (name-value pair)

 Structure

‒ Type selector
• 0x01 = double

• 0x10 = 4B integer

• 0x12 = 8B integer

• 0x08 = boolean

• 0x0A = null

• 0x09 = datetime

• 0x11 = timestamp

• …

‒ Field name

‒ Field value

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 20

Grammar

• Element name

 Unicode string

‒ 0x00 not allowed inside

 Terminating 0x00

• String

 Total string length

 Unicode string

 Terminating 0x00

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 13: MongoDB | 17. 5. 2016 21

Grammar

• Basic types

 byte – 1 byte (8-bits)

 int32 – 4 bytes (32-bit signed integer)

 int64 – 8 bytes (64-bit signed integer)

 double – 8 bytes (64-bit IEEE 754 floating point)

MongoDB

MongoDB

 Initial release: 2009

 Written in C++
 Open-source

 Cross-platform

 JSON documents
 Dynamic schemas

 Features:
 High performance – indexes

 High availability – replication + eventual consistency + automatic
failover

 Automatic scaling – automatic sharding across the cluster

 MapReduce support

http://www.mongodb.org/

http://www.mongodb.org/

MongoDB
Terminology

Terminology in Oracle and MongoDB

 Each MongoDB
instance has
multiple
databases

 Each database
can have multiple
collections

 When we store a
document, we
have to choose
database and
collection

MongoDB
Documents

 Use JSON

 Stored as BSON
 Binary representation of JSON

 Have maximum size: 16MB (in BSON)
 Not to use too much RAM

 GridFS tool divides larger files into fragments

 Restrictions on field names:
 _id is reserved for use as a primary key

 Unique in the collection

 Immutable

 Any type other than an array

 The field names cannot start with the $ character
 Reserved for operators

 The field names cannot contain the . character
 Reserved for accessing fields

MongoDB
Data Model

 Documents have flexible schema
 Collections do not enforce structure of data

 In practice the documents are similar

 Challenge: Balancing
 the needs of the application

 the performance characteristics of database engine

 the data retrieval patterns

 Key decision: references vs. embedded documents
 Structure of data

 Relationships between data

MongoDB
Data Model – References

 Including links / references from one document to
another

 Normalized data models

MongoDB
Data Model – References

 References provides more flexibility than embedding

 Use normalized data models:
 When embedding would result in duplication of data not

outweighted by read performance

 To represent more complex many-to-many relationships

 To model large hierarchical data sets

 Disadvantages:
 Can require more roundtrips to the server (follow up queries)

MongoDB
Data Model – Embedded Data

 Related data in a single document structure
 Documents can have subdocuments (in a field of array)

 Applications may need to issue less queries

 Denormalized data models

 Allow applications

 to retrieve and

 manipulate related

 data in a single

 database operation

MongoDB
Data Model – Embedded Data

 Use embedded data models when:
 When we have “contains” relationships between entities

 One-to-one relationships

 In one-to-many relationships, where child documents always appear
with one parent document

 Provides:
 Better performance for read operations

 Ability to retrieve/update related data in a single database operation

 Disadvantages:
 Documents may significantly grow after creation

 Impacts write performance
 The document must be relocated on disk if the size exceeds allocated space

 May lead to data fragmentation

MongoDB
Data Modification

 Operations: create, update, delete

Modify the data of a single collection of

documents

 For update / delete: criteria to select the

documents to update / remove

MongoDB
Data Insertion

db.inventory.insert({ _id: 10, type: "misc", item:
"card", qty: 15 })

 Inserts a document with three fields into collection inventory
 User-specified _id field

db.inventory.update(

 { type: "book", item : "journal" },

 { $set : { qty: 10 } },

 { upsert : true }

)

 Creates a new document if no document in the inventory collection
contains { type: "books", item : "journal" }
 MongoDB adds the _id field and assigns as its value a unique

ObjectId

 The result contains fields type, item, qty with the specified values

MongoDB
Data Insertion and Removal

db.inventory.save({ type: "book", item:
"notebook", qty: 40 })

 Creates a new document in collection inventory if _id
is not specified or does not exist in the collection

db.inventory.remove({ type : "food" })

 Removes all documents that have type equal to food
from the inventory collection

db.inventory.remove({ type : "food" }, 1)

 Removes one document that have type equal to food
from the inventory collection

MongoDB
Data Updates

db.inventory.update(

 { type : "book" },

 { $inc : { qty : -1 } },

 { multi: true }

)

 Finds all documents with type equal to book and modifies their
qty field by -1

db.inventory.save(

 {

 _id: 10,

 type: "misc",

 item: "placard"

 })

 Replaces document with _id equal to 10

MongoDB
Query

 Targets a specific collection of documents

 Specifies criteria that identify the returned documents

 May include a projection that specifies the fields from the
matching

 documents

 to return

 May impose

 limits, sort

 orders, …

MongoDB
Query – Basic Queries, Logical Operators

db.inventory.find({})

db.inventory.find()

 All documents in the collection

db.inventory.find({ type: "snacks" })

 All documents where the type field has the value snacks

db.inventory.find({ type: { $in: ['food', 'snacks'] } }

)

 All documents where value of the type field is either food or snacks

db.inventory.find({ type: 'food', price: { $lt: 9.95 } })

 All documents where the type field has the value food and the value of
the price field is less than 9.95

MongoDB
Query – Logical Operators

db.inventory.find(

 { $or: [

 { qty: { $gt: 100 } },

 { price: { $lt: 9.95 } }

] })

 All documents where the field qty has a value greater than ($gt) 100 or
the value of the price field is less than ($lt) 9.95

db.inventory.find({ type: 'food', $or: [

 { qty: { $gt: 100 } },

 { price: { $lt: 9.95 } }]

 })

 All documents where the value of the type field is food and either the qty
has a value greater than ($gt) 100 or the value of the price field is less
than ($lt) 9.95

MongoDB
Query – Subdocuments

db.inventory.find({

 producer: {

 company: 'ABC123',

 address: '123 Street'

 }

 })

 All documents where the value of the field producer is a subdocument that
contains only the field company with the value ABC123 and the field
address with the value 123 Street, in the exact order

db.inventory.find({ 'producer.company': 'ABC123' })

 All documents where the value of the field producer is a subdocument that
contains a field company with the value ABC123 and may contain other
fields

dot notation

MongoDB
Query – Arrays

db.inventory.find({ tags: ['fruit', 'food',
'citrus'] })

 All documents where the value of the field tags is an array that
holds exactly three elements, fruit, food, and citrus, in this
order

db.inventory.find({ tags: 'fruit' })

 All documents where value of the field tags is an array that
contains fruit as one of its elements

db.inventory.find({ 'tags.0' : 'fruit' })

 All documents where the value of the tags field is an array whose
first element equals fruit

exact match

MongoDB
Query – Arrays of Subdocuments

db.inventory.find({ 'memos.0.by': 'shipping' })

 All documents where the memos field contains an array whose first element
is a subdocument with the field by with the value shipping

db.inventory.find({ 'memos.by': 'shipping' })

 All documents where the memos field contains an array that contains at
least one subdocument with the field by with the value shipping

db.inventory.find({

 'memos.memo': 'on time',

 'memos.by': 'shipping'

 })

 All documents where the value of the memos field is an array that has at
least one subdocument that contains the field memo equal to on time and
the field by equal to shipping

MongoDB
Query – Limit Fields of the Result

db.inventory.find({ type: 'food' }, { item: 1, qty:
1 })

 Only the item and qty fields (and by default the _id field) return in
the matching documents

db.inventory.find({ type: 'food' }, { item: 1, qty:

1, _id: 0 })

 Only the item and qty fields return in the matching documents

db.inventory.find({ type: 'food' }, { type : 0 })

 The type field does not return in the matching documents

 Note: With the exception of the _id field we cannot combine
inclusion and exclusion statements in projection documents.

or true

or false

MongoDB
Query – Sorting

db.collection.find().sort({ age: -1 })

 Returns all documents in collection sorted by the
age field in descending order

db.bios.find().sort({ 'name.last': 1,

'name.first': 1 })

 Specifies the sort order using the fields from a sub-
document name

 Sorts first by the last field and then by the first field
in ascending order

MongoDB
Indexes

 Without indexes:
 MongoDB must scan every document in a collection to select

those documents that match the query statement

 Indexes store a portion of the collection's data set in an
easy to traverse form
 Stores the value of a specific field or set of fields ordered by the

value of the field

 B-tree like structures

 Defined at collection level

 Purpose:
 To speed up common queries

 To optimize the performance of other operations in specific
situations

MongoDB
Indexes – Example

MongoDB
Indexes – Usage for Sorted Results

 The index stores score values in ascending order

 MongoDB can traverse the index in either ascending or descending
order to return sorted results (without sorting)

 MongoDB does not need to inspect data outside of the
index to fulfil the query

MongoDB
Indexes – Usage for Covered Results

MongoDB
Index Types

 Default _id
 Exists by default

 If applications do not specify _id, it is created automatically

 Unique by default

 Single Field
 User-defined indexes on a single field of a document

 Compound
 User-defined indexes on multiple fields

 Multikey index
 To index the content stored in arrays

 Creates separate index entry for every element of the array

Single field index on
the score field

(ascending).

Compound index on
the userid field

(ascending) and the
score field

(descending).

Multikey index on
the addr.zip field

sorts first by userid

and then, within each
userid value, sort

by score

MongoDB
Indexes

db.people.createIndex({ "phone-number": 1 })

 Creates a single-field index on the phone-number field of the people
collection

db.products.createIndex({ item: 1, category: 1, price: 1 }

)

 Creates a compound index on the item, category, and price fields

db.accounts.createIndex({ "tax-id": 1 }, { unique: true })

 Creates a unique index
 Prevents applications from inserting documents that have duplicate values for the

inserted fields

db.collection.createIndex({ _id: "hashed" })

 Creates a hashed index on _id

MongoDB
Index Types

 Geospatial Field
 2d indexes = use planar geometry when returning results

 For data representing points on a two-dimensional plane

 2sphere indexes = use spherical (Earth-like) geometry to return
results

 For data representing longitude, latitude

 Text Indexes
 Searching for string content in a collection

 Hash Indexes
 Indexes the hash of the value of a field

 Only support equality matches (not range queries)

