MI-PDB, MIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

Lecture 12:

Key-Value Databases, Riak, Redis

10. 5. 2016

{e=R GG Lecturer: Martin Svoboda
f svoboda@ksi.mff.cuni.cz

™ research group

Author: Irena Holubova
Faculty of Mathematics and Physics, Charles University in Prague
Course NDBI040: Big Data Management and NoSQL Databases

" J
Key-value store

Basic characteristics

m The simplest NoSQL data store

A hash table (map)

When all access to the database is via primary key
m Like atable in RDBMS with two columns:

= key
= value
s BLOB with any data
m Basic operations:
the value for the key

a value for a key
m If the value exists, it is overwritten

a key from the data store
m simple — great performance, easily scaled
m Simple — not for complex queries, aggregation needs, ...

"
Key-value store

Representatives VemcachedDR
[] L
® ’ ’ '
ORACLE HamsteroB ' F
BERKELEY DB -~ AV
P 4
b ,\ e not open-source
amazon — Project
<7‘\mazon DynamoDB> _—— Voldemort
D A open-source

version

http://en.wikipedia.org/wiki/File:Redis_Logo.svg
http://en.wikipedia.org/wiki/File:Riak_product_logo.png

" J
Key-value store

Suitable Use Cases

Storing Session Information
m Every web session is assigned a unigue value

m Everything about the session can be stored by a single PUT request
or retrieved using a single GET

m Fast, everything is stored in a single object
User Profiles, Preferences

m Every user has a unique + preferences (e.g.,
language, colour, time zone, which products the user has access to,

0 As In the previous case:

Fast, single object, single GET/PUT
Shopping Cart Data
m Similar to the previous cases

Key-value store
When Not to Use

Relationships among Data
m Relationships between different sets of data

m Some key-value stores provide link-walking features
Not usual

Multioperation Transactions
m Saving multiple keys

Failure to save any one of them — revert or roll back the rest of the
operations

Query by Data

m Search the keys based on something found in the value part
Operations by Sets

m Operations are limited to one key at a time

m NoO way to operate upon multiple keys at the same time

Key-value store
Query

m \We can query by the

m To query using some attribute of the value column is
(typically) not possible

We need to read the value to figure out if the attribute meets the
conditions

m \What if we do not know the key?
Some systems enable to retrieve the list of all keys
m Expensive
Some support searching inside the value

m Using, e.g., a kind of full text index
The data must be indexed first
Riak search (see later)

Key-value store
Query

m How to design the key?

Generated by some algorithm
Provided by the user
m e.g., userlD, e-mall
Derived from time-stamps (or other data)

m Typical candidates for storage: session data (with the

session ID as the key), shopping cart data (user ID),
user profiles (user ID), ...

m Expiration of keys
After a certain time interval
Useful for session/shopping cart objects

RIAK
sriak

http://en.wikipedia.org/wiki/File:Riak_product_logo.png

" J
Key-value store Friak

m Open source, distributed database
First release: 2009
Implementing principles from Amazon's Dynamo

OS: Linux, BSD, Mac OS X, Solaris
Language: Erlang, C, C++, some parts in JavaScript

Stores keys into = a hamespace for keys
Like tables in a RDBMS, directories in a file system, ...

Have set of common properties for its contents
m e.g., number of replicas

http://basho.com/riak/

http://en.wikipedia.org/wiki/File:Riak_product_logo.png
http://basho.com/riak/

Riak Buckets

namespace
Oracle Riak for keys
database instance Riak clusty/
table bucket i
row key-value
rowid key

Terminology in Oracle vs. Riak

<Bucket = userData=

<Key = sessionID_userProfile>

<Value = UserProfileObject=

Adding type of data to the key, /\\/r

still everything in a single bucket

<Bucket = userData=

<Key = sessionID>

<Value = Object>

UserProfile

SessionData

ShoppingCart

CartItem

CartItem

Single object for all data,
everything in a single bucket

Separate buckets for different
types of data

" A
Key-value store Friak

Example

Bucket bucket = (bucketName) ;
IRiakObject riakObject =

(key, value) .execute();

Bucket bucket = (bucketName) ;
IRiakObject riakObject =

(key) .execute() ;
byte[] bytes = riakObject.getValue() ;
String value = new String(bytes);

http://en.wikipedia.org/wiki/File:Riak_product_logo.png

" J
Riak Usage

m HTTP - default interface
GET (retrieve), PUT (update), POST (create), DELETE (delete)
Other interfaces: Protocol Buffers, Erlang interface
We will use curl (curl --help)
s Ccommand-line tool for transferring data using various protocols
m Keys and buckets in Riak:

Keys are stored in buckets (= namespaces) with common properties
m n val —replication factor
m allow mult — allowing concurrent updates
|

If a key is stored into non-existing bucket, it is created
Keys may be user-specified or generated by Riak

- Paths:l 2 a particular bucket
/riak/<bucket>
/riak/<bucket>/<key>

ﬁ key in a bucket

Riak Usage — Examples
Working with Buckets

m List all the buckets:
curl http://localhost:10002/riak?buckets=true

m Get properties of bucket foo:
curl http://localhost:10002/riak/foo/

m Get all keys in bucket foo:
curl http://localhost:10002/riak/foo?keys=true

m Change properties of bucket foo:

curl -X PUT http://localhost:10002/riak/foo -H
"Content-Type: application/json" -d '{"props"
"n val" : 2 } }'

Riak Usage — Examples
Working with Data

m Storing a plain text into bucket foo using a generated key:
curl -i -H "Content-Type: plain/text" -d "My text"

http://localhost:10002/riak/foo/ =
HTTP POST

m Storing a JSON file into bucket artist with key Bruce:

curl -i -H "Content-Type: application/json" -d
'"{"name" :"Bruce"}'
http://localhost:10002/riak/artists/Bruce

| | / HTTP GET
m Getting an object:
curl http://localhost:10002/riak/artists/Bruce

Riak Usage — Examples
Working with Data

_ HTTP PUT

m Updating an object.__——

curl -i =X PUT -H "Content-Type: application/json" -
d '"{"name":"Bruce", "nickname":"The Boss"}'
http://localhost:10002/riak/artists/Bruce

curl http://localhost:10002/riak/artists/Bruce
T~

m Deleting an object: 2 HTTP DELETE check the value

curl -i -X DELETE
http://localhost:10002/riak/artists/Bruce

curl http://localhost:10002/riak/artists/Bruce

" I
Riak Links

m Allow to create relationships between objects
Like, e.g., foreign keys in relational databases, or associations in UML
m Attached to objects via Link header

m Add albums and links to the performer:

curl -H "Content-Type: text/plain" -H 'Link:
</riak/artists/Bruce>; riaktag="performer"' -d
"The River"

http://localhost:10002/riak/albums/TheRiver

curl -H "Content-Type: text/plain" -H 'Link:
</riak/artists/Bruce>; riaktag="performer"' -d
"Born To Run"

http://localhost:10002/riak/albums/BornToRun

Riak Links

m Find the artist who performed the album The
River
curl -1
http://localhost:10002/riak/albums/T
heRiver/artists,performer,1
Restrict to bucket artists
Restrict to tag performer
1 = include this step to the result

" A
Bom to run The River

Riak Links R &

m Which artists collaborated with > %,
the artist who performed The Y e,
R Ive r Steve Clarence

curl -1
http://localhost:10002/ §>_f__
riak/albums/TheRiver/ar Assuming

such data

tists, ,0/artists,colla
borator,1

= wildcard (any relationship)

0 = do not include this step to the
result

" A
Riak Search

m A distributed, full-text search engine

m Provides the most advanced query capability next to
MapReduce

m Key features:

Support for various mime types
s JSON, XML, plain text, ...
Support for various analyzers (to break text into tokens)

= A white space analyzer, an integer analyzer, a no-op analyzer, ...

Exact match queries
Scoring and ranking for most relevant results

" A
Riak Search

m First the data must be indexed:
Reading a document
Splitting the document into one or more fields
Splitting the fields into one or more terms

Normalizing the terms in each field

Writing {Field, Term, DocumentID} to an
iIndex

O Indexing: index <INDEX> <PATH>
O Searching: search <INDEX> <QUERY>

" A
Riak Search

m Queries:
Wildcards: Bus*, Bus?
Range queries:

m [red TO rum] = documents with words containing “red” and
“‘rum”, plus any words in between

m {red TO rum} = documents with words in between “red” and
“rum”

AND/OR/NOT and grouping: (red OR blue) AND NOT
vellow

Prefix matching
Proximity searches

m "See spot run"~20 = documents with words within a block of 20
words

" A
Key-value store —— riak

Transactions in Riak R+ Wo N

m BASE (Basically Available, Soft state, Eventually conS|stent)
N Uses the concept of {

= replication factor .
m Default N = 34 *:%'? :;ugrum",

n val":

Data must be written at least at W nodes "name": "cart",

Data must be found at least at R nodes Pesresmmist L
m Values W and R: ::gif‘f"“fgf“i"” H

Can be set by the user for every single operation "r": "quorum”,

all/one/ quorum/default /an integer value s "oz,
m Example: y

A Riak cluster with N =5, W =3 }
Write is reported as successful <> reported as a success on > 3 nodes
Cluster can tolerate N — W = 2 nodes being down for write operations
m dw = durable write
More reliable write, not just “promised” that started
m rw = for deletes (read and delete)

http://en.wikipedia.org/wiki/File:Riak_product_logo.png

Key-value store
Clustering in Riak

m Center of any cluster: 160-bit integer space () which is
divided into equally-sized partitions
0 run (vnodes)
Each physical node in the cluster is responsible for:
1/ (total number of physical nodes)
of the ring
Number of vhodes on each node:
(number of partitions)/ (number of physical nodes)
m Nodes can be added and removed from the cluster dynamically
Riak will redistribute the data accordingly
m Example:
A ring with 32 partitions
4 physical nodes
8 vnodes per node

a ring with 32 partitions

hash(<<"artist">>,<<"REM">>)

T

" JJEE
Key-value store
Replication in Riak

m Setting called
Default: N=3
m Riak objects inherit the N value from their bucket

put(<<"artist">>,<<"REM">>)

" JEE
Key-value store
Riak Request Anatomy

m Each node can be a coordinating vnode = node
responsible for a request

1.
2
3.
4. Waits until enough requests

Finds the vnode for the key according to hash
Finds vnhodes where other replicas are stored — next N-1 nodes
Sends a request to all vnodes

returned the data
m To fulfill the read/write quorum

Returns the result to the client

data

coordinating
vnode

Key-value store
Replication in Riak

m Riak’s key feature:
high availability

Node failure

Neighboring nodes
temporarily take over
storage operations

When the failed node
returns, the updates
received by the
nelghborlng nodes are put(<<"artist">>,<<"REM">>)
handed off to it

Key-value store
Clustering in Riak

m NO master node
Each node is fully capable of serving any client request

Uses to distribute data around the cluster
= Minimizes reshuffling of keys when a hash-table data structure is
rebalanced

= Only k/n keys need to be remapped on average
k = number of keys
n = number of slots

To share and communicate ring state and bucket properties
around the cluster

Each node ,gossips”:
s Whenever it changes its claim on the ring
Announces its change
m Periodically sends its current view of the ring state

To a randomly-selected peer
For the case a node missed previous updates

" J
Key-value store

Riak
non human

m Problem: readable
Any node is able to receive any request
Not all nodes need to participate in each request

— We need to know which version of a value is current

m \When a value is stored in Riak, it is tagged with a

A part of object’s header

m For each update it is updated to determine:
Whether one object is a direct descendant of the other
Whether the objects are direct descendants of a common parent
Whether the objects are unrelated in recent heritage

http://en.wikipedia.org/wiki/File:Redis_Logo.svg

"
Key-value store

é redis

m Open-source database
First release: 2009
Development sponsored by WMware
m OS: most POSIX systems like Linux, *BSD, OS X, ...
Win32-64 experimental version
m Language: ANSI C
Clients in many languages: C, PHP, Java, Ruby, Perl, ...
O (rather a kind of document
database):
Keys are binary safe = any binary sequence can be a key
The stored value can be any object — “data structure server”
m strings, hashes, lists, sets and sorted sets
Can do range, diff, union, intersection, ... operations
m Atomic operations
= Not usual, not required for key-value stores

http://redis.io/

http://en.wikipedia.org/wiki/File:Redis_Logo.svg
http://redis.io/

Key-value store
Redis

é redis

[
Good performance
m For datasets not larger than memory — distribution
Persistence: dumping the dataset to disk periodically / appending each
command to a log
[
Allows to send multiple commands to the server without waiting for the
replies + finally read the replies in a single step
[
Published messages are sent into channels and subscribers express
Interest in one or more channels
e.g., one user subscribes to a channel
m €.0., subscribe warnings
another sends messages
m €.0., publish warnings ”“1t’s over 9000!”
|

Key can have assigned a time to live, then it is deleted

http://en.wikipedia.org/wiki/File:Redis_Logo.svg

" A
Redis Cache-like Behaviour

Example

> SET cookie:google hello

OK

> cookie:google 30

(integer) 1

> cookie:google // time to live

(integer) 23
> GET cookie:google

,hello™ // still some time to live
> TTL cookie:google
(integer) -1 // key has expired

> GET cookie:google
(nil) // and was deleted

"
Redis Data Types

m Binary safe = any binary sequence
e.g., a JPEG image
m Max length: 512 MB

m Operations:

Set/get the string value of a key: / : (set if not set
yet)

String-operation: : : (get a
substring), (change a substring)

Integer-operation: : : ,
m When the stored value can be interpreted as an integer
Bit-operation: , ,

" J
Redis Data Types

Strings — Example

> count 10
OK

> count

»10%

> count
(integer) 11

> count 10
(integer) 1

> count

(integer) 1 // returns the number of keys removed

" J
Redis Data Types

m Lists of strings, sorted by insertion order

m Possible to push new elements on the head (on the left)
or on the tail (on the right)

m A key is removed from the key space if a list operation
will empty the list (= value for the key)

m Max length: 232 — 1 elements
4,294,967,295 = more than 4 billion of elements per list

m Accessing elements
Very fast near the extremes of the list (head, tail)
Slow accessing the middle of a very big list
m O(N) operation

"
Redis Data Types
List

m Operations:
Add element(s) to the list:

O (to the head)

O (to the tail)

B (inserts before or after a specified element)

& (push only if the list exists, do not create if not)
Remove element(s): : : (remove elements
specified by a value)

(get a range of elements), (get length),

(get an element at index)
OP, remove an element or block until one is
available
m Blocking version of LPOP/RPOP

" J
Redis Data Types

List — Example

> animals dog

(integer) 1 // number of elements in the list
> LPUSH animals cat

(integer) 2

> animals horse

(integer) 3

> animals 0 -1 // -1 = the end
l) ,cat"

2) ,dog"

3) ,horse"

> animals

,horse"“

> animals

(integer) 2

" J
Redis Data Types

m Unordered collection of non-repeating strings

m Possible to add, remove, and test for existence of
members in O(1)

m Max number of members: 232 — 1

m Operations:
Add element: , remove element:
Classical set operations: , : ,

The result of a set operation can be stored at a specified key

(,)

(element count), (get all elements)
Operations with a random element: (remove and return
random element), (get a random element)

(move element from one set to another)

" J
Redis Data Types

Set — Example

> friends:Lisa Anna
(integer) 1

> SADD friends:Dora Anna Lisa
(integer) 2

> friends:Lisa friends:Dora
l) ,Anna“

> friends:Lisa friends:Dora
1) ,Lisa“

2) ,Anna"“

> friends:Lisa Dora
(integer) O

> friends:Dora Lisa

(integer) 1

Redis Data Types

m Non-repeating collection of strings

m Every member is associated with a score

Used in order to make the set ordered
m From the smallest to the greatest

May have repeated values
m Then lexicographical order
m Possible to add, remove, or update elements in O(log N)
m Operations:

Add element(s): , remove element(s): , Increment the score
of a member:

Number of elements in a set;

Elements with a score in a specified range: (count),
(get the elements)

Set operations (store result at a specified key):

" J
Redis Data Types

Sorted Set — Example

> articles 1 Anna 2 John 5 Tom

(integer 3)

> articles

(integer) 3

> articles 3 10 // members with score 3-10
(integer) 1

> articles 1 John

, 3 // returns new John's score
> articles 0 -1 // outputs all members

1) ,Anna"“ // sorted according score

2) ,John™“

3) ,Tom“

" J
Redis Data Types

m Maps between string fields and string values
m Max number of field-value pairs: 232 -1

m Optimal data type to represent objects
e.g., a user with fields name, surname, age, ...
m Operations:

(set a value to the field of a specified key),
(set multiple fields)

(get the value of a hash field), , (get all
fields and values in a hash)
(get all fields), (get all values)

(delete one or more hash fields), :
(number of fields in a hash)

" J
Redis Data Types

Hash — Example

> users:sara id 3
(integer) 1

> users:sara id

n3"

> users:sara login sara group students
OK

> users:sara login id
l) ,sara“

2) ,3%

> users:sara group
(integer) 1

> users:sara

1) ,idv

2) ,3%

3) ,login"

4) ,sara"“

