MI-PDB, MIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

Lecture 11:

RDF, SPARQL

3.5.2016

{e=R GG Lecturer: Martin Svoboda
f svoboda@ksi.mff.cuni.cz

™ research group

Author: Martin Svoboda
Faculty of Mathematics and Physics, Charles University in Prague
Course NSWI144: Linked Data

RDF

Resource Description Framework

Introduction

* RDF

= Resource Description Framework

— Language for representing information about resources
in the World Wide Web

= W3C recommendations

— Concepts and abstract syntax
* http://www.w3.org/TR/rdf-concepts/

— Semantics
* http://www.w3.org/TR/rdf-mt/

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-mt/

Statements

* RDF

" |dea: statements about resources

= Resource

— Anything that is identifiable by an IRI
* Usually things identified by standard URLs...
* ... but also things that may not be directly retrievable

= Statements

— Triples inspired by natural languages

— Subject Predicate Object
* http://example.cz/is#student358
http://example.cz/is#name
"John"

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

Statements

* Components of triples

= Subject
— Describes the thing the statement is about

= Predicate
— Describes the property or characteristic of the subject

= Object

— Describes the value of that property

Statements

*» Resource identifiers
= |RIs

— IRl with an optional fragment identifier
° http://example.cz/is#student358
° mailto:svobodalksi.mff.cuni.cz
* urn:issn:0167-6423

— Unicode characters
= Qualified names

— Similar idea as prefixes for namespaces in XML
° ex: = http://example.cz/is#
°* ex:student358

Statements

* Domains for triple components

= |dentifiers
— IRIs

— Blank node identifiers

* Special and only locally valid identifiers (within a file etc.)
° :al85

= Literals
— Plain or typed values with or without language tags

° 1A JOhl’l 1A
* "John"""xsd:string
* "Praha"(@cs

* "Prague"(den

Statements

* Allowed structure of triples

= Subject
— IRl or blank node identifier

= Predicate
— IRI

= Object

— IRl or blank node identifier or literal

Data Model

e RDF data model

= Directed labeled multigraph
— Vertices for subjects and objects

— Labeled directed edges for particular triples

Data Model

* Example

my:index.html dc:creator my:staff/85740
my:index.html my:created "June 16, 1999"
my:1index.html dc:language "en"

my:index.html

dc:creator dc:language

my:created

@staff/%@ June 16, 1999

Blank Nodes

* Example

my:staff/8574 my:hasAddress _:al85
_:al85 my:street "Malostranske nam. 25"

_:al85 my:city "Prague"
_:al85 my:zipCode "11800"

@/:staff/ SSD

my:hasAddress

my:street my:zipCode

Malostranske nam. 25 Prague 11800

SPARQL

Query Language for RDF

Introduction

* SPARQL Protocol and RDF Query Language

= RDF query language

— Required and optional graph patterns, their conjunctions
and disjunctions, subqueries, negation, aggregation, value
constructors, ...

= W3C recommendations

— Version 1.0 (2008)
* https://www.w3.org/TR/rdf-spargl-query/
— Version 1.1 (2013)

* 11 recommendations: query language, update facility,
federated queries, protocol, result formats, ...

* https://www.w3.org/TR/sparalll-query/

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5.2016 13

https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

Sample Data

e Data
" (@prefix ex: <http://example.cz/is#>
@prefix foaf: <http://xmlns.com/foaf/0.1/>

ex:sl rdf:type ex:Student ;
ex:name "Thomas" ;
ex:age "26"

ex:s52 rdf:type ex:Student ;
ex:name "Peter"

ex:s53 rdf:type ex:Student ;
ex:name "John" ;
ex:age "30"

ex:sl foaf:knows ex:s2

ex:s2 foaf:knows ex:s3

Sample Query

* Query expression
" PREFIX ex: <http://example.cz/is#>
SELECT ”n ?a
WHERE {

?s rdf:type ex:Student ;
ex:name ?n ;
ex:age ?a .

)
* Query result

"Thomas" "26"
"JOhn" ll30ll

Graph Pattern Matching

* Graph pattern expressions

= Based on ordinary triples
— Subject, predicate and object components
— IRl references, blank nodes, literals and variables

° ?name or Sname

" We are attempting to find subgraphs of the data
graph that are matched by the query patterns
— Based on substitution of variables
— However, SPARQL is not just a simple graph matching!

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5.2016 16

Graph Pattern Matching

—__--_--
‘,—‘ ~

rdf:type

foaf:knows

rdf:type

foaf:knows

rdf:type
’
/
/
1
]
I
I
[
1
\
\
’
\\ g ex:s1 "Thomas" "26" ’n o
\~- _——” —”’
L § eX:S3 IIJOhnll II3OII E———

Graph Pattern Matching

* Graph pattern expressions
= Basic graph pattern as a set of triples
= ... and other more complex patterns
— E.g. group, optional, ...
* How the matching works?

= Basic graph pattern matches a subgraph of the RDF
data graph when terms from that subgraph may be
substituted for the variables and the result is RDF
graph equivalent to the subgraph

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

18

Graph Pattern Matching

e Equivalency of literals

= Language tags
— When tags are specified, they must be identical

* "Praha"
* "Praha"(@Qcs

* "Prague"Wlen

= Typed literals
— When types are specified, they must be identical
— Shortcuts available for literals of common types...

1 = "1"*""xsd:integer
e 1.5 = "]1.5"""xsd:decimal
°* true = "true"""xsd:boolean

Graph Pattern Matching

* Equivalency of blank nodes

" ...in a data graph
— Distinct nodes within a given document scope

= ...In a query pattern

— Blank nodes act as non-selectable variables

* Blank node labels in a query expression cannot be expected
to correspond to blank nodes from a source data graph!

" ...inaquery result

— Distinct nodes within a given result scope

* Blank node labels in a query result may not correspond to
blank nodes from the source graph and nor the query!

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5.2016 20

Query Result

* Variable binding

— (?n, "Thomas") "Thomas"

e Solution

= Set of variable bindings
— Represents one way how query variables can be substituted
* Not all variables need to be bound! _
n ?
_ { (?1’1, "Thomas"), (?a’ "26") }
"Thomas" "26"

* Solution sequence

= Ordered multiset of solutions

- { (?n, "Thomas"), (?a, "26") 1}, "Thomas" "26"
{ (?Il, "JOhl’l") , (?a, 113011) } "JOhn" n30n

Query Result

* Solution compatibility

" Two solutions are mutually compatible if and only if
for each variable they share both the corresponding
variable bindings are equivalent

= Examples

- { (?s, ex:s1), (2a, "206") }
and
{ (?s, ex:s1), (?n, "Thomas") }
are compatible solutions
- { (?s, ex:s1l), (?n, "Thomas"), (?a, "206") }
and
{ (?s, ex:s1l), (?n, "John") }

are not compatible solutions (since there is at least one conflict)

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016 22

Select Queries

* Basic query structure

= Optional prologue declarations
— PREFIX, BASE

= Selection clauses
— SELECT - list of output variables
— FROM - dataset to be queried
— WHERE - required graph pattern and filtering expressions

= Optional solution modifiers
— GROUP BY, HAVING
— ORDER BY, LIMIT, OFFSET

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

23

Select Queries

* Basic query structure

o> prologue-declarations 7
L select-clause =1[dataset-clause J f where-clause ?

f—r{ solution-modifiers |—>°

= Both the prologue declarations and solution modifiers are optional

Y

* Prologue declarations: BASE and PREFIX clauses

o> > >0

base-clause

prefix-clause

-
-

Prologue Declarations

 PREFIX clause

= Definition of prefix labels for IRl references

0 @ prefix-name o iri-reference)>o

I
>

= Example

— PREFIX my: <http://example.cz/>

— Then a prefixed name my:x
correspondsto <http://example.cz/x>

Prologue Declarations

* BASE clause
= Usage of relative IRl references

o—»(BASE)—»Q ri-reference)—»o

= Example

— BASE <http://example.cz/>

— Then a relative IRl <x>
correspondsto <http://example.cz/x>

Graph Patterns

e WHERE clause

| group-graph-pattern |—>o

" Graph patterns
— Basic... when a set of triple patterns must all match
— Group... when a set of graph patterns must all match
— Optional... when additional patterns may extend solutions
— Alternative... when two or more possible patterns are tried
— @raph... when a particular dataset should be queried

* |Inductive construction

— Patterns can be combined into more complex ones

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

27

Graph Patterns

e Basic graph pattern
— ... when a set of triple patterns must all match

= Syntax
— Ordinary triples separated by dots
— ... and their abbreviated forms inspired by Turtle notation
* Object lists using ,
* Predicate-object lists using ;
* Blank nodes using []
* Collections using ()

= Examples
- s pl ol . s pl 02 . s p2 o3
- s pl ol , 02 ; p2 03

Graph Patterns

° Example

"= PREFIX ex: <http://example.cz/is#> ex:sl
SELECT °”n ?a ex:s2
WHERE { ex:s3

?s rdf:type ex:Student
?s ex:age ?a

?s ex:name ?n \—)

ex:sl "26"
ex:s3 "30"

ex:sl "Thomas"
O R

ex:sl "Thomas" "26"
ex:s3 "John"

ex:s3 "John" "30"

Graph Patterns

* Basic graph pattern

= Interpretation
— All the involved triple patterns must match
— |.e. we combine them as if they were in conjunction
— Note that all variables need to be bound

* l.e. if any of the involved variables cannot be bound,
then the entire basic graph pattern cannot be matched!

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

30

Graph Patterns

* Group graph pattern

- ... when a set of graph patterns must all match

= Syntax — two alternatives:
— Nested select query

* SELECT clause, WHERE clause, and solution modifiers

D’G)"ﬁ‘I’leSted-seIect-queryje@)—w
patterns-block

— Block with a set of graph patterns:

Py

o> > > >
\+ triples-block *| group-graph-pattern '—»J

N

union-graph-pattern

-

*| optional-graph-pattern }—»J

A \+| minus-graph-pattern '—»J

Y > S
\-> triples-block

> graph-graph-pattern >
N> filter),
> bind),

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

>0

31

Graph Patterns

* Group graph pattern
" Notes
— Empty group patterns {} are also allowed

= Interpretation
— All the involved patterns must match

— |.e. we combine them as if they were in conjunction

Graph Patterns

» Optional graph pattern
- ... when additional patterns may extend the solution

= Syntax

°—>-COPTIONAL>—> group-graph-pattern o

= Interpretation

— If the optional part does not match,
it creates no bindings but does not eliminate the solution

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

Graph Patterns

e Optional graph pattern

= Example
— PREFIX ex: <http://example.cz/is#>
SELECT ”n ?a
WHERE {
?s rdf:type ex:Student ; ex:name ?n .
OPTIONAL { ?s ex:age ?a . }

"Thomas" "26"
"Peter"
"JOhn" ll30ll

Graph Patterns

* Alternative graph pattern

- ... when two or more possible patterns are tried

= Syntax

o> group-graph-pattern »—[<UNION>—> group-graph-pattern j—w

= Interpretation

— Standard union of multisets of solutions

Dataset Clause

e Dataset

" Collection of graphs to be queried

= |t contains...
— one default graph,
— and zero or more named graphs

= Each of these graphs is indentified by an IR
* Active graph

= Particular graph used for the evaluation

— We can switch the default graph to a selected named graph

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

36

Dataset Clause

e FROM clause

= Definition of all the graphs to be used in a query
H-ﬁ 7
(prefixed—name)

— Default graph = merge of all the declared unnamed graphs
* Itis empty, when no unnamed FROM clause is available

= Examples

— FROM <http://example.cz/students>
— FROM <http://example.cz/teachers>
— FROM NAMED <http://example.cz/courses>

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

37

Graph Patterns

e Graph graph pattern

— ... when a particular named graph should be queried

= Syntax
0 m variable =I group-graph-pattern |—>o
{
prefixed-name)
= Examples

— GRAPH <http://example.cz/courses> { .. }

* Sets the specified named graph as the active one
~ GRAPH 2?9 { .. }
* Ranges over all the named graphs defined in the dataset

Variable Assignments

e Bind "graph pattern”
— Assigns a value to a (not yet bound!) variable

= Syntax

BIND (expression -(AS)—»(variable)—»@—»o

Filter Constraints

* Filter "graph pattern”

= Motivation

— Impose constraints on variables and their values

— Preserves only solutions that satisfy a given condition

"= Example
- FILTER (BOUND (?age) &&

= Usage

(?age < 20))

— Boolean expressions with operators and functions

— Filters are applied on the entire group graph patterns

o>(FILTER built-in-call
(

expression

o

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5.2016 40

Filter Constraints

* Boolean expressions

= Logical connectives
- && ||

= 3 value logic
— True, false, error

Filter Constraints

* Relational expressions

= Comparisons
- < <= >= >

* Unbound variable < blank node < IRI < literal

= Set membership tests
~ IN
~ NOT 1IN

J expression

Filter Constraints

* Numeric expressions

= Arithmetic operators
— Unary + -
— Binary+ - * /
* Primary expressions
= Literals: numeric, Boolean, RDF
= Variables
= Built-in calls
= Parenthesized expression

Filter Constraints

e Built-in calls

= Term accessors
— STR — lexical form of IRI or literal
— LANG — language tag of a literal
— DATATYPE — data type of a literal

= Variable tests
— BOUND — whether a variable is assigned a value
— 1sIRI, 1sBLANK, 1sLITERAL

= Existence tests
— EXISTS and NOT EXISTS

Select Clause

e SELECT clause

= Specification of output variables

o>(SELECT)> > > >(_variable >0
TR
| expression |—>(AS)—>(variabIe)

— Asterisk * selects all the variables

= Solution modifiers

— DISTINCT
* Removes all duplicates from the solution sequence

— REDUCED
* Permits elimination of some non-unique solutions

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

45

Solution Modifiers

* Query structure
= PREFIX ..
SELECT DISTINCT | REDUCED ..
FROM ...

WHERE { .. }
ORDER BY .. LIMIT .. OFFSET ..

* Objective
= Modification of the entire sequence of solutions

Solution Modifiers

* ORDER BY clause

= Mutually orders solutions in the solutions sequence

variable >0
built-in-function-call %
o expression

7—@* expression

ORDER BY

= Behavior
— ASC(...) = ascending (default), DESC(...) = descending
— Unbound variable < blank node < IRI < literal

= Example
— ORDER BY ?“name DESC (?age)

Solution Modifiers

e LIMIT clause

= Limits the number of solutions in the result

— (Always) should be preceded by ORDER BY modifier
* Otherwise the order of solutions is undefined

"= Example
— ORDER BY ?name LIMIT 10

e OFFSET clause

" |ndex of the first reported item from the sequence

" Example
— ORDER BY ?name LIMIT 10 OFFSET 20

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

48

Solution Modifiers

o LIMIT and OFFSET clauses

o> > >0
LIMIT)—»(integer)—»T(OFFSET)>(integer)
OFFSET)—»(integer)—T(LIMITHinteger)

Query Forms

* Forms
= SELECT - standard solutions sequence
= ASK — test for a solution existence
= DESCRIBE — retrieval of a graph about resources

= CONSTRUCT — construction of a graph from a pattern

Query Forms

e SELECT query form
— SPARQL querying considered so far...

= Result
— Solutions sequence as an ordered multiset of solutions

= Syntax

prologue-declarations 7
i—» select-clause =1 [dataset-clause] f where-clause T

Y

<

L{ solution-modifiers |—>o

Query Forms

e ASK query form

— Checks whether at least one solution exists

= Result

— true or false

= Syntax

o> prologue-declarations T

dataset-clause) f > where-clause T

{—' solution-modifiers o

Query Forms

 DESCRIBE query form

— Retrieves an RDF graph with data about selected resources

= Result
— Non-deterministic implementation-dependent behavior

o—>| prologue-declarations }—}

DESCRIBE

:

variable
iri-reference ﬂ
prefixed-name)

-

1 4 ’I [dataset-cilause J j =\ where;clause T
./

Query Forms

 DESCRIBE query form

= Examples
— DESCRIBE <http://example.cz/is#sl>
— PREFIX ex: <http://example.cz/is#>
DESCRIBE °s
FROM <http://example.cz/is>
WHERE { 7?s rdf:type ex:Student }

Query Forms

e CONSTRUCT query form

— Construction of new graphs from solutions sequences

= Result
— RDF graph constructed from a template
— lllegal triples (unbound or invalid) are thrown away

o—>| prologue-declarations }—)

CONSTRUCT)—»@-»l triples-construction-block |+®’Td dataset-clause hT—| where-clause }—}
L solution-modifiers

Query Forms

e CONSTRUCT query form

= Example
— PREFIX ex: <http://example.cz/is#>
CONSTRUCT
{ ?s ex:name concat(?nl, " ", ?n2) . }
FROM <http://example.cz/is>
WHERE

{ ?s ex:firstName ?nl ; ex:lastName ?n2 . }

Advanced Constructs

* SPARQL 1.1
— Constructs that were not available in SPARQL 1.0
= Aggregation
— GROUP BY and HAVING clauses (solution modifiers)
= Negation
— NOT EXSITS constraint
— MINUS graph pattern

= Property paths

Aggregation

e Motivation

= Standard aggregation of solution sequences (tables)
inspired by relational databases and SQL

* GROUP BY + HAVING clauses

o> GROUP BY (variable) ~
built-in-call I j

-

A {)—>| expression |l’—\
A

‘*—b HAVING built-in-call
| {C®»M®Jﬂ

>0

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5. 2016

Aggregation

* Aggregates

0 o expression @ﬁo
S

m expression —>®—>/
()

AVG

*>(_GROUP_CONCAT)~(()~ - »[expression
- Commer)- T

N ()
g > Q)
\>®—>(SEPARATOR J

Aggregation

* Example

= Total capacity of all rooms in each building
— PREFIX ex: <http://example.cz/is#>
SELECT ?b (SUM(?c) AS ?capacity)
FROM <http://example.cz/faculty/>
WHERE
{ ?r ex:1nBuilding ?b ; ex:capacity ?c
GROUP BY °?b

Negation

e EXISTS constraint

- ... When the existence of solutions should be tested

= Syntax

OT»T{EXISTS)H group-graph-pattern |—>o
NOT

= Notes

— Does not generate any additional bindings

Negation

* MINUS graph pattern

- ... when compatible solutions should be removed

= Syntax

o—){ MINUS >—> group-graph-pattern

" |dea

— Solutions of the left pattern are preserved if and only if they
are not compatible with any solution from the right pattern

* |.e. note that this minus graph pattern does not correspond
to a traditional set minus operator!

MI-PDB, MIE-PDB: Advanced Database Systems | Lecture 11: RDF, SPARQL | 3.5.2016 62

Conclusion

e SPARQL
= Model

— Graph pattern matching and substitution of variables
* Result = ordered multiset of solutions
* Solution = set of variable bindings

= Syntax
~ PREFIX ..
SELECT DISTINCT | REDUCED ..
FROM ..
WHERE { .. }
GROUP BY .. HAVING ..
ORDER BY .. LIMIT .. OFFSET ..

