
MapReduce, Hadoop
Lecture 10:

MI-PDB, MIE-PDB: Advanced Database Systems

Lecturer: Martin Svoboda
svoboda@ksi.mff.cuni.cz

Author: Irena Holubová
Faculty of Mathematics and Physics, Charles University in Prague
Course NDBI040: Big Data Management and NoSQL Databases

26. 4. 2016

http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

MapReduce Framework

 A programming model + implementation

 Developed by Google in 2008
 To replace old, centralized index structure

 Distributed, parallel computing on large data

Google: “A simple and powerful interface that enables automatic
parallelization and distribution of large-scale computations,
combined with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.”

 Programming model in general:
 Mental model a programmer has about execution of application

 Purpose: improve programmer's productivity

 Evaluation: expressiveness, simplicity, performance

Programming Models

 Parallel programming models
 Message passing

 Independent tasks encapsulating local data
 Tasks interact by exchanging messages

 Shared memory
 Tasks share a common address space
 Tasks interact by reading and writing from/to this space

 Asynchronously

 Data parallelization
 Data are partitioned across tasks
 Tasks execute a sequence of independent operations

MapReduce Framework

 Divide-and-conquer paradigm
 Map breaks down a problem into sub-problems

 Processes input data to generate a set of intermediate key/value
pairs

 Reduce receives and combines the sub-solutions to solve the
problem

 Processes intermediate values associated with the same
intermediate key

 Many real world tasks can be expressed this way
 Programmer focuses on map/reduce code

 Framework cares about data partitioning, scheduling execution
across machines, handling machine failures, managing inter-
machine communication, …

MapReduce
A Bit More Formally

 Map
 Input: a key/value pair

 Output: a set of intermediate key/value pairs
 Usually different domain

 (k1,v1) → list(k2,v2)

 Reduce
 Input: an intermediate key and a set of values for that

key

 Output: a possibly smaller set of values
 The same domain

 (k2,list(v2)) → (k2,possibly smaller list(v2))

MapReduce
Example: Word Frequency

map(String key, String value):

 // key: document name

 // value: document contents

for each word w in value:

 EmitIntermediate(w, "1");

reduce(String key, Iterator values):

 // key: a word

 // values: a list of counts

int result = 0;

for each v in values:

 result += ParseInt(v);

Emit(key, AsString(result));

MapReduce
Example: Word Frequency

MapReduce
Application Parts

 Input reader
 Reads data from stable storage

 e.g., a distributed file system

 Divides the input into appropriate size 'splits'

 Prepares key/value pairs

 Map function
 User-specified processing of key/value pairs

 Partition function
 Map function output is allocated to a reducer

 Partition function is given the key (output of Map) and the
number of reducers and returns the index of the desired reducer
 Default is to hash the key and use the hash value modulo the

number of reducers

MapReduce
Application Parts

 Compare function
 Sorts the input for the Reduce function

 Reduce function
 User-specified processing of key/values

 Output writer
 Writes the output of the Reduce function to stable storage

 e.g., a distributed file system

MapReduce
Execution – Step 1

1. MapReduce library in the user program

splits the input files into M pieces

 Typically 16 – 64 MB per piece

 Controllable by the user via optional

parameter

2. It starts copies of the program on a

cluster of machines

MapReduce
Execution – Step 2

 Master = a special copy of the program

 Workers = other copies that are assigned

work by master

 M Map tasks and R Reduce tasks to

assign

 Master picks idle workers and assigns

each one a Map task (or a Reduce task)

MapReduce
Execution – Step 3

 A worker who is assigned a Map task:

Reads the contents of the corresponding input
split

Parses key/value pairs out of the input data

Passes each pair to the user-defined Map
function

 Intermediate key/value pairs produced by the
Map function are buffered in memory

MapReduce
Execution – Step 4

 Periodically, the buffered pairs are written
to local disk

Partitioned into R regions by the partitioning
function

 Locations of the buffered pairs on the local
disk are passed back to the master

 It is responsible for forwarding the locations to
the Reduce workers

MapReduce
Execution – Step 5

 Reduce worker is notified by the master about data
locations

 It uses remote procedure calls to read the buffered data
from local disks of the Map workers

 When it has read all intermediate data, it sorts it by the
intermediate keys
 Typically many different keys map to the same Reduce task

 If the amount of intermediate data is too large, an external sort
is used

MapReduce
Execution – Step 6

 A Reduce worker iterates over the sorted

intermediate data

 For each intermediate key encountered:

 It passes the key and the corresponding set of

intermediate values to the user's Reduce function

 The output is appended to a final output file for this

Reduce partition

MapReduce
Function combine

 After a map phase, the mapper transmits over
the network the entire intermediate data file to
the reducer

 Sometimes this file is highly compressible

 User can specify function combine
 Like a reduce function

 It is run by the mapper before passing the job to the
reducer
 Over local data

MapReduce
Counters

 Can be associated with any action that a
mapper or a reducer does

 In addition to default counters
 e.g., the number of input and output key/value

pairs processed

 User can watch the counters in real time to
see the progress of a job

MapReduce
Fault Tolerance

 A large number of machines process a large

number of data → fault tolerance is necessary

 Worker failure

 Master pings every worker periodically

 If no response is received in a certain amount of time,

master marks the worker as failed

 All its tasks are reset back to their initial idle state →

become eligible for scheduling on other workers

MapReduce
Fault Tolerance

 Master failure
 Strategy A:

 Master writes periodic checkpoints of the master data
structures

 If it dies, a new copy can be started from the last
checkpointed state

 Strategy B:
 There is only a single master → its failure is unlikely

 MapReduce computation is simply aborted if the master fails

 Clients can check for this condition and retry the MapReduce
operation if they desire

MapReduce
Stragglers

 Straggler = a machine that takes an unusually
long time to complete one of the map/reduce
tasks in the computation
 Example: a machine with a bad disk

 Solution:
 When a MapReduce operation is close to completion,

the master schedules backup executions of the
remaining in-progress tasks

 A task is marked as completed whenever either the
primary or the backup execution completes

MapReduce
Task Granularity

 M pieces of Map phase and R pieces of Reduce phase
 Ideally both much larger than the number of worker machines

 How to set them?

 Master makes O(M + R) scheduling decisions

 Master keeps O(M * R) status information in memory
 For each Map/Reduce task: state (idle/in-progress/completed)

 For each non-idle task: identity of worker machine

 For each completed Map task: locations and sizes of the R intermediate
file regions

 R is often constrained by users
 The output of each Reduce task ends up in a separate output file

 Practical recommendation (Google):
 Choose M so that each individual task is roughly 16 – 64 MB of input

data

 Make R a small multiple of the number of worker machines we expect to
use

MapReduce Criticism
David DeWitt and Michael Stonebraker – 2008

1. MapReduce is a step backwards in database access based on
 Schema describing data structure

 Separating schema from the application

 Advanced query languages

2. MapReduce is a poor implementation
 Instead of indexes is uses brute force

3. MapReduce is not novel (ideas more than 20 years old and
overcome)

4. MapReduce is missing features common in DBMSs
 Indexes, transactions, integrity constraints, views, …

5. MapReduce is incompatible with applications implemented over
DBMSs

 Data mining, business intelligence, …

Apache Hadoop

 Open-source software framework

 Running of applications on large clusters of
commodity hardware
 Multi-terabyte data-sets

 Thousands of nodes

 Implements MapReduce

 Derived from Google's MapReduce and Google
File System (GFS)
 Not open-source

http://hadoop.apache.org/

http://hadoop.apache.org/
http://hadoop.apache.org/

Apache Hadoop
Modules

 Hadoop Common
 Common utilities

 Support for other Hadoop modules

 Hadoop Distributed File System (HDFS)
 Distributed file system

 High-throughput access to application data

 Hadoop YARN
 Framework for job scheduling and cluster resource management

 Hadoop MapReduce
 YARN-based system for parallel processing of large data sets

HDFS (Hadoop Distributed File System)

Basic Features

 Free and open source

 High quality

 Crossplatform

 Pure Java

 Has bindings for non-Java programming languages

 Fault-tolerant

 Highly scalable

http://hadoop.apache.org/hdfs/

HDFS
Data Characteristics

 Assumes:
 Streaming data access

 Batch processing rather than interactive user access

 Large data sets and files

 Write-once / read-many
 A file once created, written and closed does not need to be

changed

 Or not often

 This assumption simplifies coherency

 Optimal applications for this model: MapReduce, web-
crawlers, …

HDFS
Fault Tolerance

 Idea: “failure is the norm rather than exception”
 A HDFS instance may consist of thousands of

machines
 Each storing a part of the file system’s data

 Each component has non-trivial probability of failure

→ Assumption: “There is always some component
that is non-functional.”
 Detection of faults

 Quick, automatic recovery

HDFS
NameNode, DataNodes

 Master/slave architecture

 HDFS exposes file system namespace

 File is internally split into one or more blocks
 Typical block size is 64MB (or 128 MB)

 NameNode = master server that manages the file
system namespace + regulates access to files by clients
 Opening/closing/renaming files and directories

 Determines mapping of blocks to DataNodes

 DataNode = serves read/write requests from clients +
performs block creation/deletion and replication upon
instructions from NameNode
 Usually one per node in a cluster

 Manages storage attached to the node that it runs on

HDFS
Namespace

 Hierarchical file system
 Directories and files

 Create, remove, move, rename, ...

 NameNode maintains the file system
 Any meta information changes to the file system are

recorded by the NameNode

 An application can specify the number of replicas
of the file needed
 Replication factor of the file

 The information is stored in the NameNode

HDFS
Data Replication

 HDFS is designed to store very large files across
machines in a large cluster
 Each file is a sequence of blocks

 All blocks in the file are of the same size

 Except the last one

 Block size is configurable per file

 Blocks are replicated for fault tolerance
 Number of replicas is configurable per file

HDFS
How NameNode Works?

 Stores HDFS namespace

 Uses a transaction log called EditLog to record every
change that occurs to the file system’s meta data
 E.g., creating a new file, change in replication factor of a file, ..

 EditLog is stored in the NameNode’s local file system

 FsImage – entire file system namespace + mapping of
blocks to files + file system properties

 Stored in a file in NameNode’s local file system

 Designed to be compact

 Loaded in NameNode’s memory

 4 GB of RAM is sufficient

HDFS
How DataNode Works?

 Stores data in files in its local file system
 Has no knowledge about HDFS file system

 Stores each block of HDFS data in a separate file

 Does not create all files in the same directory
 Local file system might not be support it

 Uses heuristics to determine optimal number of files per
directory

Hadoop MapReduce

 MapReduce requires:
 Distributed file system

 Engine that can distribute, coordinate, monitor and
gather the results

 Hadoop: HDFS + JobTracker + TaskTracker
 JobTracker (master) = scheduler

 TaskTracker (slave per node) – is assigned a Map or
Reduce (or other operations)
 Map or Reduce run on a node → so does the TaskTracker

 Each task is run on its own JVM

MapReduce
JobTracker (Master)

 Like a scheduler:

1. A client application is sent to the JobTracker

2. It “talks” to the NameNode (= HDFS master) and

locates the TaskTracker (Hadoop client) near the

data

3. It moves the work to the chosen TaskTracker node

MapReduce
TaskTracker (Client)

 Accepts tasks from JobTracker
 Map, Reduce, Combine, …

 Input, output paths

 Has a number of slots for the tasks
 Execution slots available on the machine (or machines on the

same rack)

 Spawns a separate JVM for execution of a task

 Indicates the number of available slots through the
hearbeat message to the JobTracker
 A failed task is re-executed by the JobTracker

