MI-PDB, MIE-PDB: Advanced Database Systems

http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

Lecture 10:

MapReduce, Hadoop

26. 4. 2016

Lecturer: Martin Svoboda svoboda@ksi.mff.cuni.cz

Author: Irena Holubová

Faculty of Mathematics and Physics, Charles University in Prague Course NDBI040: **Big Data Management and NoSQL Databases**

MapReduce Framework

- A programming model + implementation
- Developed by Google in 2008
 - □ To replace old, centralized index structure
- Distributed, parallel computing on large data

Google: "A simple and powerful interface that enables automatic parallelization and distribution of large-scale computations, combined with an implementation of this interface that achieves high performance on large clusters of commodity PCs."

- Programming model in general:
 - □ Mental model a programmer has about execution of application
 - Purpose: improve programmer's productivity
 - Evaluation: expressiveness, simplicity, performance

Programming Models

Parallel programming models

□ Message passing

- Independent tasks encapsulating local data
- Tasks interact by exchanging messages

□ Shared memory

- Tasks share a common address space
- Tasks interact by reading and writing from/to this space
 Asynchronously

□ Data parallelization

- Data are partitioned across tasks
- Tasks execute a sequence of independent operations

MapReduce Framework

Divide-and-conquer paradigm

- □ Map breaks down a problem into sub-problems
 - Processes input data to generate a set of intermediate key/value pairs
- Reduce receives and combines the sub-solutions to solve the problem
 - Processes intermediate values associated with <u>the same</u> intermediate key
- Many real world tasks can be expressed this way
 - Programmer focuses on map/reduce code
 - Framework cares about data partitioning, scheduling execution across machines, handling machine failures, managing intermachine communication, ...

MapReduce A Bit More Formally

Map

- Input: a key/value pair
- Output: a set of intermediate key/value pairs
 - Usually different domain

$$\Box (k_1, v_1) \rightarrow \mathsf{list}(k_2, v_2)$$

Reduce

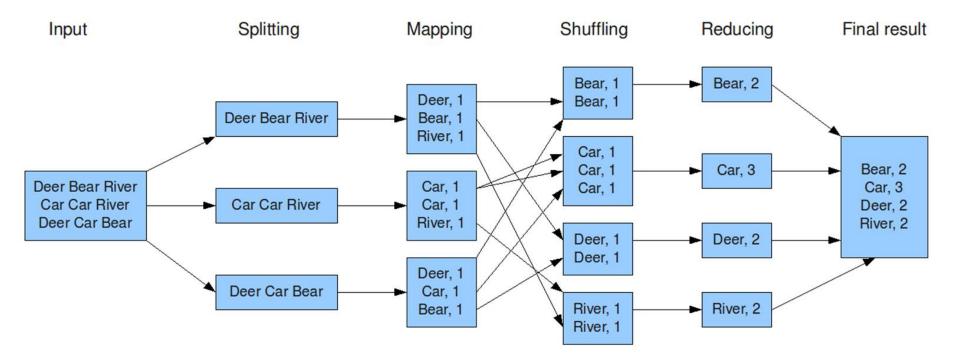
- Input: an intermediate key and a set of values for that key
- Output: a possibly smaller set of values
 - The same domain
- $\Box (k_2, list(v_2)) \rightarrow (k_2, possibly smaller list(v_2))$

MapReduce Example: Word Frequency

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

```
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
Emit(key, AsString(result));
```

MapReduce Example: Word Frequency



MapReduce Application Parts

Input reader

- Reads data from stable storage
 - e.g., a distributed file system
- Divides the input into appropriate size 'splits'
- Prepares key/value pairs

Map function

□ <u>User-specified</u> processing of key/value pairs

Partition function

- Map function output is allocated to a reducer
- Partition function is given the key (output of Map) and the number of reducers and returns the index of the desired reducer
 - Default is to hash the key and use the hash value modulo the number of reducers

MapReduce Application Parts

Compare function

Sorts the input for the Reduce function

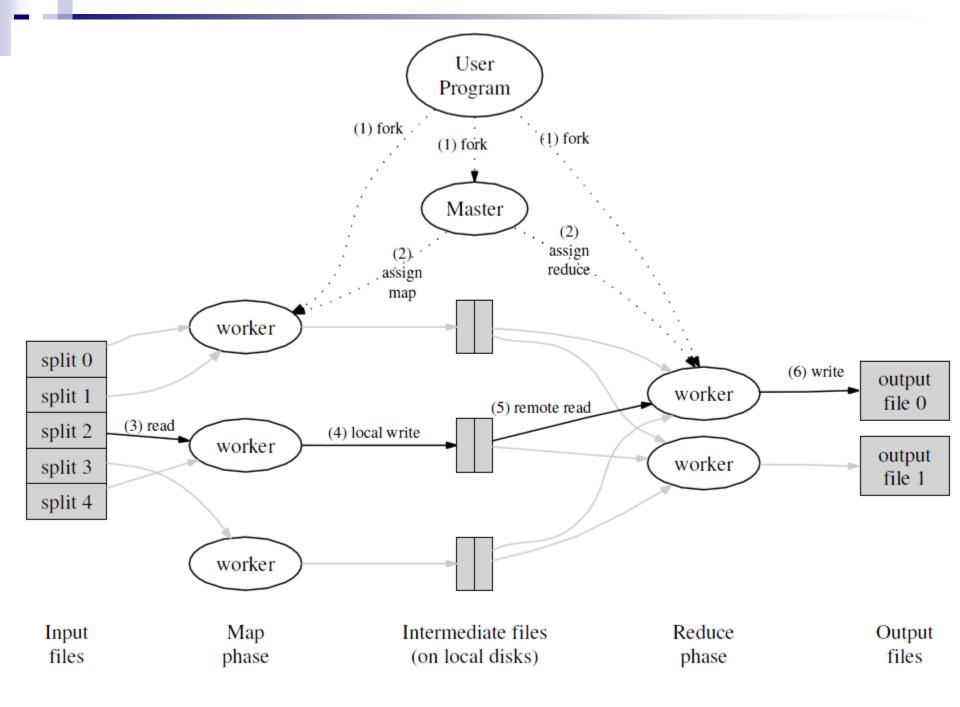
Reduce function

□ <u>User-specified</u> processing of key/values

Output writer

□ Writes the output of the Reduce function to stable storage

• e.g., a distributed file system



- 1. MapReduce library in the user program splits the input files into *M* pieces
 - □ Typically 16 64 MB per piece
 - Controllable by the user via optional parameter
- 2. It starts copies of the program on a cluster of machines

- Master = a special copy of the program
- Workers = other copies that are assigned work by master
- Map tasks and R Reduce tasks to assign
- Master picks <u>idle</u> workers and assigns each one a Map task (or a Reduce task)

- A worker who is assigned a Map task:
 Reads the contents of the corresponding input split
 - Parses key/value pairs out of the input data
 - Passes each pair to the user-defined Map function
 - Intermediate key/value pairs produced by the Map function are buffered in memory

- Periodically, the buffered pairs are <u>written</u> to local disk
 - Partitioned into R regions by the partitioning function
- Locations of the buffered pairs on the local disk are passed back to the master
 - It is responsible for forwarding the locations to the Reduce workers

- Reduce worker is notified by the master about data locations
- It uses <u>remote procedure calls</u> to read the buffered data from local disks of the Map workers
- When it has read all intermediate data, it sorts it by the intermediate keys
 - Typically many different keys map to the same Reduce task
 - If the amount of intermediate data is too large, an external sort is used

- A Reduce worker iterates over the sorted intermediate data
- For each intermediate key encountered:
 - It passes the key and the corresponding set of intermediate values to the user's Reduce function
 - The output is appended to a final output file for this Reduce partition

MapReduce Function combine

- After a map phase, the mapper transmits over the network the entire intermediate data file to the reducer
- Sometimes this file is highly compressible
- User can specify function combine
 - □ Like a reduce function
 - It is run by the mapper before passing the job to the reducer
 - Over local data

MapReduce Counters

- Can be associated with any action that a mapper or a reducer does
 - □ In addition to default counters
 - e.g., the number of input and output key/value pairs processed
- User can watch the counters in real time to see the progress of a job

MapReduce Fault Tolerance

■ A large number of machines process a large number of data → fault tolerance is necessary

Worker failure

- □ Master pings every worker periodically
- If no response is received in a certain amount of time, master marks the worker as failed
- \Box <u>All</u> its tasks are reset back to their initial <u>idle</u> state \rightarrow become eligible for scheduling on other workers

MapReduce Fault Tolerance

Master failure

- □ Strategy A:
 - Master writes periodic checkpoints of the master data structures
 - If it dies, a new copy can be started from the last checkpointed state
- □ Strategy B:
 - There is only a single master \rightarrow its failure is unlikely
 - MapReduce computation is simply aborted if the master fails
 - Clients can check for this condition and retry the MapReduce operation if they desire

MapReduce Stragglers

Straggler = a machine that takes an unusually long time to complete one of the map/reduce tasks in the computation

□ Example: a machine with a bad disk

- Solution:
 - When a MapReduce operation is close to completion, the master schedules backup executions of the remaining in-progress tasks
 - A task is marked as completed whenever either the primary or the backup execution completes

MapReduce Task Granularity

- M pieces of Map phase and R pieces of Reduce phase
 Ideally both much larger than the number of worker machines
 How to set them?
- Master makes O(M + R) scheduling decisions
- Master keeps O(M * R) status information in memory
 - □ For each Map/Reduce task: state (idle/in-progress/completed)
 - □ For each non-idle task: identity of worker machine
 - □ For each completed Map task: locations and sizes of the *R* intermediate file regions
- R is often constrained by users
 - □ The output of each Reduce task ends up in a separate output file
- Practical recommendation (Google):
 - Choose M so that each individual task is roughly 16 64 MB of input data
 - □ Make *R* a small multiple of the number of worker machines we expect to use

MapReduce Criticism

David DeWitt and Michael Stonebraker – 2008

- 1. MapReduce is a step backwards in database access based on
 - Schema describing data structure
 - Separating schema from the application
 - Advanced query languages
- 2. MapReduce is a poor implementation
 - Instead of indexes is uses brute force
- 3. MapReduce is not novel (ideas more than 20 years old and overcome)
- 4. MapReduce is missing features common in DBMSs
 - Indexes, transactions, integrity constraints, views, ...
- 5. MapReduce is incompatible with applications implemented over DBMSs
 - Data mining, business intelligence, …

Apache Hadoop

- Open-source software framework
- Running of applications on large clusters of commodity hardware
 - □ Multi-terabyte data-sets
 - $\hfill\square$ Thousands of nodes
- Implements MapReduce
- Derived from Google's MapReduce and Google File System (GFS)
 - □ Not open-source

Apache Hadoop Modules

Hadoop Common

- Common utilities
- Support for other Hadoop modules
- Hadoop Distributed File System (HDFS)
 - Distributed file system
 - High-throughput access to application data

Hadoop YARN

- □ Framework for job scheduling and cluster resource management
- Hadoop MapReduce
 - □ YARN-based system for parallel processing of large data sets

HDFS (Hadoop Distributed File System) Basic Features

- Free and open source
- High quality
- Crossplatform
 - Pure Java

□ Has bindings for non-Java programming languages

- Fault-tolerant
- Highly scalable

HDFS Data Characteristics

Assumes:

- Streaming data access
- Batch processing rather than interactive user access
- Large data sets and files
- Write-once / read-many
 - A file once created, written and closed does not need to be changed
 - Or not often
 - □ This assumption simplifies coherency
- Optimal applications for this model: MapReduce, webcrawlers, ...

HDFS Fault Tolerance

- Idea: "failure is the norm rather than exception"
 A HDFS instance may consist of thousands of machines
 - Each storing a part of the file system's data
 - Each component has non-trivial probability of failure
- → Assumption: "There is always some component that is non-functional."
 - Detection of faults
 - □ Quick, automatic recovery

HDFS NameNode, DataNodes

- Master/slave architecture
- HDFS exposes file system <u>namespace</u>
- <u>File</u> is internally split into one or more <u>blocks</u>
 Typical block size is 64MB (or 128 MB)
- NameNode = master server that manages the file system namespace + regulates access to files by clients
 - Opening/closing/renaming files and directories
 - Determines mapping of blocks to DataNodes
- DataNode = serves read/write requests from clients + performs block creation/deletion and replication upon instructions from NameNode
 - □ Usually one per node in a cluster
 - □ Manages storage attached to the node that it runs on

HDFS Namespace

- Hierarchical file system
 Directories and files
- Create, remove, move, rename, ...
- NameNode maintains the file system
 - Any meta information changes to the file system are recorded by the NameNode
- An application can specify the number of replicas of the file needed
 - Replication factor of the file
 - The information is stored in the NameNode

HDFS Data Replication

- HDFS is designed to store very large files across machines in a large cluster
 - □ Each file is a sequence of blocks
 - □ All blocks in the file are of the same size
 - Except the last one
 - Block size is configurable per file
 - Blocks are replicated for fault tolerance
 - Number of replicas is configurable per file

HDFS How NameNode Works?

- Stores HDFS namespace
- Uses a transaction log called EditLog to record every change that occurs to the file system's meta data
 E.g., creating a new file, change in replication factor of a file, ..
 EditLog is stored in the NameNode's local file system
- FsImage entire file system namespace + mapping of blocks to files + file system properties
 - Stored in a file in NameNode's local file system
 - Designed to be compact
 - Loaded in NameNode's memory
 - 4 GB of RAM is sufficient

HDFS How DataNode Works?

- Stores data in files in its local file system
 Has no knowledge about HDFS file system
- Stores each block of HDFS data in a separate file
- Does not create all files in the same directory
 - Local file system might not be support it
 - Uses heuristics to determine optimal number of files per directory

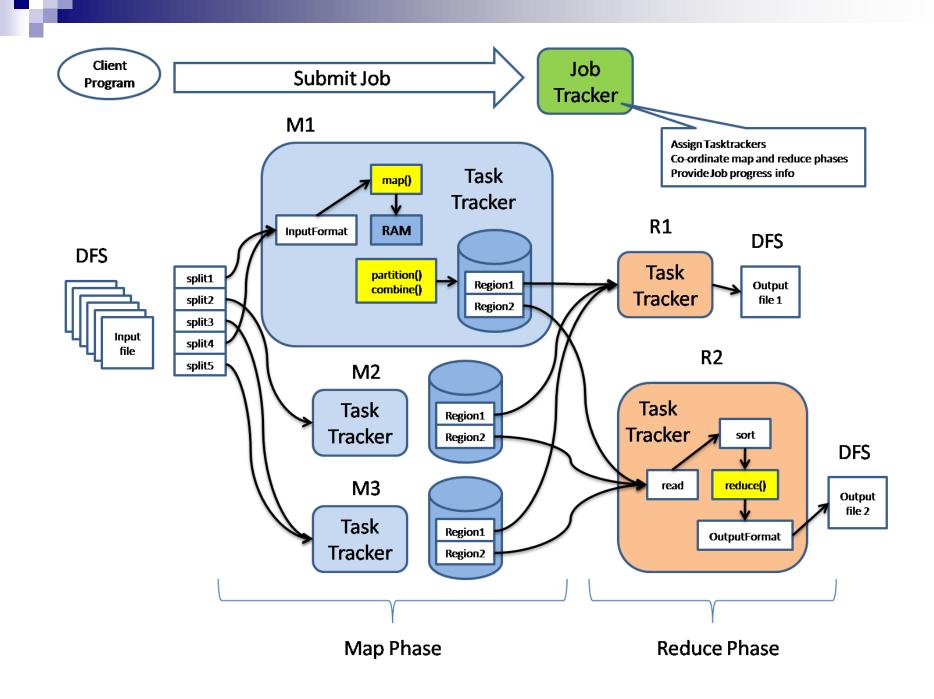
Hadoop MapReduce

MapReduce requires:

- Distributed file system
- Engine that can distribute, coordinate, monitor and gather the results

Hadoop: HDFS + JobTracker + TaskTracker

- □ JobTracker (master) = scheduler
- TaskTracker (slave per node) is assigned a Map or Reduce (or other operations)
 - Map or Reduce run on a node \rightarrow so does the TaskTracker
 - Each task is run on its own JVM



MapReduce

JobTracker (Master)

- Like a scheduler:
 - 1. A client application is sent to the JobTracker
 - It "talks" to the NameNode (= HDFS master) and locates the TaskTracker (Hadoop client) <u>near</u> the data
 - 3. It moves the work to the chosen TaskTracker node

MapReduce

TaskTracker (Client)

Accepts tasks from JobTracker

- Map, Reduce, Combine, ...
- Input, output paths
- Has a number of slots for the tasks
 - Execution slots available on the machine (or machines on the same rack)
- Spawns a separate JVM for execution of a task
- Indicates the number of available slots through the hearbeat message to the JobTracker
 - □ A failed task is re-executed by the JobTracker