MI-PDB, MIE-PDB: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

Lecture 10:

MapReduce, Hadoop

26. 4. 2016

{e=R GG Lecturer: Martin Svoboda
f svoboda@ksi.mff.cuni.cz

™ research group

Author: Irena Holubova
Faculty of Mathematics and Physics, Charles University in Prague
Course NDBI040: Big Data Management and NoSQL Databases



" J Google
MapReduce Framework

m A programming model + implementation
m Developed by Google in 2008

To replace old, centralized index structure
m Distributed, parallel computing on large data

Google: “A simple and powerful interface that enables automatic
parallelization and distribution of large-scale computations,
combined with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.”

O In general:
Mental model a programmer has about execution of application
Purpose: improve programmer's productivity
Evaluation: expressiveness, simplicity, performance



Programming Models

m Parallel programming models

m Independent tasks encapsulating local data
m Tasks interact by exchanging messages

m Tasks share a common address space

m Tasks interact by reading and writing from/to this space
Asynchronously

m Data are partitioned across tasks
m Tasks execute a sequence of independent operations



" J
MapReduce Framework

m Divide-and-conquer paradigm
breaks down a problem into sub-problems
m Processes input data to generate a set of intermediate key/value
pairs
receives and combines the sub-solutions to solve the
problem

m Processes intermediate values associated with the same
Intermediate key

m Many real world tasks can be expressed this way

Programmer focuses on map/reduce code

Framework cares about data partitioning, scheduling execution
across machines, handling machine failures, managing inter-
machine communication, ...




MapReduce
A Bit More Formally

O
Input: a key/value pair
Output: a set of intermediate key/value pairs
m Usually different domain
(ky,vq) — list(k,,V,)
O

Input: an intermediate key and a set of values for that

key
Output: a possibly smaller set of values
m The same domain

(k,,list(v,)) — (Kk,,possibly smaller list(v,))




MapReduce

Example: Word Frequency

map (String key, String value):
// key:
// value:

for each word w in value:
EmitIntermediate(w, "1");

reduce (String key, Iterator wvalues):
// key:
// values:
int result = 0;
for each v in values:
result += ParselInt (v);
Emit (key, AsString(result));




"
MapReduce

Example: Word Frequency

Input Splitting Mapping Shuffling Reducing Final result

Bear,1 ——»{ Bear, 2
Deer,1 —» Bear, 1
Deer Bear River ———» Bear, 1

River, 1
/ Car, 1
Car,1 ——»{ Car,3 —» Bear?2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River ——» CarCarRiver ——» Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer,1 ——» Deer,2 —»

Deer, 1
Deer, 1
Deer CarBear ——» Car, 1 e
Bear, 1 River, 1 ——» River, 2

River, 1




MapReduce
Application Parts

Reads data from stable storage
m e.g., a distributed file system

Divides the input into appropriate size 'splits'
Prepares key/value pairs

User-specified processing of key/value pairs

Map function output is allocated to a reducer

Partition function is given the key (output of Map) and the
number of reducers and returns the index of the desired reducer

m Default is to hash the key and use the hash value modulo the
number of reducers



MapReduce
Application Parts

O

Sorts the input for the Reduce function
O

User-specified processing of key/values
O

Writes the output of the Reduce function to stable storage
m e.g., a distributed file system



User
Program

{I’,IlfDrk_-'.

() fork (D fork
.2
@) assign
_assign reduce .
map

split O

split 1

(5) remote read

split 2

split 3

split 4

Input
files

worker

3) read (4) local write
worker =

Map Intermediate files
phase (on local disks)

(6) write output

file O

output
file 1

Reduce Output
phase files



"
MapReduce

Execution —

1. MapReduce library in the user program
splits the input files into [V pieces
Typically 16 — 64 MB per piece
Controllable by the user via optional
parameter

2. It starts copies of the program on a
cluster of machines



" J
MapReduce

Execution —

. = a special copy of the program

m = other copies that are assigned
work by master

m |/ Map tasks and R Reduce tasks to
assign

m Master picks idle workers and assigns
each one a Map task (or a Reduce task)



MapReduce

Execution —

m A worker who Is assigned a Map task:
Reads the contents of the corresponding input
split
Parses key/value pairs out of the input data

Passes each pair to the user-defined Map
function

Intermediate key/value pairs produced by the
Map function are buffered in memory



" J
MapReduce

Execution —

m Periodically, the buffered pairs are written
to local disk
Partitioned into R regions by the partitioning
function
m Locations of the buffered pairs on the local
disk are passed back to the master

It Is responsible for forwarding the locations to
the Reduce workers




" J
MapReduce

Execution —

Reduce worker is notified by the master about data
locations

It uses remote procedure calls to read the buffered data
from local disks of the Map workers

When it has read all intermediate data, it sorts it by the

Intermediate keys
Typically many different keys map to the same Reduce task

If the amount of intermediate data is too large, an external sort
IS used




" J
MapReduce

Execution —

m A Reduce worker iterates over the sorted
Intermediate data

m For each intermediate key encountered:

It passes the key and the corresponding set of
Intermediate values to the user's Reduce function

The output is appended to a final output file for this
Reduce partition



"
MapReduce

Function

m After a map phase, the mapper transmits over
the network the entire intermediate data file to

the reducer
m Sometimes this file is highly compressible

m User can specify function
Like a reduce function

It is run by the mapper before passing the job to the
reducer
m Over local data



"
MapReduce

m Can be associated with any action that a
mapper or a reducer does

In addition to default counters

m €.g., the number of input and output key/value
pairs processed

m User can watch the counters in real time to
see the progress of a job



"
MapReduce

m A large number of machines process a large
number of data — fault tolerance is necessary

Master pings every worker periodically

If no response is received in a certain amount of time,
master marks the worker as failed

All its tasks are reset back to their initial idle state —
become eligible for scheduling on other workers



" J
MapReduce

Fault Tolerance

Strategy A:

s Master writes periodic checkpoints of the master data
structures

m If it dies, a new copy can be started from the last
checkpointed state
Strategy B:
m There is only a single master — its failure is unlikely
s MapReduce computation is simply aborted if the master fails

m Clients can check for this condition and retry the MapReduce
operation if they desire



MapReduce
Stragglers

N = a machine that takes an unusually

long time to complete one of the map/reduce
tasks in the computation

Example: a machine with a bad disk

m Solution:
When a MapReduce operation is close to completion,
the master schedules of the

remaining in-progress tasks

A task is marked as completed whenever either the
primary or the backup execution completes



" J
MapReduce

Task Granularity

0 pieces of Map phase and R pieces of Reduce phase
|deally both much larger than the number of worker machines

m Master makes scheduling decisions

m Master keeps status information in memory
For each Map/Reduce task: state (idle/in-progress/completed)
For each non-idle task: identity of worker machine

For each completed Map task: locations and sizes of the R intermediate
file regions

O IS often constrained by users
The output of each Reduce task ends up in a separate output file
m Practical recommendation (Google):

Choose IV so that each individual task is roughly 16 — 64 MB of input
data

Make R a small multiple of the number of worker machines we expect to
use



MapReduce Criticism
David DeWitt and Michael Stonebraker — 2008

1. MapReduce is a step backwards in database access based on
Schema describing data structure
Separating schema from the application
Advanced query languages
2. MapReduce is a poor implementation
Instead of indexes is uses brute force
3. MapReduce is not novel (ideas more than 20 years old and
overcome)
4. MapReduce is missing features common in DBMSs
Indexes, transactions, integrity constraints, views, ...

5. MapReduce is incompatible with applications implemented over
DBMSs

Data mining, business intelligence, ...



Apache Hadoop ThEdbED

m Open-source software framework

m Running of applications on large clusters of
commodity hardware
Multi-terabyte data-sets
Thousands of nodes

m Implements MapReduce

m Derived from Google's MapReduce and Google
~1le System (GFS)

Not open-source

http://hadoop.apache.orqg/



http://hadoop.apache.org/
http://hadoop.apache.org/

Apache Hadoop

Modules

m Hadoop Common
Common utilities
Support for other Hadoop modules

- (HDFS) {mm

Distributed file system
High-throughput access to application data

m Hadoop YARN

Framework for job scheduling and cluster resource management
m Hadoop

YARN-based system for parallel processing of large data sets



" J
H D FS (Hadoop Distributed File System)
Y ES)

Basic Features

m Free and open source
m High quality
m Crossplatform

Pure Java
Has bindings for non-Java programming languages

m Fault-tolerant
m Highly scalable


http://hadoop.apache.org/hdfs/

" S
HDFS

Data Characteristics

m Assumes:

Streaming data access
Batch processing rather than interactive user access

m Large data sets and files

m \Write-once / read-many
A file once created, written and closed does not need to be

changed
= Or not often
This assumption simplifies coherency

m Optimal applications for this model: MapReduce, web-
crawlers, ...



" S
HDFS

Fault Tolerance

m |dea: “failure is the norm rather than exception”

A HDFS instance may consist of thousands of

machines
m Each storing a part of the file system’s data

Each component has non-trivial probability of failure
— Assumption: “There is always some component
that Is non-functional.”
Detection of faults
Quick, automatic recovery



" S
HDFS

NameNode, DataNodes

m Master/slave architecture
m HDFS exposes file system namespace

m File is internally split into one or more blocks
Typical block size is 64MB (or 128 MB)
L = master server that manages the file
system namespace + regulates access to files by clients
Opening/closing/renaming files and directories
Determines mapping of blocks to DataNodes

O = serves read/write requests from clients +
performs block creation/deletion and replication upon
Instructions from NameNode

Usually one per node in a cluster
Manages storage attached to the node that it runs on




" S
HDFS

Namespace

m Hierarchical file system
Directories and files

m Create, remove, move, rename, ...

m NameNode maintains the file system

Any meta information changes to the file system are
recorded by the NameNode

m An application can specify the number of replicas
of the file needed

Replication factor of the file
The information is stored in the NameNode



" S
HDFS

Data Replication

m HDFS is designed to store very large files across
machines in a large cluster
Each file is a sequence of blocks
All blocks in the file are of the same size

m Except the last one
m Block size is configurable per file

m Blocks are replicated for fault tolerance
Number of replicas is configurable per file



HDFS

m Stores HDFS namespace

m Uses a transaction log called to record every
change that occurs to the file system’s meta data
E.g., creating a new file, change in replication factor of a file, ..
EditLog is stored in the NameNode’s local file system

O — entire file system namespace + mapping of
blocks to files + file system properties
Stored in a file in NameNode’s local file system

Designed to be compact

m Loaded in NameNode’s memory
= 4 GB of RAM is sufficient



HDFS

m Stores data In files in its local file system
Has no knowledge about HDFS file system

Stores each block of HDFS data in a separate file

Does not create all files in the same directory
Local file system might not be support it

Uses heuristics to determine optimal number of files per
directory



" J
Hadoop MapReduce

m MapReduce requires:
Distributed file system

Engine that can distribute, coordinate, monitor and
gather the results

m Hadoop: HDFS + JobTracker + TaskTracker

(master) = scheduler

(slave per node) — is assigned a Map or
Reduce (or other operations)
s Map or Reduce run on a node — so does the TaskTracker
m Each task is run on its own JVM




Submit Job

M1

)

(

InputFormat

RAM

splitl

split2

split3

Input splita
file P

splits

Task
Tracker

partition()
combine{}

_ Task
Tracker

_ Task
Tracker

M2

M3

Job
Tracker

Assign Tasktrackers

Co-ordinate map and reduce phases

Provide Job progress info

R1

Task
Tracker

DFS

Output
filel

/Task

Tracker sort

S

reduce{)

(&

v

~

OutputFormat

DFS

Output
file2

N

|

Map Phase

|

Reduce Phase



" J
MapReduce

(Master)

m Like a scheduler:
A client application is sent to the JobTracker
It “talks” to the NameNode (= HDFS master) and
locates the TaskTracker (Hadoop client) near the

data
It moves the work to the chosen TaskTracker node



" J
MapReduce

(Client)

m Accepts tasks from JobTracker
Map, Reduce, Combine, ...
Input, output paths

m Has a number of slots for the tasks

Execution slots available on the machine (or machines on the
same rack)

m Spawns a separate JVM for execution of a task

m Indicates the number of available slots through the
message to the JobTracker

A failed task is re-executed by the JobTracker



