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MapReduce Framework 

 A programming model + implementation 

 Developed by Google in 2008 
 To replace old, centralized index structure 

 Distributed, parallel computing on large data 

Google: “A simple and powerful interface that enables automatic 
parallelization and distribution of large-scale computations, 
combined with an implementation of this interface that achieves 
high performance on large clusters of commodity PCs.” 

 Programming model in general: 
 Mental model a programmer has about execution of application 

 Purpose: improve programmer's productivity 

 Evaluation: expressiveness, simplicity, performance 



Programming Models 

 Parallel programming models 
 Message passing 

 Independent tasks encapsulating local data 
 Tasks interact by exchanging messages 

 Shared memory 
 Tasks share a common address space 
 Tasks interact by reading and writing from/to this space  

 Asynchronously 

 Data parallelization 
 Data are partitioned across tasks 
 Tasks execute a sequence of independent operations 

 



MapReduce Framework 

 Divide-and-conquer paradigm 
 Map breaks down a problem into sub-problems  

 Processes input data to generate a set of intermediate key/value 
pairs 

 Reduce receives and combines the sub-solutions to solve the 
problem 

 Processes intermediate values associated with the same 
intermediate key 

 Many real world tasks can be expressed this way 
 Programmer focuses on map/reduce code 

 Framework cares about data partitioning, scheduling execution 
across machines, handling machine failures, managing inter-
machine communication, … 



MapReduce  
A Bit More Formally 

 Map  
 Input: a key/value pair  

 Output: a set of intermediate key/value pairs  
 Usually different domain 

 (k1,v1) → list(k2,v2) 

 Reduce  
 Input: an intermediate key and a set of values for that 

key 

 Output: a possibly smaller set of values 
 The same domain 

 (k2,list(v2)) → (k2,possibly smaller list(v2)) 



MapReduce 
Example: Word Frequency 

map(String key, String value): 

  // key: document name 

  // value: document contents 

for each word w in value: 

  EmitIntermediate(w, "1"); 

reduce(String key, Iterator values): 

  // key: a word 

  // values: a list of counts 

int result = 0; 

for each v in values: 

  result += ParseInt(v); 

Emit(key, AsString(result)); 



MapReduce 
Example: Word Frequency 



MapReduce 
Application Parts 

 Input reader 
 Reads data from stable storage  

 e.g., a distributed file system 

 Divides the input into appropriate size 'splits' 

 Prepares key/value pairs 

 Map function 
 User-specified processing of key/value pairs 

 Partition function 
 Map function output is allocated to a reducer 

 Partition function is given the key (output of Map) and the 
number of reducers and returns the index of the desired reducer 
 Default is to hash the key and use the hash value modulo the 

number of reducers 



MapReduce 
Application Parts 

 Compare function 
 Sorts the input for the Reduce function 

 Reduce function 
 User-specified processing of key/values 

 Output writer 
 Writes the output of the Reduce function to stable storage  

 e.g., a distributed file system 





MapReduce  
Execution – Step 1 

1. MapReduce library in the user program 

splits the input files into M pieces 

 Typically 16 – 64 MB per piece  

 Controllable by the user via optional 

parameter 

2. It starts copies of the program on a 

cluster of machines 



MapReduce  
Execution – Step 2 

 Master = a special copy of the program  

 Workers = other copies that are assigned 

work by master 

 M Map tasks and R Reduce tasks to 

assign 

 Master picks idle workers and assigns 

each one a Map task (or a Reduce task) 



MapReduce  
Execution – Step 3 

 A worker who is assigned a Map task:  

Reads the contents of the corresponding input 
split 

Parses key/value pairs out of the input data  

Passes each pair to the user-defined Map 
function 

 Intermediate key/value pairs produced by the 
Map function are buffered in memory 



MapReduce  
Execution – Step 4 

 Periodically, the buffered pairs are written 
to local disk 

Partitioned into R regions by the partitioning 
function 

 Locations of the buffered pairs on the local 
disk are passed back to the master 

 It is responsible for forwarding the locations to 
the Reduce workers 



MapReduce  
Execution – Step 5 

 Reduce worker is notified by the master about data 
locations 

 It uses remote procedure calls to read the buffered data 
from local disks of the Map workers 

 When it has read all intermediate data, it sorts it by the 
intermediate keys  
 Typically many different keys map to the same Reduce task 

 If the amount of intermediate data is too large, an external sort 
is used 



MapReduce  
Execution – Step 6 

 A Reduce worker iterates over the sorted 

intermediate data 

 For each intermediate key encountered: 

 It passes the key and the corresponding set of 

intermediate values to the user's Reduce function 

 The output is appended to a final output file for this 

Reduce partition 



MapReduce  
Function combine 

 After a map phase, the mapper transmits over 
the network the entire intermediate data file to 
the reducer 

 Sometimes this file is highly compressible 

 User can specify function combine 
 Like a reduce function 

 It is run by the mapper before passing the job to the 
reducer 
 Over local data 



MapReduce  
Counters 

 Can be associated with any action that a 
mapper or a reducer does 

 In addition to default counters  
 e.g., the number of input and output key/value 

pairs processed 

 User can watch the counters in real time to 
see the progress of a job 



MapReduce  
Fault Tolerance 

 A large number of machines process a large 

number of data → fault tolerance is necessary 

 Worker failure 

 Master pings every worker periodically 

 If no response is received in a certain amount of time, 

master marks the worker as failed 

 All its tasks are reset back to their initial idle state → 

become eligible for scheduling on other workers 



MapReduce  
Fault Tolerance 

 Master failure 
 Strategy A:  

 Master writes periodic checkpoints of the master data 
structures 

 If it dies, a new copy can be started from the last 
checkpointed state 

 Strategy B: 
 There is only a single master → its failure is unlikely 

 MapReduce computation is simply aborted if the master fails 

 Clients can check for this condition and retry the MapReduce 
operation if they desire 



MapReduce 
Stragglers 

 Straggler = a machine that takes an unusually 
long time to complete one of the map/reduce 
tasks in the computation 
 Example: a machine with a bad disk 

 Solution: 
 When a MapReduce operation is close to completion, 

the master schedules backup executions of the 
remaining in-progress tasks 

 A task is marked as completed whenever either the 
primary or the backup execution completes 



MapReduce 
Task Granularity 

 M pieces of Map phase and R pieces of Reduce phase 
 Ideally both much larger than the number of worker machines 

 How to set them? 

 Master makes O(M + R) scheduling decisions  

 Master keeps O(M * R) status information in memory 
 For each Map/Reduce task: state (idle/in-progress/completed) 

 For each non-idle task: identity of worker machine  

 For each completed Map task: locations and sizes of the R intermediate 
file regions 

 R is often constrained by users  
 The output of each Reduce task ends up in a separate output file 

 Practical recommendation (Google): 
 Choose M so that each individual task is roughly 16 – 64 MB of input 

data 

 Make R a small multiple of the number of worker machines we expect to 
use 



MapReduce Criticism 
David DeWitt and Michael Stonebraker – 2008 

1. MapReduce is a step backwards in database access based on 
 Schema describing data structure 

 Separating schema from the application 

 Advanced query languages 

2. MapReduce is a poor implementation 
 Instead of indexes is uses brute force 

3. MapReduce is not novel (ideas more than 20 years old and 
overcome) 

4. MapReduce is missing features common in DBMSs 
 Indexes, transactions, integrity constraints, views, … 

5. MapReduce is incompatible with applications implemented over 
DBMSs 

 Data mining, business intelligence, … 



Apache Hadoop 

 Open-source software framework 

 Running of applications on large clusters of 
commodity hardware  
 Multi-terabyte data-sets  

 Thousands of nodes  

 Implements MapReduce  

 Derived from Google's MapReduce and Google 
File System (GFS) 
 Not open-source 

http://hadoop.apache.org/ 

http://hadoop.apache.org/
http://hadoop.apache.org/


Apache Hadoop 
Modules 

 Hadoop Common 
 Common utilities  

 Support for other Hadoop modules 

 Hadoop Distributed File System (HDFS) 
 Distributed file system  

 High-throughput access to application data 

 Hadoop YARN 
 Framework for job scheduling and cluster resource management 

 Hadoop MapReduce 
 YARN-based system for parallel processing of large data sets 



HDFS (Hadoop Distributed File System) 

Basic Features 

 Free and open source 

 High quality 

 Crossplatform  

 Pure Java 

 Has bindings for non-Java programming languages 

 Fault-tolerant 

 Highly scalable 

 

http://hadoop.apache.org/hdfs/


HDFS 
Data Characteristics 

 Assumes: 
 Streaming data access 

 Batch processing rather than interactive user access 

 Large data sets and files 

 Write-once / read-many 
 A file once created, written and closed does not need to be 

changed  

 Or not often 

 This assumption simplifies coherency 

 Optimal applications for this model: MapReduce, web-
crawlers, … 



HDFS 
Fault Tolerance 

 Idea: “failure is the norm rather than exception” 
 A HDFS instance may consist of thousands of 

machines 
 Each storing a part of the file system’s data 

 Each component has non-trivial probability of failure 

→ Assumption: “There is always some component 
that is non-functional.” 
 Detection of faults 

 Quick, automatic recovery 



HDFS 
NameNode, DataNodes 

 Master/slave architecture 

 HDFS exposes file system namespace 

 File is internally split into one or more blocks 
 Typical block size is 64MB (or 128 MB) 

 NameNode = master server that manages the file 
system namespace + regulates access to files by clients 
 Opening/closing/renaming files and directories  

 Determines mapping of blocks to DataNodes  

 DataNode = serves read/write requests from clients + 
performs block creation/deletion and replication upon 
instructions from NameNode 
 Usually one per node in a cluster 

 Manages storage attached to the node that it runs on 



HDFS 
Namespace 

 Hierarchical file system  
 Directories and files 

 Create, remove, move, rename, ... 

 NameNode maintains the file system 
 Any meta information changes to the file system are 

recorded by the NameNode 

 An application can specify the number of replicas 
of the file needed 
 Replication factor of the file 

 The information is stored in the NameNode 
 



HDFS 
Data Replication 

 HDFS is designed to store very large files across 
machines in a large cluster 
 Each file is a sequence of blocks 

 All blocks in the file are of the same size 

 Except the last one 

 Block size is configurable per file 

 Blocks are replicated for fault tolerance 
 Number of replicas is configurable per file 



HDFS 
How NameNode Works? 

 Stores HDFS namespace 

 Uses a transaction log called EditLog to record every 
change that occurs to the file system’s meta data 
 E.g., creating a new file, change in replication factor of a file, .. 

 EditLog is stored in the NameNode’s local file system 

 FsImage – entire file system namespace + mapping of 
blocks to files + file system properties 

 Stored in a file in NameNode’s local file system 

 Designed to be compact  

 Loaded in NameNode’s memory 

 4 GB of RAM is sufficient 



HDFS 
How DataNode Works? 

 Stores data in files in its local file system 
 Has no knowledge about HDFS file system 

 Stores each block of HDFS data in a separate file 

 Does not create all files in the same directory 
 Local file system might not be support it 

 Uses heuristics to determine optimal number of files per 
directory  



Hadoop MapReduce 

 MapReduce requires:  
 Distributed file system  

 Engine that can distribute, coordinate, monitor and 
gather the results 

 Hadoop: HDFS + JobTracker + TaskTracker  
 JobTracker (master) = scheduler 

 TaskTracker (slave per node) – is assigned a Map or 
Reduce (or other operations) 
 Map or Reduce run on a node → so does the TaskTracker 

 Each task is run on its own JVM 





MapReduce  
JobTracker (Master) 

 Like a scheduler: 

1. A client application is sent to the JobTracker 

2. It “talks” to the NameNode (= HDFS master) and 

locates the TaskTracker (Hadoop client) near the 

data 

3. It moves the work to the chosen TaskTracker node 



MapReduce  
TaskTracker (Client) 

 Accepts tasks from JobTracker 
 Map, Reduce, Combine, … 

 Input, output paths 

 Has a number of slots for the tasks 
 Execution slots available on the machine (or machines on the 

same rack) 

 Spawns a separate JVM for execution of a task 

 Indicates the number of available slots through the 
hearbeat message to the JobTracker 
 A failed task is re-executed by the JobTracker 


