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MapReduce Framework 

 A programming model + implementation 

 Developed by Google in 2008 
 To replace old, centralized index structure 

 Distributed, parallel computing on large data 

Google: “A simple and powerful interface that enables automatic 
parallelization and distribution of large-scale computations, 
combined with an implementation of this interface that achieves 
high performance on large clusters of commodity PCs.” 

 Programming model in general: 
 Mental model a programmer has about execution of application 

 Purpose: improve programmer's productivity 

 Evaluation: expressiveness, simplicity, performance 



Programming Models 

 Parallel programming models 
 Message passing 

 Independent tasks encapsulating local data 
 Tasks interact by exchanging messages 

 Shared memory 
 Tasks share a common address space 
 Tasks interact by reading and writing from/to this space  

 Asynchronously 

 Data parallelization 
 Data are partitioned across tasks 
 Tasks execute a sequence of independent operations 

 



MapReduce Framework 

 Divide-and-conquer paradigm 
 Map breaks down a problem into sub-problems  

 Processes input data to generate a set of intermediate key/value 
pairs 

 Reduce receives and combines the sub-solutions to solve the 
problem 

 Processes intermediate values associated with the same 
intermediate key 

 Many real world tasks can be expressed this way 
 Programmer focuses on map/reduce code 

 Framework cares about data partitioning, scheduling execution 
across machines, handling machine failures, managing inter-
machine communication, … 



MapReduce  
A Bit More Formally 

 Map  
 Input: a key/value pair  

 Output: a set of intermediate key/value pairs  
 Usually different domain 

 (k1,v1) → list(k2,v2) 

 Reduce  
 Input: an intermediate key and a set of values for that 

key 

 Output: a possibly smaller set of values 
 The same domain 

 (k2,list(v2)) → (k2,possibly smaller list(v2)) 



MapReduce 
Example: Word Frequency 

map(String key, String value): 

  // key: document name 

  // value: document contents 

for each word w in value: 

  EmitIntermediate(w, "1"); 

reduce(String key, Iterator values): 

  // key: a word 

  // values: a list of counts 

int result = 0; 

for each v in values: 

  result += ParseInt(v); 

Emit(key, AsString(result)); 



MapReduce 
Example: Word Frequency 



MapReduce 
Application Parts 

 Input reader 
 Reads data from stable storage  

 e.g., a distributed file system 

 Divides the input into appropriate size 'splits' 

 Prepares key/value pairs 

 Map function 
 User-specified processing of key/value pairs 

 Partition function 
 Map function output is allocated to a reducer 

 Partition function is given the key (output of Map) and the 
number of reducers and returns the index of the desired reducer 
 Default is to hash the key and use the hash value modulo the 

number of reducers 



MapReduce 
Application Parts 

 Compare function 
 Sorts the input for the Reduce function 

 Reduce function 
 User-specified processing of key/values 

 Output writer 
 Writes the output of the Reduce function to stable storage  

 e.g., a distributed file system 





MapReduce  
Execution – Step 1 

1. MapReduce library in the user program 

splits the input files into M pieces 

 Typically 16 – 64 MB per piece  

 Controllable by the user via optional 

parameter 

2. It starts copies of the program on a 

cluster of machines 



MapReduce  
Execution – Step 2 

 Master = a special copy of the program  

 Workers = other copies that are assigned 

work by master 

 M Map tasks and R Reduce tasks to 

assign 

 Master picks idle workers and assigns 

each one a Map task (or a Reduce task) 



MapReduce  
Execution – Step 3 

 A worker who is assigned a Map task:  

Reads the contents of the corresponding input 
split 

Parses key/value pairs out of the input data  

Passes each pair to the user-defined Map 
function 

 Intermediate key/value pairs produced by the 
Map function are buffered in memory 



MapReduce  
Execution – Step 4 

 Periodically, the buffered pairs are written 
to local disk 

Partitioned into R regions by the partitioning 
function 

 Locations of the buffered pairs on the local 
disk are passed back to the master 

 It is responsible for forwarding the locations to 
the Reduce workers 



MapReduce  
Execution – Step 5 

 Reduce worker is notified by the master about data 
locations 

 It uses remote procedure calls to read the buffered data 
from local disks of the Map workers 

 When it has read all intermediate data, it sorts it by the 
intermediate keys  
 Typically many different keys map to the same Reduce task 

 If the amount of intermediate data is too large, an external sort 
is used 



MapReduce  
Execution – Step 6 

 A Reduce worker iterates over the sorted 

intermediate data 

 For each intermediate key encountered: 

 It passes the key and the corresponding set of 

intermediate values to the user's Reduce function 

 The output is appended to a final output file for this 

Reduce partition 



MapReduce  
Function combine 

 After a map phase, the mapper transmits over 
the network the entire intermediate data file to 
the reducer 

 Sometimes this file is highly compressible 

 User can specify function combine 
 Like a reduce function 

 It is run by the mapper before passing the job to the 
reducer 
 Over local data 



MapReduce  
Counters 

 Can be associated with any action that a 
mapper or a reducer does 

 In addition to default counters  
 e.g., the number of input and output key/value 

pairs processed 

 User can watch the counters in real time to 
see the progress of a job 



MapReduce  
Fault Tolerance 

 A large number of machines process a large 

number of data → fault tolerance is necessary 

 Worker failure 

 Master pings every worker periodically 

 If no response is received in a certain amount of time, 

master marks the worker as failed 

 All its tasks are reset back to their initial idle state → 

become eligible for scheduling on other workers 



MapReduce  
Fault Tolerance 

 Master failure 
 Strategy A:  

 Master writes periodic checkpoints of the master data 
structures 

 If it dies, a new copy can be started from the last 
checkpointed state 

 Strategy B: 
 There is only a single master → its failure is unlikely 

 MapReduce computation is simply aborted if the master fails 

 Clients can check for this condition and retry the MapReduce 
operation if they desire 



MapReduce 
Stragglers 

 Straggler = a machine that takes an unusually 
long time to complete one of the map/reduce 
tasks in the computation 
 Example: a machine with a bad disk 

 Solution: 
 When a MapReduce operation is close to completion, 

the master schedules backup executions of the 
remaining in-progress tasks 

 A task is marked as completed whenever either the 
primary or the backup execution completes 



MapReduce 
Task Granularity 

 M pieces of Map phase and R pieces of Reduce phase 
 Ideally both much larger than the number of worker machines 

 How to set them? 

 Master makes O(M + R) scheduling decisions  

 Master keeps O(M * R) status information in memory 
 For each Map/Reduce task: state (idle/in-progress/completed) 

 For each non-idle task: identity of worker machine  

 For each completed Map task: locations and sizes of the R intermediate 
file regions 

 R is often constrained by users  
 The output of each Reduce task ends up in a separate output file 

 Practical recommendation (Google): 
 Choose M so that each individual task is roughly 16 – 64 MB of input 

data 

 Make R a small multiple of the number of worker machines we expect to 
use 



MapReduce Criticism 
David DeWitt and Michael Stonebraker – 2008 

1. MapReduce is a step backwards in database access based on 
 Schema describing data structure 

 Separating schema from the application 

 Advanced query languages 

2. MapReduce is a poor implementation 
 Instead of indexes is uses brute force 

3. MapReduce is not novel (ideas more than 20 years old and 
overcome) 

4. MapReduce is missing features common in DBMSs 
 Indexes, transactions, integrity constraints, views, … 

5. MapReduce is incompatible with applications implemented over 
DBMSs 

 Data mining, business intelligence, … 



Apache Hadoop 

 Open-source software framework 

 Running of applications on large clusters of 
commodity hardware  
 Multi-terabyte data-sets  

 Thousands of nodes  

 Implements MapReduce  

 Derived from Google's MapReduce and Google 
File System (GFS) 
 Not open-source 

http://hadoop.apache.org/ 

http://hadoop.apache.org/
http://hadoop.apache.org/


Apache Hadoop 
Modules 

 Hadoop Common 
 Common utilities  

 Support for other Hadoop modules 

 Hadoop Distributed File System (HDFS) 
 Distributed file system  

 High-throughput access to application data 

 Hadoop YARN 
 Framework for job scheduling and cluster resource management 

 Hadoop MapReduce 
 YARN-based system for parallel processing of large data sets 



HDFS (Hadoop Distributed File System) 

Basic Features 

 Free and open source 

 High quality 

 Crossplatform  

 Pure Java 

 Has bindings for non-Java programming languages 

 Fault-tolerant 

 Highly scalable 

 

http://hadoop.apache.org/hdfs/


HDFS 
Data Characteristics 

 Assumes: 
 Streaming data access 

 Batch processing rather than interactive user access 

 Large data sets and files 

 Write-once / read-many 
 A file once created, written and closed does not need to be 

changed  

 Or not often 

 This assumption simplifies coherency 

 Optimal applications for this model: MapReduce, web-
crawlers, … 



HDFS 
Fault Tolerance 

 Idea: “failure is the norm rather than exception” 
 A HDFS instance may consist of thousands of 

machines 
 Each storing a part of the file system’s data 

 Each component has non-trivial probability of failure 

→ Assumption: “There is always some component 
that is non-functional.” 
 Detection of faults 

 Quick, automatic recovery 



HDFS 
NameNode, DataNodes 

 Master/slave architecture 

 HDFS exposes file system namespace 

 File is internally split into one or more blocks 
 Typical block size is 64MB (or 128 MB) 

 NameNode = master server that manages the file 
system namespace + regulates access to files by clients 
 Opening/closing/renaming files and directories  

 Determines mapping of blocks to DataNodes  

 DataNode = serves read/write requests from clients + 
performs block creation/deletion and replication upon 
instructions from NameNode 
 Usually one per node in a cluster 

 Manages storage attached to the node that it runs on 



HDFS 
Namespace 

 Hierarchical file system  
 Directories and files 

 Create, remove, move, rename, ... 

 NameNode maintains the file system 
 Any meta information changes to the file system are 

recorded by the NameNode 

 An application can specify the number of replicas 
of the file needed 
 Replication factor of the file 

 The information is stored in the NameNode 
 



HDFS 
Data Replication 

 HDFS is designed to store very large files across 
machines in a large cluster 
 Each file is a sequence of blocks 

 All blocks in the file are of the same size 

 Except the last one 

 Block size is configurable per file 

 Blocks are replicated for fault tolerance 
 Number of replicas is configurable per file 



HDFS 
How NameNode Works? 

 Stores HDFS namespace 

 Uses a transaction log called EditLog to record every 
change that occurs to the file system’s meta data 
 E.g., creating a new file, change in replication factor of a file, .. 

 EditLog is stored in the NameNode’s local file system 

 FsImage – entire file system namespace + mapping of 
blocks to files + file system properties 

 Stored in a file in NameNode’s local file system 

 Designed to be compact  

 Loaded in NameNode’s memory 

 4 GB of RAM is sufficient 



HDFS 
How DataNode Works? 

 Stores data in files in its local file system 
 Has no knowledge about HDFS file system 

 Stores each block of HDFS data in a separate file 

 Does not create all files in the same directory 
 Local file system might not be support it 

 Uses heuristics to determine optimal number of files per 
directory  



Hadoop MapReduce 

 MapReduce requires:  
 Distributed file system  

 Engine that can distribute, coordinate, monitor and 
gather the results 

 Hadoop: HDFS + JobTracker + TaskTracker  
 JobTracker (master) = scheduler 

 TaskTracker (slave per node) – is assigned a Map or 
Reduce (or other operations) 
 Map or Reduce run on a node → so does the TaskTracker 

 Each task is run on its own JVM 





MapReduce  
JobTracker (Master) 

 Like a scheduler: 

1. A client application is sent to the JobTracker 

2. It “talks” to the NameNode (= HDFS master) and 

locates the TaskTracker (Hadoop client) near the 

data 

3. It moves the work to the chosen TaskTracker node 



MapReduce  
TaskTracker (Client) 

 Accepts tasks from JobTracker 
 Map, Reduce, Combine, … 

 Input, output paths 

 Has a number of slots for the tasks 
 Execution slots available on the machine (or machines on the 

same rack) 

 Spawns a separate JVM for execution of a task 

 Indicates the number of available slots through the 
hearbeat message to the JobTracker 
 A failed task is re-executed by the JobTracker 


