
MapReduce, Hadoop
Lecture 10:

MI-PDB, MIE-PDB: Advanced Database Systems

Lecturer: Martin Svoboda
svoboda@ksi.mff.cuni.cz

Author: Irena Holubová
Faculty of Mathematics and Physics, Charles University in Prague
Course NDBI040: Big Data Management and NoSQL Databases

26. 4. 2016

http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

MapReduce Framework

 A programming model + implementation

 Developed by Google in 2008
 To replace old, centralized index structure

 Distributed, parallel computing on large data

Google: “A simple and powerful interface that enables automatic
parallelization and distribution of large-scale computations,
combined with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.”

 Programming model in general:
 Mental model a programmer has about execution of application

 Purpose: improve programmer's productivity

 Evaluation: expressiveness, simplicity, performance

Programming Models

 Parallel programming models
 Message passing

 Independent tasks encapsulating local data
 Tasks interact by exchanging messages

 Shared memory
 Tasks share a common address space
 Tasks interact by reading and writing from/to this space

 Asynchronously

 Data parallelization
 Data are partitioned across tasks
 Tasks execute a sequence of independent operations

MapReduce Framework

 Divide-and-conquer paradigm
 Map breaks down a problem into sub-problems

 Processes input data to generate a set of intermediate key/value
pairs

 Reduce receives and combines the sub-solutions to solve the
problem

 Processes intermediate values associated with the same
intermediate key

 Many real world tasks can be expressed this way
 Programmer focuses on map/reduce code

 Framework cares about data partitioning, scheduling execution
across machines, handling machine failures, managing inter-
machine communication, …

MapReduce
A Bit More Formally

 Map
 Input: a key/value pair

 Output: a set of intermediate key/value pairs
 Usually different domain

 (k1,v1) → list(k2,v2)

 Reduce
 Input: an intermediate key and a set of values for that

key

 Output: a possibly smaller set of values
 The same domain

 (k2,list(v2)) → (k2,possibly smaller list(v2))

MapReduce
Example: Word Frequency

map(String key, String value):

 // key: document name

 // value: document contents

for each word w in value:

 EmitIntermediate(w, "1");

reduce(String key, Iterator values):

 // key: a word

 // values: a list of counts

int result = 0;

for each v in values:

 result += ParseInt(v);

Emit(key, AsString(result));

MapReduce
Example: Word Frequency

MapReduce
Application Parts

 Input reader
 Reads data from stable storage

 e.g., a distributed file system

 Divides the input into appropriate size 'splits'

 Prepares key/value pairs

 Map function
 User-specified processing of key/value pairs

 Partition function
 Map function output is allocated to a reducer

 Partition function is given the key (output of Map) and the
number of reducers and returns the index of the desired reducer
 Default is to hash the key and use the hash value modulo the

number of reducers

MapReduce
Application Parts

 Compare function
 Sorts the input for the Reduce function

 Reduce function
 User-specified processing of key/values

 Output writer
 Writes the output of the Reduce function to stable storage

 e.g., a distributed file system

MapReduce
Execution – Step 1

1. MapReduce library in the user program

splits the input files into M pieces

 Typically 16 – 64 MB per piece

 Controllable by the user via optional

parameter

2. It starts copies of the program on a

cluster of machines

MapReduce
Execution – Step 2

 Master = a special copy of the program

 Workers = other copies that are assigned

work by master

 M Map tasks and R Reduce tasks to

assign

 Master picks idle workers and assigns

each one a Map task (or a Reduce task)

MapReduce
Execution – Step 3

 A worker who is assigned a Map task:

Reads the contents of the corresponding input
split

Parses key/value pairs out of the input data

Passes each pair to the user-defined Map
function

 Intermediate key/value pairs produced by the
Map function are buffered in memory

MapReduce
Execution – Step 4

 Periodically, the buffered pairs are written
to local disk

Partitioned into R regions by the partitioning
function

 Locations of the buffered pairs on the local
disk are passed back to the master

 It is responsible for forwarding the locations to
the Reduce workers

MapReduce
Execution – Step 5

 Reduce worker is notified by the master about data
locations

 It uses remote procedure calls to read the buffered data
from local disks of the Map workers

 When it has read all intermediate data, it sorts it by the
intermediate keys
 Typically many different keys map to the same Reduce task

 If the amount of intermediate data is too large, an external sort
is used

MapReduce
Execution – Step 6

 A Reduce worker iterates over the sorted

intermediate data

 For each intermediate key encountered:

 It passes the key and the corresponding set of

intermediate values to the user's Reduce function

 The output is appended to a final output file for this

Reduce partition

MapReduce
Function combine

 After a map phase, the mapper transmits over
the network the entire intermediate data file to
the reducer

 Sometimes this file is highly compressible

 User can specify function combine
 Like a reduce function

 It is run by the mapper before passing the job to the
reducer
 Over local data

MapReduce
Counters

 Can be associated with any action that a
mapper or a reducer does

 In addition to default counters
 e.g., the number of input and output key/value

pairs processed

 User can watch the counters in real time to
see the progress of a job

MapReduce
Fault Tolerance

 A large number of machines process a large

number of data → fault tolerance is necessary

 Worker failure

 Master pings every worker periodically

 If no response is received in a certain amount of time,

master marks the worker as failed

 All its tasks are reset back to their initial idle state →

become eligible for scheduling on other workers

MapReduce
Fault Tolerance

 Master failure
 Strategy A:

 Master writes periodic checkpoints of the master data
structures

 If it dies, a new copy can be started from the last
checkpointed state

 Strategy B:
 There is only a single master → its failure is unlikely

 MapReduce computation is simply aborted if the master fails

 Clients can check for this condition and retry the MapReduce
operation if they desire

MapReduce
Stragglers

 Straggler = a machine that takes an unusually
long time to complete one of the map/reduce
tasks in the computation
 Example: a machine with a bad disk

 Solution:
 When a MapReduce operation is close to completion,

the master schedules backup executions of the
remaining in-progress tasks

 A task is marked as completed whenever either the
primary or the backup execution completes

MapReduce
Task Granularity

 M pieces of Map phase and R pieces of Reduce phase
 Ideally both much larger than the number of worker machines

 How to set them?

 Master makes O(M + R) scheduling decisions

 Master keeps O(M * R) status information in memory
 For each Map/Reduce task: state (idle/in-progress/completed)

 For each non-idle task: identity of worker machine

 For each completed Map task: locations and sizes of the R intermediate
file regions

 R is often constrained by users
 The output of each Reduce task ends up in a separate output file

 Practical recommendation (Google):
 Choose M so that each individual task is roughly 16 – 64 MB of input

data

 Make R a small multiple of the number of worker machines we expect to
use

MapReduce Criticism
David DeWitt and Michael Stonebraker – 2008

1. MapReduce is a step backwards in database access based on
 Schema describing data structure

 Separating schema from the application

 Advanced query languages

2. MapReduce is a poor implementation
 Instead of indexes is uses brute force

3. MapReduce is not novel (ideas more than 20 years old and
overcome)

4. MapReduce is missing features common in DBMSs
 Indexes, transactions, integrity constraints, views, …

5. MapReduce is incompatible with applications implemented over
DBMSs

 Data mining, business intelligence, …

Apache Hadoop

 Open-source software framework

 Running of applications on large clusters of
commodity hardware
 Multi-terabyte data-sets

 Thousands of nodes

 Implements MapReduce

 Derived from Google's MapReduce and Google
File System (GFS)
 Not open-source

http://hadoop.apache.org/

http://hadoop.apache.org/
http://hadoop.apache.org/

Apache Hadoop
Modules

 Hadoop Common
 Common utilities

 Support for other Hadoop modules

 Hadoop Distributed File System (HDFS)
 Distributed file system

 High-throughput access to application data

 Hadoop YARN
 Framework for job scheduling and cluster resource management

 Hadoop MapReduce
 YARN-based system for parallel processing of large data sets

HDFS (Hadoop Distributed File System)

Basic Features

 Free and open source

 High quality

 Crossplatform

 Pure Java

 Has bindings for non-Java programming languages

 Fault-tolerant

 Highly scalable

http://hadoop.apache.org/hdfs/

HDFS
Data Characteristics

 Assumes:
 Streaming data access

 Batch processing rather than interactive user access

 Large data sets and files

 Write-once / read-many
 A file once created, written and closed does not need to be

changed

 Or not often

 This assumption simplifies coherency

 Optimal applications for this model: MapReduce, web-
crawlers, …

HDFS
Fault Tolerance

 Idea: “failure is the norm rather than exception”
 A HDFS instance may consist of thousands of

machines
 Each storing a part of the file system’s data

 Each component has non-trivial probability of failure

→ Assumption: “There is always some component
that is non-functional.”
 Detection of faults

 Quick, automatic recovery

HDFS
NameNode, DataNodes

 Master/slave architecture

 HDFS exposes file system namespace

 File is internally split into one or more blocks
 Typical block size is 64MB (or 128 MB)

 NameNode = master server that manages the file
system namespace + regulates access to files by clients
 Opening/closing/renaming files and directories

 Determines mapping of blocks to DataNodes

 DataNode = serves read/write requests from clients +
performs block creation/deletion and replication upon
instructions from NameNode
 Usually one per node in a cluster

 Manages storage attached to the node that it runs on

HDFS
Namespace

 Hierarchical file system
 Directories and files

 Create, remove, move, rename, ...

 NameNode maintains the file system
 Any meta information changes to the file system are

recorded by the NameNode

 An application can specify the number of replicas
of the file needed
 Replication factor of the file

 The information is stored in the NameNode

HDFS
Data Replication

 HDFS is designed to store very large files across
machines in a large cluster
 Each file is a sequence of blocks

 All blocks in the file are of the same size

 Except the last one

 Block size is configurable per file

 Blocks are replicated for fault tolerance
 Number of replicas is configurable per file

HDFS
How NameNode Works?

 Stores HDFS namespace

 Uses a transaction log called EditLog to record every
change that occurs to the file system’s meta data
 E.g., creating a new file, change in replication factor of a file, ..

 EditLog is stored in the NameNode’s local file system

 FsImage – entire file system namespace + mapping of
blocks to files + file system properties

 Stored in a file in NameNode’s local file system

 Designed to be compact

 Loaded in NameNode’s memory

 4 GB of RAM is sufficient

HDFS
How DataNode Works?

 Stores data in files in its local file system
 Has no knowledge about HDFS file system

 Stores each block of HDFS data in a separate file

 Does not create all files in the same directory
 Local file system might not be support it

 Uses heuristics to determine optimal number of files per
directory

Hadoop MapReduce

 MapReduce requires:
 Distributed file system

 Engine that can distribute, coordinate, monitor and
gather the results

 Hadoop: HDFS + JobTracker + TaskTracker
 JobTracker (master) = scheduler

 TaskTracker (slave per node) – is assigned a Map or
Reduce (or other operations)
 Map or Reduce run on a node → so does the TaskTracker

 Each task is run on its own JVM

MapReduce
JobTracker (Master)

 Like a scheduler:

1. A client application is sent to the JobTracker

2. It “talks” to the NameNode (= HDFS master) and

locates the TaskTracker (Hadoop client) near the

data

3. It moves the work to the chosen TaskTracker node

MapReduce
TaskTracker (Client)

 Accepts tasks from JobTracker
 Map, Reduce, Combine, …

 Input, output paths

 Has a number of slots for the tasks
 Execution slots available on the machine (or machines on the

same rack)

 Spawns a separate JVM for execution of a task

 Indicates the number of available slots through the
hearbeat message to the JobTracker
 A failed task is re-executed by the JobTracker

