
Graph Databases, Neo4j, Cypher
Lecture 9:

MI-PDB, MIE-PDB: Advanced Database Systems

Lecturer: Martin Svoboda
svoboda@ksi.mff.cuni.cz

Author: Irena Holubová
Faculty of Mathematics and Physics, Charles University in Prague
Course NDBI040: Big Data Management and NoSQL Databases

19. 4. 2016

http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

Graph Databases
Basic Characteristics

 To store entities and relationships between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all nodes employed by Big Co that like NoSQL
Distilled”

Example:

Graph Databases
RDBMS vs. Graph Databases

 When we store a graph-like structure in RDBMS, it is for a single
type of relationship
 “Who is my manager”

 Adding another relationship usually means schema changes, data
movement etc.

 In graph databases relationships can be dynamically created / deleted
 There is no limit for number and kind

 In RDBMS we model the graph beforehand based on the Traversal
we want
 If the Traversal changes, the data will have to change

 We usually need a lot of join operations

 In graph databases the relationships are not calculated at query time
but persisted
 Shift the bulk of the work of navigating the graph to inserts, leaving

queries as fast as possible

Graph Databases
Suitable Use Cases

Connected Data

 Social networks

 Any link-rich domain is well suited for graph databases

Routing, Dispatch, and Location-Based Services

 Node = location or address that has a delivery

 Graph = nodes where a delivery has to be made

 Relationships = distance

Recommendation Engines

 “your friends also bought this product”

 “when invoicing this item, these other items are usually invoiced”

Graph Databases
When Not to Use

 When we want to update all or a subset of entities
 Changing a property on all the nodes is not a straightforward

operation

 e.g., analytics solution where all entities may need to be updated
with a changed property

 Some graph databases may be unable to handle lots of
data
 Distribution of a graph is difficult or impossible

Graph Databases
Data structures and queries

 Data: a set of entities and their relationships
 e.g., social networks, travelling routes, …

 We need to efficiently represent graphs

 Basic operations: finding the neighbours of a node,
checking if two nodes are connected by an edge,
updating the graph structure, …
 We need efficient graph operations

 G = (V, E) is commonly modelled as
 set of nodes (vertices) V

 set of edges E

 n = |V|, m = |E|

 Which data structure should be used?
 Adjacency matrix, adjacency list, incidence matrix, Laplacian

matrix

Adjacency Matrix

 Bi-dimensional array A of n x n Boolean values

 Indexes of the array = node identifiers of the graph

 The Boolean junction Aij of the two indices indicates

whether the two nodes are connected

 Variants

 Directed graphs, weighted graphs, …

Adjacency List

 A set of lists where each accounts for the
neighbours of one node
 A vector of n pointers to adjacency lists

 Often compressed
 Exploitation of regularities in graphs, difference from

other nodes, …

Incidence Matrix

 Bi-dimensional Boolean matrix of n rows

and m columns

A column represents an edge

A row represents a node

Laplacian Matrix

 Bi-dimensional array of n x n integers

Diagonal of the Laplacian matrix indicates the

degree of the node

The rest of positions are set to -1 if the two

vertices are connected, 0 otherwise

Graph Databases
Graph and database types

 A graph database = a set of graphs

 Types of graphs:
 Directed-labeled graphs

 e.g., XML, RDF, traffic networks

 Undirected-labeled graphs

 e.g., social networks, chemical compounds

 Types of graph databases:
 Non-transactional = few numbers of very large graphs

 e.g., Web graph, social networks, …

 Transactional = large set of small graphs

 e.g., chemical compounds, biological pathways, linguistic trees each
representing the structure of a sentence…

Graph Databases
Representatives

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg

Neo4j

 Open source graph database
 The most popular

 Initial release: 2007

 Written in: Java

 OS: cross-platform

 Stores data in nodes connected by
directed, typed relationships
 With properties on both

 Called property graph

http://www.neo4j.org/

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://www.neo4j.org/

Neo4j
Main Features (according to Authors)

 intuitive – a graph model for data representation

 reliable – with full ACID transactions

 durable and fast – disk-based, native storage engine

 massively scalable – up to several billions of nodes /
relationships / properties

 highly-available – when distributed across multiple
machines

 expressive – powerful, human readable graph query
language

 fast – powerful traversal framework

 embeddable

 simple – accessible by REST interface / object-oriented
Java API

Neo4j
Data Model – Node, Relationship, Property

 Fundamental units: nodes + relationships

 Both can contain properties
 Key-value pairs where the key is a string

 Value can be primitive or an array of one

 primitive type
 e.g., String, int, int[], …

 null is not a valid property value
 nulls can be modelled by the absence of a key

 Relationships
 Directed (incoming and outgoing edge)

 Equally well traversed in either direction = no need to add both
directions to increase performance

 Direction can be ignored when not needed by applications

 Always have start and end node

 Can be recursive

Type Description Value range

boolean true/false

byte 8-bit integer -128 to 127, inclusive

short 16-bit integer -32768 to 32767, inclusive

int 32-bit integer -2147483648 to 2147483647,

inclusive

long 64-bit integer -9223372036854775808 to

9223372036854775807,

inclusive

float 32-bit IEEE 754 floating-point

number

double 64-bit IEEE 754 floating-point

number

char 16-bit unsigned integers

representing Unicode

characters

u0000 to uffff (0 to 65535)

String sequence of Unicode characters

Neo4j
“Hello World” Graph – Java API

// enum of types of relationships:

private static enum RelTypes implements RelationshipType

{

 KNOWS

};

GraphDatabaseService graphDb;

Node firstNode;

Node secondNode;

Relationship relationship;

// starting a database (directory is created if not exists):

graphDb = new
GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

// …

Neo4j
“Hello World” Graph

// create a small graph:

firstNode = graphDb.createNode();

firstNode.setProperty("message", "Hello, ");

secondNode = graphDb.createNode();

secondNode.setProperty("message", "World!");

relationship = firstNode.createRelationshipTo

 (secondNode, RelTypes.KNOWS);

relationship.setProperty

 ("message", "brave Neo4j ");

// …

Neo4j
“Hello World” Graph

// print the result:

System.out.print(firstNode.getProperty("message"));

System.out.print(relationship.getProperty("message"));

System.out.print(secondNode.getProperty("message"));

// let's remove the data:

firstNode.getSingleRelationship

 (RelTypes.KNOWS, Direction.OUTGOING).delete();

firstNode.delete();

secondNode.delete();

// shut down the database:

graphDb.shutdown();

Neo4j
“Hello World” Graph – Transactions

// all writes (creating, deleting and updating any data)

// have to be performed in a transaction,

// otherwise NotInTransactionException

Transaction tx = graphDb.beginTx();

try

{

 // updating operations go here

 tx.success(); // transaction is committed on close

}

catch (Exception e)

{

 tx.failure(); // transaction is rolled back on close

}

finally

{

 tx.close(); // or deprecated tx.finish()

}

Neo4j
Data Model – Path, Traversal

 Path = one or more nodes
with connecting
relationships
 Typically retrieved as a

query or traversal result

 Traversing a graph =
visiting its nodes, following
relationships according to
some rules
 Mostly a subgraph is visited

 Neo4j: Traversal framework
+ Java API, Cypher, Gremlin

Neo4j
Traversal Framework

 A traversal is influenced by

 Expanders – define what to traverse

 i.e., relationship direction and type

 Order – depth-first / breadth-first

 Uniqueness – visit nodes (relationships, paths) only

once

 Evaluator – what to return and whether to stop or

continue traversal beyond a current position

 Starting nodes where the traversal will begin

Neo4j
Example

group

hierarchy

membership

of a group

top level

group

Neo4j
Task 1. Get the Admins

Node admins = getNodeByName("Admins");

TraversalDescription traversalDescription = Traversal.description()

 .breadthFirst()

 .evaluator(Evaluators.excludeStartPosition())

 .relationships(RoleRels.PART_OF, Direction.INCOMING)

 .relationships(RoleRels.MEMBER_OF, Direction.INCOMING);

Traverser traverser = traversalDescription.traverse(admins);

String output = "";

for (Path path : traverser)

{

 Node node = path.endNode();

 output += "Found: "

 + node.getProperty(NAME) + " at depth: "

 + (path.length()) + "\n";

}

Found: HelpDesk at depth: 1

Found: Ali at depth: 1

Found: Engin at depth: 2

Found: Demet at depth: 2

Neo4j
Traversal Framework – Java API

 TraversalDescription
 The main interface used for defining and initializing traversals

 Not meant to be implemented by users
 Just used

 Can specify branch ordering
 breadthFirst() / depthFirst()

 Relationships
 Adds a relationship type to traverse

 Empty (default) = traverse all relationships

 At least one in the list = traverse the specified ones

 Two methods: including / excluding direction
 Direction.BOTH

 Direction.INCOMING

 Direction.OUTGOING

Neo4j
Traversal Framework – Java API

 Evaluator
 Used for deciding at each position: should the traversal continue,

and/or should the node be included in the result

 Actions:
 Evaluation.INCLUDE_AND_CONTINUE: Include this node in the

result and continue the traversal

 Evaluation.INCLUDE_AND_PRUNE: Include this node in the
result, but do not continue the traversal

 Evaluation.EXCLUDE_AND_CONTINUE: Exclude this node from
the result, but continue the traversal

 Evaluation.EXCLUDE_AND_PRUNE: Exclude this node from the
result and do not continue the traversal

 Pre-defined evaluators:
 Evaluators.excludeStartPosition()

 Evaluators.toDepth(int depth) /
Evaluators.fromDepth(int depth)

 …

Neo4j
Traversal Framework – Java API

 Uniqueness
 Can be supplied to the TraversalDescription

 Indicates under what circumstances a traversal may revisit the
same position in the graph

 NONE: Any position in the graph may be revisited.

 NODE_GLOBAL: No node in the graph may be re-visited (default)

 …

 Traverser
 Traverser which is used to step through the results of a traversal

 Steps can correspond to

 Path (default)

 Node

 Relationship

Neo4j
Task 2. Get Group Membership of a User

Node jale = getNodeByName("Jale");

traversalDescription = Traversal.description()

 .depthFirst()

 .evaluator(Evaluators.excludeStartPosition())

 .relationships(RoleRels.MEMBER_OF, Direction.OUTGOING)

 .relationships(RoleRels.PART_OF, Direction.OUTGOING);

traverser = traversalDescription.traverse(jale);

Found: ABCTechnicians at depth: 1

Found: Technicians at depth: 2

Found: Users at depth: 3

Neo4j
Task 3. Get All Groups

Node referenceNode = getNodeByName("Reference_Node") ;

traversalDescription = Traversal.description()

 .breadthFirst()

 .evaluator(Evaluators.excludeStartPosition())

 .relationships(RoleRels.ROOT, Direction.INCOMING)

 .relationships(RoleRels.PART_OF, Direction.INCOMING);

traverser = traversalDescription.traverse(referenceNode);

Found: Admins at depth: 1

Found: Users at depth: 1

Found: HelpDesk at depth: 2

Found: Managers at depth: 2

Found: Technicians at depth: 2

Found: ABCTechnicians at depth: 3

Neo4j
Task 4. Get All Members of a Group

Node referenceNode = getNodeByName("Reference_Node") ;

traversalDescription = Traversal.description()

 .breadthFirst()

 .evaluator(

 Evaluators.includeWhereLastRelationshipTypeIs

 (RoleRels.MEMBER_OF));

traverser = traversalDescription.traverse(referenceNode);

Found: Ali at depth: 2

Found: Engin at depth: 2

Found: Burcu at depth: 2

Found: Can at depth: 2

Found: Demet at depth: 3

Found: Gul at depth: 3

Found: Fuat at depth: 3

Found: Hakan at depth: 3

Found: Irmak at depth: 3

Found: Jale at depth: 4

Cypher

 Neo4j graph query language

 For querying and updating

 Still growing = syntax changes are probable

 Declarative – we describe what we want, not

how to get it

 Not necessary to express traversals

 Human-readable

 Inspired by SQL and SPARQL

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Cypher Clauses

 START: Starting points in the graph, obtained via index
lookups or by element IDs.

 MATCH: The graph pattern to match, bound to the
starting points in START.

 WHERE: Filtering criteria.

 RETURN: What to return.

 CREATE: Creates nodes and relationships.

 DELETE: Removes nodes, relationships and properties.

 SET: Set values to properties.

 FOREACH: Performs updating actions once per element
in a list.

 WITH: Divides a query into multiple, distinct parts.

Cypher Examples
Creating Nodes

CREATE n

(empty result)

Nodes created: 1

CREATE (a {name : 'Andres'})

RETURN a

a

Node[2]{name:"Andres"}

1 row

Nodes created: 1

Properties set: 1

CREATE (n {name : 'Andres', title : 'Developer'})

(empty result)

Nodes created: 1

Properties set: 2

Cypher Examples
Creating Relationships

START a=node(1), b=node(2)

CREATE a-[r:RELTYPE]->b

RETURN r

r

:RELTYPE[1] {}

1 row

Relationships created: 1

START a=node(1), b=node(2)

CREATE a-[r:RELTYPE {name : a.name + '<->' + b.name }]->b

RETURN r

r

:RELTYPE[1] {name:"Andres<->Michael"}

1 row

Relationships created: 1

Properties set: 1

Cypher Examples
Creating Paths

CREATE p = (andres {name:'Andres'})-[:WORKS_AT]->neo<-

[:WORKS_AT]-(michael {name:'Michael'})

RETURN p

p

[Node[4]{name:"Andres"},:WORKS_AT[2]

{},Node[5]{},:WORKS_AT[3] {},Node[6]{name:"Michael"}]

1 row

Nodes created: 3

Relationships created: 2

Properties set: 2

all parts of the pattern not

already in scope are created

Cypher Examples
Changing Properties

START n = node(2)

SET n.surname = 'Taylor'

RETURN n

n

Node[2]{name:"Andres",age:36,awesome:true,surname:"Taylor"}

1 row

Properties set: 1 START n = node(2)

SET n.name = null

RETURN n

n

Node[2]{age:36,awesome:true}

1 row

Properties set: 1

Cypher Examples
Delete

START n = node(4)

DELETE n

(empty result)

Nodes deleted: 1

START n = node(3)

MATCH n-[r]-()

DELETE n, r

(empty result)

Nodes deleted: 1

Relationships deleted: 2

Cypher Examples
Foreach

START begin = node(2), end = node(1)

MATCH p = begin -[*]-> end

FOREACH(n in nodes(p) | SET n.marked = true)

(empty result)

Properties set: 4 can be combined with any

update command

Cypher Examples
Querying

START john=node:node_auto_index(name = 'John')

MATCH john-[:friend]->()-[:friend]->fof

RETURN john, fof

john fof

Node[4]{name:"John"} Node[2]{name:"Maria"}

Node[4]{name:"John"} Node[3]{name:"Steve"}

in general: node:index-name(key = "value")

neo4j.properties file:

...

node_auto_indexing=true

relationship_auto_indexing=true

node_keys_indexable=name,phone

relationship_keys_indexable=since

...

Cypher Examples
Querying

START user=node(5,4,1,2,3)

MATCH user-[:friend]->follower

WHERE follower.name =~ 'S.*'

RETURN user, follower.name

user follower.name

Node[5]{name:"Joe"} "Steve"

Node[4]{name:"John"} "Sara"

List of users

Cypher Examples
Order by

START n=node(3,1,2)

RETURN n

ORDER BY n.name

n

Node[1]{name->"A",age->34,length->170}

Node[2]{name->"B",age->34}

Node[3]{name->"C",age->32,length->185}

We can use:

• multiple properties

• asc/desc

Cypher Examples
Count

START n=node(2)

MATCH (n)-->(x)

RETURN n, count(*)

START n=node(2)

MATCH (n)-[r]->()

RETURN type(r), count(*)

n count(*)

Node[2]{name->"A",property->13} 3

TYPE(r) count(*)

"KNOWS" 3

count the groups of

relationship types

Cypher

 And there are many other features
 Other aggregation functions

 Count, sum, avg, max, min

 LIMIT n - returns only subsets of the total result
 SKIP n = trimmed from the top

 Often combined with order by

 Predicates ALL and ANY

 Functions
 LENGTH of a path, TYPE of a relationship, ID of node/relationship,

NODES of a path, RELATIONSHIPS of a path, …

 Operators

 …

