
Graph Databases, Neo4j, Cypher
Lecture 9:

MI-PDB, MIE-PDB: Advanced Database Systems

Lecturer: Martin Svoboda
svoboda@ksi.mff.cuni.cz

Author: Irena Holubová
Faculty of Mathematics and Physics, Charles University in Prague
Course NDBI040: Big Data Management and NoSQL Databases

19. 4. 2016

http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

Graph Databases
Basic Characteristics

 To store entities and relationships between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all nodes employed by Big Co that like NoSQL
Distilled”

Example:

Graph Databases
RDBMS vs. Graph Databases

 When we store a graph-like structure in RDBMS, it is for a single
type of relationship
 “Who is my manager”

 Adding another relationship usually means schema changes, data
movement etc.

 In graph databases relationships can be dynamically created / deleted
 There is no limit for number and kind

 In RDBMS we model the graph beforehand based on the Traversal
we want
 If the Traversal changes, the data will have to change

 We usually need a lot of join operations

 In graph databases the relationships are not calculated at query time
but persisted
 Shift the bulk of the work of navigating the graph to inserts, leaving

queries as fast as possible

Graph Databases
Suitable Use Cases

Connected Data

 Social networks

 Any link-rich domain is well suited for graph databases

Routing, Dispatch, and Location-Based Services

 Node = location or address that has a delivery

 Graph = nodes where a delivery has to be made

 Relationships = distance

Recommendation Engines

 “your friends also bought this product”

 “when invoicing this item, these other items are usually invoiced”

Graph Databases
When Not to Use

 When we want to update all or a subset of entities
 Changing a property on all the nodes is not a straightforward

operation

 e.g., analytics solution where all entities may need to be updated
with a changed property

 Some graph databases may be unable to handle lots of
data
 Distribution of a graph is difficult or impossible

Graph Databases
Data structures and queries

 Data: a set of entities and their relationships
 e.g., social networks, travelling routes, …

 We need to efficiently represent graphs

 Basic operations: finding the neighbours of a node,
checking if two nodes are connected by an edge,
updating the graph structure, …
 We need efficient graph operations

 G = (V, E) is commonly modelled as
 set of nodes (vertices) V

 set of edges E

 n = |V|, m = |E|

 Which data structure should be used?
 Adjacency matrix, adjacency list, incidence matrix, Laplacian

matrix

Adjacency Matrix

 Bi-dimensional array A of n x n Boolean values

 Indexes of the array = node identifiers of the graph

 The Boolean junction Aij of the two indices indicates

whether the two nodes are connected

 Variants

 Directed graphs, weighted graphs, …

Adjacency List

 A set of lists where each accounts for the
neighbours of one node
 A vector of n pointers to adjacency lists

 Often compressed
 Exploitation of regularities in graphs, difference from

other nodes, …

Incidence Matrix

 Bi-dimensional Boolean matrix of n rows

and m columns

A column represents an edge

A row represents a node

Laplacian Matrix

 Bi-dimensional array of n x n integers

Diagonal of the Laplacian matrix indicates the

degree of the node

The rest of positions are set to -1 if the two

vertices are connected, 0 otherwise

Graph Databases
Graph and database types

 A graph database = a set of graphs

 Types of graphs:
 Directed-labeled graphs

 e.g., XML, RDF, traffic networks

 Undirected-labeled graphs

 e.g., social networks, chemical compounds

 Types of graph databases:
 Non-transactional = few numbers of very large graphs

 e.g., Web graph, social networks, …

 Transactional = large set of small graphs

 e.g., chemical compounds, biological pathways, linguistic trees each
representing the structure of a sentence…

Graph Databases
Representatives

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg

Neo4j

 Open source graph database
 The most popular

 Initial release: 2007

 Written in: Java

 OS: cross-platform

 Stores data in nodes connected by
directed, typed relationships
 With properties on both

 Called property graph

http://www.neo4j.org/

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://www.neo4j.org/

Neo4j
Main Features (according to Authors)

 intuitive – a graph model for data representation

 reliable – with full ACID transactions

 durable and fast – disk-based, native storage engine

 massively scalable – up to several billions of nodes /
relationships / properties

 highly-available – when distributed across multiple
machines

 expressive – powerful, human readable graph query
language

 fast – powerful traversal framework

 embeddable

 simple – accessible by REST interface / object-oriented
Java API

Neo4j
Data Model – Node, Relationship, Property

 Fundamental units: nodes + relationships

 Both can contain properties
 Key-value pairs where the key is a string

 Value can be primitive or an array of one

 primitive type
 e.g., String, int, int[], …

 null is not a valid property value
 nulls can be modelled by the absence of a key

 Relationships
 Directed (incoming and outgoing edge)

 Equally well traversed in either direction = no need to add both
directions to increase performance

 Direction can be ignored when not needed by applications

 Always have start and end node

 Can be recursive

Type Description Value range

boolean true/false

byte 8-bit integer -128 to 127, inclusive

short 16-bit integer -32768 to 32767, inclusive

int 32-bit integer -2147483648 to 2147483647,

inclusive

long 64-bit integer -9223372036854775808 to

9223372036854775807,

inclusive

float 32-bit IEEE 754 floating-point

number

double 64-bit IEEE 754 floating-point

number

char 16-bit unsigned integers

representing Unicode

characters

u0000 to uffff (0 to 65535)

String sequence of Unicode characters

Neo4j
“Hello World” Graph – Java API

// enum of types of relationships:

private static enum RelTypes implements RelationshipType

{

 KNOWS

};

GraphDatabaseService graphDb;

Node firstNode;

Node secondNode;

Relationship relationship;

// starting a database (directory is created if not exists):

graphDb = new
GraphDatabaseFactory().newEmbeddedDatabase(DB_PATH);

// …

Neo4j
“Hello World” Graph

// create a small graph:

firstNode = graphDb.createNode();

firstNode.setProperty("message", "Hello, ");

secondNode = graphDb.createNode();

secondNode.setProperty("message", "World!");

relationship = firstNode.createRelationshipTo

 (secondNode, RelTypes.KNOWS);

relationship.setProperty

 ("message", "brave Neo4j ");

// …

Neo4j
“Hello World” Graph

// print the result:

System.out.print(firstNode.getProperty("message"));

System.out.print(relationship.getProperty("message"));

System.out.print(secondNode.getProperty("message"));

// let's remove the data:

firstNode.getSingleRelationship

 (RelTypes.KNOWS, Direction.OUTGOING).delete();

firstNode.delete();

secondNode.delete();

// shut down the database:

graphDb.shutdown();

Neo4j
“Hello World” Graph – Transactions

// all writes (creating, deleting and updating any data)

// have to be performed in a transaction,

// otherwise NotInTransactionException

Transaction tx = graphDb.beginTx();

try

{

 // updating operations go here

 tx.success(); // transaction is committed on close

}

catch (Exception e)

{

 tx.failure(); // transaction is rolled back on close

}

finally

{

 tx.close(); // or deprecated tx.finish()

}

Neo4j
Data Model – Path, Traversal

 Path = one or more nodes
with connecting
relationships
 Typically retrieved as a

query or traversal result

 Traversing a graph =
visiting its nodes, following
relationships according to
some rules
 Mostly a subgraph is visited

 Neo4j: Traversal framework
+ Java API, Cypher, Gremlin

Neo4j
Traversal Framework

 A traversal is influenced by

 Expanders – define what to traverse

 i.e., relationship direction and type

 Order – depth-first / breadth-first

 Uniqueness – visit nodes (relationships, paths) only

once

 Evaluator – what to return and whether to stop or

continue traversal beyond a current position

 Starting nodes where the traversal will begin

Neo4j
Example

group

hierarchy

membership

of a group

top level

group

Neo4j
Task 1. Get the Admins

Node admins = getNodeByName("Admins");

TraversalDescription traversalDescription = Traversal.description()

 .breadthFirst()

 .evaluator(Evaluators.excludeStartPosition())

 .relationships(RoleRels.PART_OF, Direction.INCOMING)

 .relationships(RoleRels.MEMBER_OF, Direction.INCOMING);

Traverser traverser = traversalDescription.traverse(admins);

String output = "";

for (Path path : traverser)

{

 Node node = path.endNode();

 output += "Found: "

 + node.getProperty(NAME) + " at depth: "

 + (path.length()) + "\n";

}

Found: HelpDesk at depth: 1

Found: Ali at depth: 1

Found: Engin at depth: 2

Found: Demet at depth: 2

Neo4j
Traversal Framework – Java API

 TraversalDescription
 The main interface used for defining and initializing traversals

 Not meant to be implemented by users
 Just used

 Can specify branch ordering
 breadthFirst() / depthFirst()

 Relationships
 Adds a relationship type to traverse

 Empty (default) = traverse all relationships

 At least one in the list = traverse the specified ones

 Two methods: including / excluding direction
 Direction.BOTH

 Direction.INCOMING

 Direction.OUTGOING

Neo4j
Traversal Framework – Java API

 Evaluator
 Used for deciding at each position: should the traversal continue,

and/or should the node be included in the result

 Actions:
 Evaluation.INCLUDE_AND_CONTINUE: Include this node in the

result and continue the traversal

 Evaluation.INCLUDE_AND_PRUNE: Include this node in the
result, but do not continue the traversal

 Evaluation.EXCLUDE_AND_CONTINUE: Exclude this node from
the result, but continue the traversal

 Evaluation.EXCLUDE_AND_PRUNE: Exclude this node from the
result and do not continue the traversal

 Pre-defined evaluators:
 Evaluators.excludeStartPosition()

 Evaluators.toDepth(int depth) /
Evaluators.fromDepth(int depth)

 …

Neo4j
Traversal Framework – Java API

 Uniqueness
 Can be supplied to the TraversalDescription

 Indicates under what circumstances a traversal may revisit the
same position in the graph

 NONE: Any position in the graph may be revisited.

 NODE_GLOBAL: No node in the graph may be re-visited (default)

 …

 Traverser
 Traverser which is used to step through the results of a traversal

 Steps can correspond to

 Path (default)

 Node

 Relationship

Neo4j
Task 2. Get Group Membership of a User

Node jale = getNodeByName("Jale");

traversalDescription = Traversal.description()

 .depthFirst()

 .evaluator(Evaluators.excludeStartPosition())

 .relationships(RoleRels.MEMBER_OF, Direction.OUTGOING)

 .relationships(RoleRels.PART_OF, Direction.OUTGOING);

traverser = traversalDescription.traverse(jale);

Found: ABCTechnicians at depth: 1

Found: Technicians at depth: 2

Found: Users at depth: 3

Neo4j
Task 3. Get All Groups

Node referenceNode = getNodeByName("Reference_Node") ;

traversalDescription = Traversal.description()

 .breadthFirst()

 .evaluator(Evaluators.excludeStartPosition())

 .relationships(RoleRels.ROOT, Direction.INCOMING)

 .relationships(RoleRels.PART_OF, Direction.INCOMING);

traverser = traversalDescription.traverse(referenceNode);

Found: Admins at depth: 1

Found: Users at depth: 1

Found: HelpDesk at depth: 2

Found: Managers at depth: 2

Found: Technicians at depth: 2

Found: ABCTechnicians at depth: 3

Neo4j
Task 4. Get All Members of a Group

Node referenceNode = getNodeByName("Reference_Node") ;

traversalDescription = Traversal.description()

 .breadthFirst()

 .evaluator(

 Evaluators.includeWhereLastRelationshipTypeIs

 (RoleRels.MEMBER_OF));

traverser = traversalDescription.traverse(referenceNode);

Found: Ali at depth: 2

Found: Engin at depth: 2

Found: Burcu at depth: 2

Found: Can at depth: 2

Found: Demet at depth: 3

Found: Gul at depth: 3

Found: Fuat at depth: 3

Found: Hakan at depth: 3

Found: Irmak at depth: 3

Found: Jale at depth: 4

Cypher

 Neo4j graph query language

 For querying and updating

 Still growing = syntax changes are probable

 Declarative – we describe what we want, not

how to get it

 Not necessary to express traversals

 Human-readable

 Inspired by SQL and SPARQL

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Cypher Clauses

 START: Starting points in the graph, obtained via index
lookups or by element IDs.

 MATCH: The graph pattern to match, bound to the
starting points in START.

 WHERE: Filtering criteria.

 RETURN: What to return.

 CREATE: Creates nodes and relationships.

 DELETE: Removes nodes, relationships and properties.

 SET: Set values to properties.

 FOREACH: Performs updating actions once per element
in a list.

 WITH: Divides a query into multiple, distinct parts.

Cypher Examples
Creating Nodes

CREATE n

(empty result)

Nodes created: 1

CREATE (a {name : 'Andres'})

RETURN a

a

Node[2]{name:"Andres"}

1 row

Nodes created: 1

Properties set: 1

CREATE (n {name : 'Andres', title : 'Developer'})

(empty result)

Nodes created: 1

Properties set: 2

Cypher Examples
Creating Relationships

START a=node(1), b=node(2)

CREATE a-[r:RELTYPE]->b

RETURN r

r

:RELTYPE[1] {}

1 row

Relationships created: 1

START a=node(1), b=node(2)

CREATE a-[r:RELTYPE {name : a.name + '<->' + b.name }]->b

RETURN r

r

:RELTYPE[1] {name:"Andres<->Michael"}

1 row

Relationships created: 1

Properties set: 1

Cypher Examples
Creating Paths

CREATE p = (andres {name:'Andres'})-[:WORKS_AT]->neo<-

[:WORKS_AT]-(michael {name:'Michael'})

RETURN p

p

[Node[4]{name:"Andres"},:WORKS_AT[2]

{},Node[5]{},:WORKS_AT[3] {},Node[6]{name:"Michael"}]

1 row

Nodes created: 3

Relationships created: 2

Properties set: 2

all parts of the pattern not

already in scope are created

Cypher Examples
Changing Properties

START n = node(2)

SET n.surname = 'Taylor'

RETURN n

n

Node[2]{name:"Andres",age:36,awesome:true,surname:"Taylor"}

1 row

Properties set: 1 START n = node(2)

SET n.name = null

RETURN n

n

Node[2]{age:36,awesome:true}

1 row

Properties set: 1

Cypher Examples
Delete

START n = node(4)

DELETE n

(empty result)

Nodes deleted: 1

START n = node(3)

MATCH n-[r]-()

DELETE n, r

(empty result)

Nodes deleted: 1

Relationships deleted: 2

Cypher Examples
Foreach

START begin = node(2), end = node(1)

MATCH p = begin -[*]-> end

FOREACH(n in nodes(p) | SET n.marked = true)

(empty result)

Properties set: 4 can be combined with any

update command

Cypher Examples
Querying

START john=node:node_auto_index(name = 'John')

MATCH john-[:friend]->()-[:friend]->fof

RETURN john, fof

john fof

Node[4]{name:"John"} Node[2]{name:"Maria"}

Node[4]{name:"John"} Node[3]{name:"Steve"}

in general: node:index-name(key = "value")

neo4j.properties file:

...

node_auto_indexing=true

relationship_auto_indexing=true

node_keys_indexable=name,phone

relationship_keys_indexable=since

...

Cypher Examples
Querying

START user=node(5,4,1,2,3)

MATCH user-[:friend]->follower

WHERE follower.name =~ 'S.*'

RETURN user, follower.name

user follower.name

Node[5]{name:"Joe"} "Steve"

Node[4]{name:"John"} "Sara"

List of users

Cypher Examples
Order by

START n=node(3,1,2)

RETURN n

ORDER BY n.name

n

Node[1]{name->"A",age->34,length->170}

Node[2]{name->"B",age->34}

Node[3]{name->"C",age->32,length->185}

We can use:

• multiple properties

• asc/desc

Cypher Examples
Count

START n=node(2)

MATCH (n)-->(x)

RETURN n, count(*)

START n=node(2)

MATCH (n)-[r]->()

RETURN type(r), count(*)

n count(*)

Node[2]{name->"A",property->13} 3

TYPE(r) count(*)

"KNOWS" 3

count the groups of

relationship types

Cypher

 And there are many other features
 Other aggregation functions

 Count, sum, avg, max, min

 LIMIT n - returns only subsets of the total result
 SKIP n = trimmed from the top

 Often combined with order by

 Predicates ALL and ANY

 Functions
 LENGTH of a path, TYPE of a relationship, ID of node/relationship,

NODES of a path, RELATIONSHIPS of a path, …

 Operators

 …

