
Big Data and NoSQL Databases
Lecture 8:

MI-PDB, MIE-PDB: Advanced Database Systems

Lecturer: Martin Svoboda
svoboda@ksi.mff.cuni.cz

Author: Irena Holubová
Faculty of Mathematics and Physics, Charles University in Prague
Course NDBI040: Big Data Management and NoSQL Databases

12. 4. 2016

http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

What is Big Data?

 buzzword?

 bubble?

 gold rush?

 revolution?

“Big data is like teenage sex: everyone talks

about it, nobody really knows how to do it,

everyone thinks everyone else is doing it, so

everyone claims they are doing it.”

Dan Ariely

What is Big Data?

 No standard definition

 First occurrence of the term: High

Performance Computing (HPC)

Gartner: “Big Data” is high volume,

high velocity, and/or high variety

information assets that require new

forms of processing to enable

enhanced decision making, insight

discovery and process optimization.

3 (4, 5)

Vs

Volume

Variety Velocity

Big Data

What is Big Data?

IBM: Depending on the industry and organization, Big Data

encompasses information from internal and external sources such

as transactions, social media, enterprise content, sensors, and

mobile devices.

Companies can leverage data to adapt their products and services

to better meet customer needs, optimize operations and

infrastructure, and find new sources of revenue.

http://www.ibmbigdatahub.com/

Social media and networks

(all of us are generating data)

Scientific instruments

(collecting all sorts of data)

Mobile devices

(tracking all objects all the time)

Sensor technology and networks

(measuring all kinds of data)

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Volume (Scale)

http://www.ibmbigdatahub.com/

Data volume is

increasing

exponentially,

not linearly

1021

109

1018

1012

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Velocity (Speed)

http://www.ibmbigdatahub.com/

Data is being

generated fast and

need to be

processed fast

Online

Data

Analytics

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Variety (Complexity)

http://www.ibmbigdatahub.com/

Various formats,

types, and

structures (from

semi-structured

XML to

unstructured

multimedia)

Static data vs.

streaming data

1018

109

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Veracity (Uncertainty)

http://www.ibmbigdatahub.com/

Uncertainty due

to inconsistency,

incompleteness,

latency,

ambiguities, or

approximations.

1012

http://www.ibmbigdatahub.com/

Processing Big Data

 OLTP: Online Transaction Processing (DBMSs)
 Database applications

 Storing, querying, multiuser access

 OLAP: Online Analytical Processing (Data Warehousing)
 Answer multi-dimensional analytical queries

 Financial/marketing reporting, budgeting, forecasting, …

 RTAP: Real-Time Analytic Processing (Big Data
Architecture & Technology)
 Data gathered & processed in a real-time

 Streaming fashion

 Real-time data queried and presented in an online fashion

 Real-time and history data combined and mined interactively

Key Big Data-Related

Technologies

 Distributed file
systems

 NoSQL databases

 Grid computing,
cloud computing

 MapReduce and
other new
paradigms

 Large scale
machine learning

http://e-theses.imtlucca.it/34/

http://e-theses.imtlucca.it/34/
http://e-theses.imtlucca.it/34/
http://e-theses.imtlucca.it/34/

Relational Database Management

Systems (RDMBSs)

 Predominant technology for storing structured
data
 Web and business applications

 Relational calculus, SQL

 Often thought of as the only alternative for data
storage
 Persistence, concurrency control, integration

mechanism, …

 Alternatives: Object databases or XML stores
 Never gained the same adoption and market share

„NoSQL“

 1998 first used for a relational database that
omitted the use of SQL
 Carlo Strozzi

 2009 used for conferences of advocates of non-
relational databases
 Eric Evans

 Blogger, developer at Rackspace

NoSQL movement = “the whole point of

seeking alternatives is that you need to

solve a problem that relational

databases are a bad fit for”

„NoSQL“

 Not „no to SQL“
 Another option, not the only one

 Not „not only SQL“
 Oracle DB or PostgreSQL would fit the definition

 „Next Generation Databases mostly addressing some of
the points: being non-relational, distributed, open-source
and horizontally scalable. The original intention has been
modern web-scale databases. Often more
characteristics apply as: schema-free, easy replication
support, simple API, eventually consistent (BASE, not
ACID), a huge data amount, and more“

http://nosql-database.org/

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

The End of Relational Databases?

 Relational databases are not going away

 Compelling arguments for most projects

 Familiarity, stability, feature set, and available support

 We should see relational databases as one

option for data storage

 Polyglot persistence – using different data stores in

different circumstances

 Search for optimal storage for a particular application

NoSQL Databases
Five Advantages

1. Elastic scaling
 “Classical” database administrators scale up – buy bigger

servers as database load increases

 Scaling out – distributing the database across multiple hosts as
load increases

2. Big Data

3. Goodbye DBAs (see you later?)
 Automatic repair, distribution, tuning, …

4. Economics
 Based on cheap commodity servers

5. Flexible Data Models
 Non-existing/relaxed data schema  cheap structural changes

http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772

http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772

NoSQL Databases
Five Challenges

1. Maturity
 Still in pre-production phase

 Key features yet to be implemented

2. Support
 Mostly open source, result from start-ups

 Limited resources or credibility

3. Administration
 Require lot of skill to install and effort to maintain

4. Analytics and Business Intelligence

5. Expertise
 Few number of NoSQL experts available in the market

Data Assumptions

RDBMS NoSQL

integrity is mission-critical OK as long as most data is correct

data format consistent, well-defined data format unknown or inconsistent

data is of long-term value data are expected to be replaced

data updates are frequent write-once, read multiple (no

updates, or at least not often)

predictable, linear growth unpredictable growth (exponential)

non-programmers writing queries only programmers writing queries

regular backup replication

access through master server sharding across multiple nodes

NoSQL Data Model
Aggregates

 Data model = the model by which the database
organizes data

 Each NoSQL solution has a different model
 Key-value, document, column-family, graph

 First three orient on aggregates

 Aggregate
 A data unit with a complex structure

 Not just a set of tuples like in RDBMS

 Domain-Driven Design: “an aggregate is a collection
of related objects that we wish to treat as a unit”
 A unit for data manipulation and management of consistency

NoSQL Data Model
Aggregates – aggregate-ignorant

 There is no universal strategy how to draw
aggregate boundaries
 Depends on how we manipulate the data

 RDBMS and graph databases are aggregate-
ignorant
 It is not a bad thing, it is a feature

 Allows to easily look at the data in different ways

 Better choice when we do not have a primary
structure for manipulating data

NoSQL

NoSQL Data Model
Aggregates – aggregate-oriented

 Aggregate orientation
 Aggregates give the database information about

which bits of data will be manipulated together
 Which should live on the same node

 Helps greatly with running on a cluster
 We need to minimize the number of nodes we need to query

when we are gathering data

 Consequence for transactions
 NoSQL databases support atomic manipulation of a

single aggregate at a time

Types of NoSQL Databases

Core:

 Key-value databases

 Document databases

 Column-family (column-oriented/columnar) stores

 Graph databases

Non-core:

 Object databases

 XML databases

 …

http://nosql-database.org/

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

Key-value store
Basic characteristics

 The simplest NoSQL data stores

 A simple hash table (map), primarily used when all
access to the database is via primary key

 A table in RDBMS with two columns, such as ID and
NAME
 ID column being the key

 NAME column storing the value
 A BLOB that the data store just stores

 Basic operations:
 Get the value for the key

 Put a value for a key

 Delete a key from the data store

 Simple  great performance, easily scaled

 Simple  not for complex queries, aggregation needs

Key-value store
Representatives

Project

Voldemort

MemcachedDB

not

open-source

open-source

version

Column-Family Stores
Basic Characteristics

 Also “columnar” or “column-oriented”

 Column families = rows that have many columns
associated with a row key

 Column families are groups of related data that is often
accessed together
 e.g., for a customer we access all profile information at the same

time, but not orders

Column-Family Stores
Representatives

Google’s

BigTable

Document Databases
Basic Characteristics

 Documents are the main concept
 Stored and retrieved

 XML, JSON, …

 Documents are
 Self-describing

 Hierarchical tree data structures

 Can consist of maps, collections (lists, sets, …), scalar values,
nested documents, …

 Documents in a collection are expected to be similar
 Their schema can differ

 Document databases store documents in the value part
of the key-value store
 Key-value stores where the value is examinable

Document Databases
Representatives

Lotus Notes

Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

Graph Databases
Basic Characteristics

 To store entities and relationships between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all nodes employed by Big Co that like NoSQL
Distilled”

Example:

Graph Databases
Representatives

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg

Basic Principles

 Scalability

How to handle growing amounts of data

without losing performance

 CAP theorem

 Distribution models

Sharding, replication, consistency, …

How to handle data in a distributed manner

Scalability
Vertical Scaling (scaling up)

 Traditional choice has been in favour of strong
consistency
 System architects have in the past gone in favour of scaling up

(vertical scaling)

 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful machines

 Who do, often use proprietary formats

 Makes a customer dependent on a vendor for products and
services

 Unable to use another vendor

Scalability
Vertical Scaling (scaling up)

 Higher costs
 Powerful machines usually cost a lot more than commodity

hardware

 Data growth perimeter
 Powerful and large machines work well until the data grows to fill

it

 Even the largest of machines has a limit

 Proactive provisioning
 Applications have no idea of the final large scale when they start

out

 Scaling vertically = you need to budget for large scale upfront

Scalability
Horizontal Scaling (scaling out)

 Systems are distributed across multiple machines or
nodes (horizontal scaling)
 Commodity machines, cost effective

 Often surpasses scalability of vertical approach

 Fallacies of distributed computing:
 The network is reliable

 Latency is zero

 Bandwidth is infinite

 The network is secure

 Topology does not change

 There is one administrator

 Transport cost is zero

 The network is homogeneous

https://blogs.oracle.com/jag/resource/Fallacies.html

https://blogs.oracle.com/jag/resource/Fallacies.html

CAP Theorem

Consistency

 After an update, all readers in a distributed system see
the same data

 All nodes are supposed to contain the same data at all
times

 Example:
 A single database instance is always consistent

 If multiple instances exist, all writes must be duplicated before
write operation is completed

CAP Theorem

Availability

 All requests (reads, writes) are always answered,
regardless crashes

 Example:
 A single instance has an availability of 100% or 0%

 Two servers may be available 100%, 50%, or 0%

Partition Tolerance

 System continues to operate, even if two sets of servers
get isolated

 Example:
 Failed connection will not cause troubles if the system is tolerant

CAP Theorem
ACID vs. BASE

 Theorem: Only 2 of the 3
guarantees can be given in a
“shared-data” system.
 Proven in 2000, the idea is

older

 (Positive) consequence: we can
concentrate on two challenges

 ACID properties guarantee
consistency and availability
 pessimistic

 e.g., database on a single
machine

 BASE properties guarantee
availability and partition
tolerance
 optimistic

 e.g., distributed databases

CAP Theorem
Consistency

 A single-server system is a CA system

 Clusters have to be tolerant of network partitions

 CAP theorem: you can only get two out of three

 Reality: you can trade off a little Consistency to get

some Availability

 It is not a binary decision

BASE

 In contrast to ACID

 Leads to levels of scalability that cannot be obtained with ACID
 At the cost of (strong) consistency

Basically Available

 The system works basically all the time

 Partial failures can occur, but without total system failure

Soft State

 The system is in flux and non-deterministic

 Changes occur all the time

Eventual Consistency

 The system will be in some consistent state

 At some time in future

Strong Consistency

John

George

Paul

read(a) = 1

read(a) = 1

read(a) = 1

write(a) = 2 read(a) = 2

read(a) = 2

read(a) = 2

Eventual Consistency

John

Peter

Paul

read(a) = 1

read(a) = 1

read(a) = 1

write(a) = 2 read(a) = 1

read(a) = 1

read(a) = 2

inconsistent window

read(a) = 2

read(a) = 2

Distribution Models

 Scaling out = running the database on a cluster

of servers

 Two orthogonal techniques to data distribution:

 Replication – takes the same data and copies it over

multiple nodes

 Master-slave or peer-to-peer

 Sharding – puts different data on different nodes

 We can use either or combine them

Distribution Models
Single Server

 No distribution at all

 Run the database on a single machine

 It can make sense to use NoSQL with a single-

server distribution model

 Graph databases

 The graph is “almost” complete → it is difficult to distribute it

Distribution Models
Sharding

 Horizontal
scalability →
putting different
parts of the data
onto different
servers

 Different people
are accessing
different parts of
the dataset

Distribution Models
Sharding

 The ideal case is rare

 To get close to it we have to ensure that data that is
accessed together is clumped together

 How to arrange the nodes:
a. One user mostly gets data from a single server

b. Based on a physical location

c. Distributed across the nodes with equal amounts of the load

 Many NoSQL databases offer auto-sharding

 A node failure makes shard’s data unavailable
 Sharding is often combined with replication

Distribution Models
Master-slave Replication

 We replicate data
across multiple
nodes

 One node is
designed as
primary (master),
others as
secondary
(slaves)

 Master is
responsible for
processing any
updates to that
data

Distribution Models
Master-slave Replication

 For scaling a read-intensive dataset
 More read requests → more slave nodes

 The master fails → the slaves can still handle read
requests
 A slave can be appointed a new master quickly (it is a

replica)

 Limited by the ability of the master to process
updates

 Masters are appointed manually or automatically
 User-defined vs. cluster-elected

Distribution Models
Peer-to-peer Replication

 Problems of master-
slave replication:
 Does not help with

scalability of writes

 Provides resilience
against failure of a
slave, but not of a
master

 The master is still a
bottleneck

 Peer-to-peer
replication: no
master
 All the replicas have

equal weight

Distribution Models
Peer-to-peer Replication

 Problem: consistency

 We can write at two different places: a write-write

conflict

 Solutions:

 Whenever we write data, the replicas coordinate to

ensure we avoid a conflict

 At the cost of network traffic

 But we do not need all the replicas to agree on the

write, just a majority

Distribution Models
Combining Sharding and Replication

 Master-slave replication and sharding:
 We have multiple masters, but each data item only

has a single master

 A node can be a master for some data and a slave for
others

 Peer-to-peer replication and sharding:
 A common strategy for column-family databases

 A good starting point for peer-to-peer replication is to
have a replication factor of 3, so each shard is
present on three nodes

Consistency
Write (update) Consistency

 Problem: two users want to update the same

record (write-write conflict)

 Issue: lost update

 Pessimistic (preventing conflicts from occurring)

vs. optimistic solutions (let conflicts occur, but

detect them and take actions to sort them out)

 Write locks, conditional update, save both updates

and record that they are in conflict, …

Consistency
Read Consistency

 Problem: one user reads, other writes (read-write
conflict)
 Issue: inconsistent read

 Relational databases support the notion of transactions

 NoSQL databases support atomic updates within a
single aggregate
 But not all data can be put in the same aggregate

 Update that affects multiple aggregates leaves open a
time when clients could perform an inconsistent read
 Inconsistency window

 Another issue: replication consistency
 A special type of inconsistency in case of replication

 Ensuring that the same data item has the same value when read
from different replicas

Consistency
Quorums

 How many nodes need to be involved to get strong
consistency?

 Write quorum: W > N/2
 N = the number of nodes involved in replication (replication

factor)

 W = the number of nodes participating in the write

 The number of nodes confirming successful write

 “If you have conflicting writes, only one can get a majority.”

 How many nodes you need to contact to be sure you
have the most up-to-date change?

 Read quorum: R + W > N
 R = the number of nodes we need to contact for a read

 „Concurrent read and write cannot happen.“

