
Big Data and NoSQL Databases
Lecture 8:

MI-PDB, MIE-PDB: Advanced Database Systems

Lecturer: Martin Svoboda
svoboda@ksi.mff.cuni.cz

Author: Irena Holubová
Faculty of Mathematics and Physics, Charles University in Prague
Course NDBI040: Big Data Management and NoSQL Databases

12. 4. 2016

http://www.ksi.mff.cuni.cz/~svoboda/courses/2015-2-MIE-PDB/

What is Big Data?

 buzzword?

 bubble?

 gold rush?

 revolution?

“Big data is like teenage sex: everyone talks

about it, nobody really knows how to do it,

everyone thinks everyone else is doing it, so

everyone claims they are doing it.”

Dan Ariely

What is Big Data?

 No standard definition

 First occurrence of the term: High

Performance Computing (HPC)

Gartner: “Big Data” is high volume,

high velocity, and/or high variety

information assets that require new

forms of processing to enable

enhanced decision making, insight

discovery and process optimization.

3 (4, 5)

Vs

Volume

Variety Velocity

Big Data

What is Big Data?

IBM: Depending on the industry and organization, Big Data

encompasses information from internal and external sources such

as transactions, social media, enterprise content, sensors, and

mobile devices.

Companies can leverage data to adapt their products and services

to better meet customer needs, optimize operations and

infrastructure, and find new sources of revenue.

http://www.ibmbigdatahub.com/

Social media and networks

(all of us are generating data)

Scientific instruments

(collecting all sorts of data)

Mobile devices

(tracking all objects all the time)

Sensor technology and networks

(measuring all kinds of data)

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Volume (Scale)

http://www.ibmbigdatahub.com/

Data volume is

increasing

exponentially,

not linearly

1021

109

1018

1012

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Velocity (Speed)

http://www.ibmbigdatahub.com/

Data is being

generated fast and

need to be

processed fast

Online

Data

Analytics

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Variety (Complexity)

http://www.ibmbigdatahub.com/

Various formats,

types, and

structures (from

semi-structured

XML to

unstructured

multimedia)

Static data vs.

streaming data

1018

109

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Veracity (Uncertainty)

http://www.ibmbigdatahub.com/

Uncertainty due

to inconsistency,

incompleteness,

latency,

ambiguities, or

approximations.

1012

http://www.ibmbigdatahub.com/

Processing Big Data

 OLTP: Online Transaction Processing (DBMSs)
 Database applications

 Storing, querying, multiuser access

 OLAP: Online Analytical Processing (Data Warehousing)
 Answer multi-dimensional analytical queries

 Financial/marketing reporting, budgeting, forecasting, …

 RTAP: Real-Time Analytic Processing (Big Data
Architecture & Technology)
 Data gathered & processed in a real-time

 Streaming fashion

 Real-time data queried and presented in an online fashion

 Real-time and history data combined and mined interactively

Key Big Data-Related

Technologies

 Distributed file
systems

 NoSQL databases

 Grid computing,
cloud computing

 MapReduce and
other new
paradigms

 Large scale
machine learning

http://e-theses.imtlucca.it/34/

http://e-theses.imtlucca.it/34/
http://e-theses.imtlucca.it/34/
http://e-theses.imtlucca.it/34/

Relational Database Management

Systems (RDMBSs)

 Predominant technology for storing structured
data
 Web and business applications

 Relational calculus, SQL

 Often thought of as the only alternative for data
storage
 Persistence, concurrency control, integration

mechanism, …

 Alternatives: Object databases or XML stores
 Never gained the same adoption and market share

„NoSQL“

 1998 first used for a relational database that
omitted the use of SQL
 Carlo Strozzi

 2009 used for conferences of advocates of non-
relational databases
 Eric Evans

 Blogger, developer at Rackspace

NoSQL movement = “the whole point of

seeking alternatives is that you need to

solve a problem that relational

databases are a bad fit for”

„NoSQL“

 Not „no to SQL“
 Another option, not the only one

 Not „not only SQL“
 Oracle DB or PostgreSQL would fit the definition

 „Next Generation Databases mostly addressing some of
the points: being non-relational, distributed, open-source
and horizontally scalable. The original intention has been
modern web-scale databases. Often more
characteristics apply as: schema-free, easy replication
support, simple API, eventually consistent (BASE, not
ACID), a huge data amount, and more“

http://nosql-database.org/

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

The End of Relational Databases?

 Relational databases are not going away

 Compelling arguments for most projects

 Familiarity, stability, feature set, and available support

 We should see relational databases as one

option for data storage

 Polyglot persistence – using different data stores in

different circumstances

 Search for optimal storage for a particular application

NoSQL Databases
Five Advantages

1. Elastic scaling
 “Classical” database administrators scale up – buy bigger

servers as database load increases

 Scaling out – distributing the database across multiple hosts as
load increases

2. Big Data

3. Goodbye DBAs (see you later?)
 Automatic repair, distribution, tuning, …

4. Economics
 Based on cheap commodity servers

5. Flexible Data Models
 Non-existing/relaxed data schema cheap structural changes

http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772

http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772

NoSQL Databases
Five Challenges

1. Maturity
 Still in pre-production phase

 Key features yet to be implemented

2. Support
 Mostly open source, result from start-ups

 Limited resources or credibility

3. Administration
 Require lot of skill to install and effort to maintain

4. Analytics and Business Intelligence

5. Expertise
 Few number of NoSQL experts available in the market

Data Assumptions

RDBMS NoSQL

integrity is mission-critical OK as long as most data is correct

data format consistent, well-defined data format unknown or inconsistent

data is of long-term value data are expected to be replaced

data updates are frequent write-once, read multiple (no

updates, or at least not often)

predictable, linear growth unpredictable growth (exponential)

non-programmers writing queries only programmers writing queries

regular backup replication

access through master server sharding across multiple nodes

NoSQL Data Model
Aggregates

 Data model = the model by which the database
organizes data

 Each NoSQL solution has a different model
 Key-value, document, column-family, graph

 First three orient on aggregates

 Aggregate
 A data unit with a complex structure

 Not just a set of tuples like in RDBMS

 Domain-Driven Design: “an aggregate is a collection
of related objects that we wish to treat as a unit”
 A unit for data manipulation and management of consistency

NoSQL Data Model
Aggregates – aggregate-ignorant

 There is no universal strategy how to draw
aggregate boundaries
 Depends on how we manipulate the data

 RDBMS and graph databases are aggregate-
ignorant
 It is not a bad thing, it is a feature

 Allows to easily look at the data in different ways

 Better choice when we do not have a primary
structure for manipulating data

NoSQL

NoSQL Data Model
Aggregates – aggregate-oriented

 Aggregate orientation
 Aggregates give the database information about

which bits of data will be manipulated together
 Which should live on the same node

 Helps greatly with running on a cluster
 We need to minimize the number of nodes we need to query

when we are gathering data

 Consequence for transactions
 NoSQL databases support atomic manipulation of a

single aggregate at a time

Types of NoSQL Databases

Core:

 Key-value databases

 Document databases

 Column-family (column-oriented/columnar) stores

 Graph databases

Non-core:

 Object databases

 XML databases

 …

http://nosql-database.org/

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

Key-value store
Basic characteristics

 The simplest NoSQL data stores

 A simple hash table (map), primarily used when all
access to the database is via primary key

 A table in RDBMS with two columns, such as ID and
NAME
 ID column being the key

 NAME column storing the value
 A BLOB that the data store just stores

 Basic operations:
 Get the value for the key

 Put a value for a key

 Delete a key from the data store

 Simple great performance, easily scaled

 Simple not for complex queries, aggregation needs

Key-value store
Representatives

Project

Voldemort

MemcachedDB

not

open-source

open-source

version

Column-Family Stores
Basic Characteristics

 Also “columnar” or “column-oriented”

 Column families = rows that have many columns
associated with a row key

 Column families are groups of related data that is often
accessed together
 e.g., for a customer we access all profile information at the same

time, but not orders

Column-Family Stores
Representatives

Google’s

BigTable

Document Databases
Basic Characteristics

 Documents are the main concept
 Stored and retrieved

 XML, JSON, …

 Documents are
 Self-describing

 Hierarchical tree data structures

 Can consist of maps, collections (lists, sets, …), scalar values,
nested documents, …

 Documents in a collection are expected to be similar
 Their schema can differ

 Document databases store documents in the value part
of the key-value store
 Key-value stores where the value is examinable

Document Databases
Representatives

Lotus Notes

Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

Graph Databases
Basic Characteristics

 To store entities and relationships between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all nodes employed by Big Co that like NoSQL
Distilled”

Example:

Graph Databases
Representatives

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg

Basic Principles

 Scalability

How to handle growing amounts of data

without losing performance

 CAP theorem

 Distribution models

Sharding, replication, consistency, …

How to handle data in a distributed manner

Scalability
Vertical Scaling (scaling up)

 Traditional choice has been in favour of strong
consistency
 System architects have in the past gone in favour of scaling up

(vertical scaling)

 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful machines

 Who do, often use proprietary formats

 Makes a customer dependent on a vendor for products and
services

 Unable to use another vendor

Scalability
Vertical Scaling (scaling up)

 Higher costs
 Powerful machines usually cost a lot more than commodity

hardware

 Data growth perimeter
 Powerful and large machines work well until the data grows to fill

it

 Even the largest of machines has a limit

 Proactive provisioning
 Applications have no idea of the final large scale when they start

out

 Scaling vertically = you need to budget for large scale upfront

Scalability
Horizontal Scaling (scaling out)

 Systems are distributed across multiple machines or
nodes (horizontal scaling)
 Commodity machines, cost effective

 Often surpasses scalability of vertical approach

 Fallacies of distributed computing:
 The network is reliable

 Latency is zero

 Bandwidth is infinite

 The network is secure

 Topology does not change

 There is one administrator

 Transport cost is zero

 The network is homogeneous

https://blogs.oracle.com/jag/resource/Fallacies.html

https://blogs.oracle.com/jag/resource/Fallacies.html

CAP Theorem

Consistency

 After an update, all readers in a distributed system see
the same data

 All nodes are supposed to contain the same data at all
times

 Example:
 A single database instance is always consistent

 If multiple instances exist, all writes must be duplicated before
write operation is completed

CAP Theorem

Availability

 All requests (reads, writes) are always answered,
regardless crashes

 Example:
 A single instance has an availability of 100% or 0%

 Two servers may be available 100%, 50%, or 0%

Partition Tolerance

 System continues to operate, even if two sets of servers
get isolated

 Example:
 Failed connection will not cause troubles if the system is tolerant

CAP Theorem
ACID vs. BASE

 Theorem: Only 2 of the 3
guarantees can be given in a
“shared-data” system.
 Proven in 2000, the idea is

older

 (Positive) consequence: we can
concentrate on two challenges

 ACID properties guarantee
consistency and availability
 pessimistic

 e.g., database on a single
machine

 BASE properties guarantee
availability and partition
tolerance
 optimistic

 e.g., distributed databases

CAP Theorem
Consistency

 A single-server system is a CA system

 Clusters have to be tolerant of network partitions

 CAP theorem: you can only get two out of three

 Reality: you can trade off a little Consistency to get

some Availability

 It is not a binary decision

BASE

 In contrast to ACID

 Leads to levels of scalability that cannot be obtained with ACID
 At the cost of (strong) consistency

Basically Available

 The system works basically all the time

 Partial failures can occur, but without total system failure

Soft State

 The system is in flux and non-deterministic

 Changes occur all the time

Eventual Consistency

 The system will be in some consistent state

 At some time in future

Strong Consistency

John

George

Paul

read(a) = 1

read(a) = 1

read(a) = 1

write(a) = 2 read(a) = 2

read(a) = 2

read(a) = 2

Eventual Consistency

John

Peter

Paul

read(a) = 1

read(a) = 1

read(a) = 1

write(a) = 2 read(a) = 1

read(a) = 1

read(a) = 2

inconsistent window

read(a) = 2

read(a) = 2

Distribution Models

 Scaling out = running the database on a cluster

of servers

 Two orthogonal techniques to data distribution:

 Replication – takes the same data and copies it over

multiple nodes

 Master-slave or peer-to-peer

 Sharding – puts different data on different nodes

 We can use either or combine them

Distribution Models
Single Server

 No distribution at all

 Run the database on a single machine

 It can make sense to use NoSQL with a single-

server distribution model

 Graph databases

 The graph is “almost” complete → it is difficult to distribute it

Distribution Models
Sharding

 Horizontal
scalability →
putting different
parts of the data
onto different
servers

 Different people
are accessing
different parts of
the dataset

Distribution Models
Sharding

 The ideal case is rare

 To get close to it we have to ensure that data that is
accessed together is clumped together

 How to arrange the nodes:
a. One user mostly gets data from a single server

b. Based on a physical location

c. Distributed across the nodes with equal amounts of the load

 Many NoSQL databases offer auto-sharding

 A node failure makes shard’s data unavailable
 Sharding is often combined with replication

Distribution Models
Master-slave Replication

 We replicate data
across multiple
nodes

 One node is
designed as
primary (master),
others as
secondary
(slaves)

 Master is
responsible for
processing any
updates to that
data

Distribution Models
Master-slave Replication

 For scaling a read-intensive dataset
 More read requests → more slave nodes

 The master fails → the slaves can still handle read
requests
 A slave can be appointed a new master quickly (it is a

replica)

 Limited by the ability of the master to process
updates

 Masters are appointed manually or automatically
 User-defined vs. cluster-elected

Distribution Models
Peer-to-peer Replication

 Problems of master-
slave replication:
 Does not help with

scalability of writes

 Provides resilience
against failure of a
slave, but not of a
master

 The master is still a
bottleneck

 Peer-to-peer
replication: no
master
 All the replicas have

equal weight

Distribution Models
Peer-to-peer Replication

 Problem: consistency

 We can write at two different places: a write-write

conflict

 Solutions:

 Whenever we write data, the replicas coordinate to

ensure we avoid a conflict

 At the cost of network traffic

 But we do not need all the replicas to agree on the

write, just a majority

Distribution Models
Combining Sharding and Replication

 Master-slave replication and sharding:
 We have multiple masters, but each data item only

has a single master

 A node can be a master for some data and a slave for
others

 Peer-to-peer replication and sharding:
 A common strategy for column-family databases

 A good starting point for peer-to-peer replication is to
have a replication factor of 3, so each shard is
present on three nodes

Consistency
Write (update) Consistency

 Problem: two users want to update the same

record (write-write conflict)

 Issue: lost update

 Pessimistic (preventing conflicts from occurring)

vs. optimistic solutions (let conflicts occur, but

detect them and take actions to sort them out)

 Write locks, conditional update, save both updates

and record that they are in conflict, …

Consistency
Read Consistency

 Problem: one user reads, other writes (read-write
conflict)
 Issue: inconsistent read

 Relational databases support the notion of transactions

 NoSQL databases support atomic updates within a
single aggregate
 But not all data can be put in the same aggregate

 Update that affects multiple aggregates leaves open a
time when clients could perform an inconsistent read
 Inconsistency window

 Another issue: replication consistency
 A special type of inconsistency in case of replication

 Ensuring that the same data item has the same value when read
from different replicas

Consistency
Quorums

 How many nodes need to be involved to get strong
consistency?

 Write quorum: W > N/2
 N = the number of nodes involved in replication (replication

factor)

 W = the number of nodes participating in the write

 The number of nodes confirming successful write

 “If you have conflicting writes, only one can get a majority.”

 How many nodes you need to contact to be sure you
have the most up-to-date change?

 Read quorum: R + W > N
 R = the number of nodes we need to contact for a read

 „Concurrent read and write cannot happen.“

