
Advanced Aspects and New

Trends in XML (and Related)

Technologies

RNDr. Irena Holubová, Ph.D.

holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NPRG039/

NPRG039

Lecture 3. XML Alternatives

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NPRG039/

XML Alternatives

 YAML

 OGDL

 SDL

 DL

 Boulder

 ONX

 JSON

 SMEL

 Property Lists

 ATerms

 SOX

 MicroXML

 LMNL

 JITTs

 ConsiceXML

 SML

 TexMecs

 Waterken Doc

 UBF

 Xqueeze

 …

separate lecture

MicroXML

 Motivation: XML is difficult to understand and process

 Various historical reasons: namespaces, complex structures of
XPath, XQuery, XSLT which are often not exploited, …

 HTML5: better combined with JSON (simplicity)

 MicroXML = simplification of XML compatible with earlier
versions

 Emerged from discussions of issues of XML

 XML-DEV mailing list

 Open, publicly archived, unmoderated list supporting XML implementation
and development

 XML-DEV archives are publicly accessible

 Under W3C

 Start of specification: December 2010

 First specification draft: October 2012

http://www.w3.org/community/microxml/ http://www.xml.org/xml-dev

compare W3C

specifications

http://www.w3.org/community/microxml/
http://www.xml.org/xml-dev
http://www.xml.org/xml-dev
http://www.xml.org/xml-dev

Note: What is HTML5?

 Status: W3C Recommendation

 News:
 Support for the latest multimedia

 <video>, <audio>, <canvas>

 Integration of SVG and MathML
 Replaces generic <object>

 New elements/attributes to enrich the semantic content of
documents
 <section>, <article>, <header>

 Some elements, such as <a>, <cite> and <menu> have been
changed, redefined or standardized

 Scripting application programming interfaces
 Element canvas for 2D drawing, drag-and-drop, document editing,

web storage, …

 Used with JavaScript

http://www.w3.org/TR/html5/

http://www.w3.org/TR/html5/
http://en.wikipedia.org/wiki/File:HTML5_logo_and_wordmark.svg

MicroXML Goals

 Key goals of the community group:
 The syntax of MicroXML is a subset of XML 1.0.

 MicroXML specifies a data model and a mapping from the syntax
to the data model, which is substantially consistent with XML 1.0.

 MicroXML is dramatically simpler than XML regarding its
specification, syntax, and data model.

 MicroXML is designed to complement rather than replace XML,
JSON, and HTML.

 MicroXML supports the needs of documents, in particular mixed
content.

 MicroXML supports Unicode.

 MicroXML supports the use of text editors for authoring.

 MicroXML is able to straightforwardly represent HTML.

 The specification of MicroXML is as self-contained as is practical.

MicroXML
Well-formedness

 XML: parsers are required to halt immediately upon
encountering the first error
 User-unfriendly for users used to HTML

 MicroXML: does not insist on any approach to
handling errors
 Parser should signal error, but can halt, recover, continue,

…

 e.g., parser can add to correct the input, but it
cannot claim that it is a MicroXML input

<para>Hello, I claim to be MicroXML</para>

MicroXML
Basic Constructs

 Supports only one encoding: UTF-8

 Document contains markup and character data
 Elements, attributes, character data

 Namespaces are not supported
 Colons (‘:’) are forbidden in element and attribute names

 xmlns attribute is forbidden

 Whitespaces in attribute values are not normalized

<para>Hi. I'm some form of

 <abbr ref="Extensible Markup Language">XML</abbr></para>

<para>Hi. I'm some form of

 <abbr ref="Extensible Markup

Language">XML</abbr></para>

Two same XML

documents, but different

MicroXML documents

MicroXML
PIs, Comments, Declarations

 PIs are prohibited in MicroXML

 Comments are allowed, but they are not a part of

the data model

 Ignored by applications

 Idea: “comments are for people, not programs”

 XML declarations are not supported

 Entities: only hexadecimal-encoded character

Simply Speaking:

 Elements = structure

 Attributes = metadata

 Content = content

MicroXML Grammar

Documents

 document ::= comments (doctype comments)? element comments

 comments ::= (comment | s)*

 doctype ::= "<!DOCTYPE" s+ name s* ">"

Elements

 element ::= startTag content endTag

 | emptyElementTag

 content ::= (element | comment | dataChar | charRef)*

 startTag ::= '<' name (s+ attribute)* s* '>'

 emptyElementTag ::= '<' name (s+ attribute)* s* '/>'

 endTag ::= '</' name s* '>'

Attributes

 attribute ::= attributeName s* '=' s* attributeValue

 attributeValue ::= '"' ((attributeValueChar – '"') | charRef)* '"'

 | "'" ((attributeValueChar – "'") | charRef)* "'"

 attributeValueChar ::= char – ('<'|'&')

 attributeName ::= "xml:"? name

Data characters

 dataChar ::= char – ('<'|'&'|'>')

Character references

 charRef ::= decCharRef | hexCharRef | namedCharRef

 decCharRef ::= '&#' [0-9]+ ';'

 hexCharRef ::= '&#x' [0-9a-fA-F]+ ';'

 namedCharRef ::= '&' charName ';'

 charName ::= 'amp' | 'lt' | 'gt' | 'quot' | 'apos'

MicroXML Grammar

Comments

 comment ::= '<!--' (commentContentStart commentContentContinue*)? '-->'

Enforce the HTML5 restriction that comments cannot start with '-' or '->'

 commentContentStart ::= (char – ('-'|'>')) | ('-' (char – ('-'|'>')))

As in XML 1.0

 commentContentContinue ::= (char – '-') | ('-' (char – '-'))

Names

 name ::= nameStartChar nameChar*

 nameStartChar ::= [A-Z] | [a-z] | "_" | [#xC0-#xD6] | [#xD8-#xF6] | [#xF8-#x2FF]

 | [#x370-#x37D] | [#x37F-#x1FFF] | [#x200C-#x200D]

 | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF]

 | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

 nameChar ::= nameStartChar | [0-9] | "-" | "." | #xB7 | [#x0300-#x036F]

 | [#x203F-#x2040]

White space

 s ::= #x9 | #xA | #xD | #x20

Characters

 char ::= s | ([#x21-#x10FFFF] – forbiddenChar)

 forbiddenChar ::= surrogateChar | #FFFE | #FFFF

 surrogateChar ::= [#xD800-#xDFFF]

MicroXML Example 1

James Clark's

JavaScript parser

(microxml-js)

This parser does

not support DTD

declarations

MicroXML
Future Work

 Many follow-up discussions

 Error recovery

 Micro schemata

 Micro transforms

 More advanced implementations

 Support in various tools

<comment lang="en" date="2012-09-11">

I love µ<!-- MICRO SIGN -->XML!

It's so clean & simple.</comment>

Simple Outline XML (SOX)

 An alternative syntax for XML

 For reading and creating XML content in a text

editor

 To be then easily transformed into correct XML

 Uses indenting to represent the structure of an XML

document

 Eliminates the need for closing tags

 Supports elements, attributes and text

 Comments, PIs, … are not supported

 Java SAX parser and a SAX serialiser is provided

http://www.langdale.com.au/SOX/

http://www.langdale.com.au/SOX/

SOX Grammar

 Each line represents a(n) element/attribute/text
node

element>

 ...

 ...

<element ... >

 ...

</element>

element>

 attribute=value

 ...

<element

 attribute="value"

 ... >

 ...

</element>

element>

 ...

 text node

 ...

<element ...>

 ... text node ...

</element>

SOX XML

SOX Grammar

 Indentation represents element-subelement
relationship

A>

 B>

 C>

 D>

<A>

<C/>

<D/>

SOX Grammar

 Multiline text is quoted with triple quote marks

pre>

 """Text spanning several

 lines forming a single XML

 'so-called' text node"""

<pre>Text spanning several

lines forming a single XML

'so-called' text node</pre>

SOX and White Spaces

 Whitespaces = spaces and tabs

 Whitespace is treated as follows:

 Lines consisting only of whitespace are ignored.

 Indentation is represented by a whitespace at the beginning of a
line

 Tabs = 8 spaces

 In unquoted text:

 Leading and trailing whitespace (other than the indent) is ignored

 Internal span of whitespace is treated as a single space

 A single space is unconditionally appended to the unquoted text
forming an XML text node.

 Can be prevented by quoting

 All other whitespace is ignored

SOX Examples

stylesheet>

 xmlns=http://www.w3.org/1999/XSL/Transform

 version=1.0

 template>

 match=node()

 copy>

 apply-templates>

 select=node()

html>

 head>

 title> My Home Page

 body>

 h1> Contact Details

 p> I can be contacted at

 a> href=mailto:me@myplace.net

 this address

 except when on vacation.

XSLT script

XHTML document

YAML (Ain't Markup Language)

 Originally: Yet Another Markup Language

 Human-readable data serialization format

 Concepts from programming languages
 C, Perl, and Python

 Aim: easy mapping of data types

 Ideas from XML and data format of electronic mail
(RFC0822)
 Hierarchical data representation

 First proposal: 2001

 Sample use-cases: configuration files, debugging
dumps, document headers (similar to, e.g., e-mails),
…

http://yaml.org/

http://yaml.org/

YAML
Design Goals

 YAML is easily readable by humans.

 YAML data is portable between programming
languages.

 YAML matches the native data structures of agile
languages.
 Python, Ruby, PHP, …

 Simplicity, automated unit testing, quickness and lightness
of development, …

 YAML has a consistent model to support generic
tools.

 YAML supports one-pass processing.

 YAML is expressive and extensible.

 YAML is easy to implement and use.

YAML
Basics

 Unicode encoding

 Basic primitives:

 mappings (hashes/dictionaries)

 sequences (arrays/lists)

 scalars (strings/numbers)

 Indentation-based scoping

 Similar to Python

 For easy inspection of the data’s structure

 No support for tabs (must be replaced with spaces)

 Content can be nested

YAML
Collections

 Collections
 Use indentation for scope

 Begin each entry on its own line

 Entries:
 In sequences: begin with “- ”

 In mappings: use “: ”

 Comments begin with “#”

- Mark McGwire

- Sammy Sosa

- Ken Griffey

Sequence of scalars

hr: 65 # Home runs

avg: 0.278 # Batting average

rbi: 147 # Runs Batted In

Mapping scalars to scalars

american:

 – Boston Red Sox

 – Detroit Tigers

 – New York Yankees

national:

 – New York Mets

 – Chicago Cubs

 – Atlanta Braves

Mapping scalars to sequences

-

 name: Mark McGwire

 hr: 65

 avg: 0.278

-

 name: Sammy Sosa

 hr: 63

 avg: 0.288

Sequence of mappings

comment

YAML
Simplifications

 In case of small, simple data
 Sequence: comma-separated list within square brackets

[]

 Mapping: comma separated list within curly braces {}

- [name , hr, avg]

- [Mark McGwire, 65, 0.278]

- [Sammy Sosa , 63, 0.288]

Sequence of sequences

Mark McGwire: {hr: 65, avg: 0.278}

Sammy Sosa: {

 hr: 63,

 avg: 0.288

 }

Mapping of mappings # Products purchased

- item : Super Hoop

 quantity: 1

- item : Basketball

 quantity: 4

- item : Big Shoes

 quantity: 1

Compact nested mapping

 Within a collection, key:
value pairs can start
immediately following the “-”,
“:”, or “?” (see later)

YAML
Structures

 “---” indicate start of a document

 “...” indicate end of a document
 Without starting a new one, closing a stream connection etc.

Ranking of 1998 home runs

- Mark McGwire

- Sammy Sosa

- Ken Griffey

Team ranking

- Chicago Cubs

- St Louis Cardinals

Two documents in a stream

(each with a leading comment)

time: 20:03:20

player: Sammy Sosa

action: strike (miss)

...

time: 20:03:47

player: Sammy Sosa

action: grand slam

...

Play by play feed from a game

a logical part of data

YAML
Anchors and Aliases

 Repeated nodes (objects) are first identified by an
anchor
 Marked with “&”

 Then they can be aliased
 Referenced with “*”

DTD: ID, IDREF(S)

XML Schema: key, keyref

hr:

 – Mark McGwire

 # Following node labeled SS

 – &SS Sammy Sosa

rbi:

 – *SS # Subsequent occurrence

 – Ken Griffey

Node for “Sammy Sosa” appears twice in this document

YAML
Complex Keys

 “? ” indicates a complex mapping key

? – Detroit Tigers

 – Chicago cubs

:

 – 2001-07-23

? [New York Yankees,

 Atlanta Braves]

: [2001-07-02, 2001-08-12,

 2001-08-14]

Mapping between sequences

keys

values

YAML
Strings

 Scalar string content:
 Literal style (indicated by “|”) where all line breaks are

significant

 Folded style (indicated by “>”): each line break is folded to
a space

 Unless it ends an empty or a more-indented line

ASCII Art

--- |

 \//||\/||

 // || ||__

ASCII art, new lines are preserved

--- >

 Mark McGwire's

 year was crippled

 by a knee injury.

In the folded scalars,

newlines become spaces

YAML
Strings

>

 Sammy Sosa completed another

 fine season with great stats.

 63 Home Runs

 0.288 Batting Average

 What a year!

Folded newlines are preserved

for "more indented" and empty lines

name: Mark McGwire

accomplishment: >

 Mark set a major league

 home run record in 1998.

stats: |

 65 Home Runs

 0.278 Batting Average

Indentation determines scope of
“>” and “|”

YAML
Quotation

 YAML’s quotation:
 Plain style (most examples so far)

 Quoted styles
 Double-quoted style – provides escape sequences

 For arbitrary strings

 Single-quoted style – when escaping is not needed
 Only the quote can be escaped when needed

 All can span multiple lines
 Line breaks are always folded

unicode: "Sosa did fine.\u263A"

control: "\b1998\t1999\t2000\n"

hex esc: "\x0d\x0a is \r\n"

single: '"Howdy!" he cried.'

quoted: ' # Not a ''comment''.'

tie-fighter: '|\-*-/|'

Quotation

plain:

 This unquoted scalar

 spans many lines.

quoted: "So does this

 quoted scalar.\n"

Multi-line scalar

e.g., when a key
involves “:”

YAML
Data Types

 Untagged nodes are given a type depending on the
application
 seq, map, str, int, float, null, binary, omap (ordered map),

set, …

canonical: 12345

decimal: +12345

octal: 0o14

hexadecimal: 0xC

Integers

canonical: 1.23015e+3

exponential: 12.3015e+02

fixed: 1230.15

negative infinity: -.inf

not a number: .NaN

Floating point

null:

booleans: [true, false]

string: '012345'

Miscellaneous

canonical: 2001-12-15T02:59:43.1Z

iso8601: 2001-12-14t21:59:43.10-05:00

spaced: 2001-12-14 21:59:43.10 -5

date: 2002-12-14

Timestamps

YAML
Explicit Typing

 Denoted with a tag
 Identifier starting with “!”

 Global tags = URIs (i.e., unique across all applications)
 May be specified in a tag shorthand notation using a handle

 Application-specific local tags may also be used

not-date: !!str 2002-04-28

picture: !!binary |

 R0lGODlhDAAMAIQAAP//9/X

 17unp5WZmZgAAAOfn515eXv

 Pz7Y6OjuDg4J+fn5OTk6enp

 56enmleECcgggoBADs=

application specific tag: !something |

 The semantics of the tag

 above may be different for

 different documents.

Explicit typing

%TAG ! tag:clarkevans.com,2002:

--- !shape

 # Use the ! handle for presenting

 # tag:clarkevans.com,2002:circle

- !circle

 center: &ORIGIN {x: 73, y: 129}

 radius: 7

- !line

 start: *ORIGIN

 finish: { x: 89, y: 102 }

- !label

 start: *ORIGIN

 color: 0xFFEEBB

 text: Pretty vector drawing.

Global tags

YAML
Explicit Typing

Unordered sets are represented as a

mapping where each key is associated

with a null value

--- !!set

? Mark McGwire

? Sammy Sosa

? Ken Griff

Unordered set

Ordered maps are represented as

a sequence of mappings, with

each mapping having one key

--- !!omap

- Mark McGwire: 65

- Sammy Sosa: 63

- Ken Griffy: 58

Ordered mapping

Bigger

Example 1
An Invoice

--- !<tag:clarkevans.com,2002:invoice>

invoice: 34843

date : 2001-01-23

bill-to: &id001

 given : Chris

 family : Dumars

 address:

 lines: |

 458 Walkman Dr.

 Suite #292

 city : Royal Oak

 state : MI

 postal : 48046

ship-to: *id001

product:

 – sku : BL394D

 quantity : 4

 description : Basketball

 price : 450.00

 – sku : BL4438H

 quantity : 1

 description : Super Hoop

 price : 2392.00

tax : 251.42

total: 4443.52

comments:

 Late afternoon is best.

 Backup contact is Nancy

 Billsmer @ 338-4338.

Bigger

Example 2
Log File

Time: 2001-11-23 15:01:42 -5

User: ed

Warning:

 This is an error message

 for the log file

Time: 2001-11-23 15:02:31 -5

User: ed

Warning:

 A slightly different error

 message.

Date: 2001-11-23 15:03:17 -5

User: ed

Fatal:

 Unknown variable "bar"

Stack:

 – file: TopClass.py

 line: 23

 code: |

 x = MoreObject("345\n")

 – file: MoreClass.py

 line: 58

 code: |-

 foo = bar

How YAML Processor Works

 Translating between native data structures and a character
stream

 Dump native data structures → character stream

 Load native data structures  character stream

How YAML Processor Works
Dump

 Representing Native Data Structures
 Using sequences, mappings and scalars

 Form a directed graph

 Serializing the Representation Graph
 Representation is serialized to an ordered tree

 Problem:
 Maps are not ordered

 An ordering is imposed

 Nodes may be referenced more than once
 Replaced by anchors and aliases

 Presenting the Serialization Tree
 Presenting the YAML serializations as a character stream in a

human-friendly manner

 Requires presentation details: the amount of indentation, how to
format scalar content, …

Particular strategy depends

on the YAML processor

How YAML Processor Works
Load

 Parsing the Presentation Stream
 Stream of characters → a series of events

 Discards all the details introduced in the presentation
process
 Indentation, formatting, …

 Composing the Representation Graph
 Takes a series of serialization events and produces a

representation graph

 Constructing Native Data Structures
 Based only on the information available in the

representation
 Not on comments, directives, mapping key order, node

styles, scalar content format, indentation levels, …

YAML
Relation to JSON

 JSON:

 Primary design goal: simplicity and universality

 Trivial to generate and parse

 At the cost of reduced human readability

 Lowest common denominator information model

 Can be easily processed by every modern programming environment

 YAML:

 Primary design goal: human readability

 Support for serializing arbitrary native data structures

 Consequence: more difficult to parse/generate

 YAML can be viewed as a natural superset of JSON

 Every JSON file is also a valid YAML file

http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=l_yxMvC_ErjFyM&tbnid=7Of8EuwsGxrmwM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.json.org%2F&ei=AW9lUvqGL4Loswalq4DgCg&bvm=bv.54934254,d.Yms&psig=AFQjCNH4Pg49zrh5bZpJmVI38SgK09-Eig&ust=1382465663870470

YAML
Relation to XML

 No direct correlation

 Ongoing efforts to define standard XML/YAML

mappings

 Results in usage of subsets at both sides

 XML

 Based on SGML → many structural constraints

 A pioneer in many aspects

 YAML:

 Primarily a data serialization language

 Result of lessons learned from XML and other technologies

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=r-fFWBeLXKggnM&tbnid=FbJplR4SdLEXhM:&ved=0CAUQjRw&url=https%3A%2F%2Fblog.apigee.com%2Fdetail%2Fwhy_xml_wont_die_xml_vs._json_for_your_api&ei=KW9lUr29JMPetAbdiYGIAw&bvm=bv.54934254,d.Yms&psig=AFQjCNFP8riYCEbpljwtiskzi5wvUYsm1Q&ust=1382465699003622

YAML
Implementations and Bindings

 C++

 Ruby

 Python

 Java

 Pearl

 C#

 PHP

 JavaScript

 Haskell

 …

http://www.yaml.org/

http://www.yaml.org/

Simple Declarative Language

(SDL)

 An XML alternative

 “Easy way to describe lists, maps, and trees of

typed data in a compact, easy-to-read and type-

aware representation”

 Use-cases: property files, configuration files, logs,

and simple serialization requirements, …

http://sdl4r.rubyforge.org/doc/

http://www.techhui.com/profiles/blogs/the-simple-declarative
http://sdl4r.rubyforge.org/doc/

SDL
Data Types

 Type-aware:
 Unicode string – examples: "hello" or `aloha`

 character (32 bits signed) – example: '/'

 long integer (64 bits signed)

 float (32 bits signed)

 double float (64 bits signed)

 decimal (128+ bits signed)

 boolean – examples: true or false or on or off

 date yyyy/mm/dd – example 2005/12/05

 date time yyyy/mm/dd hh:mm(:ss)(.xxx)(-ZONE)
example – 2005/12/05 05:21:23.532-JST

 time span

 Base64
 null

SDL
Comments

 Four comment types

 // single line comments identical to Java, C, etc.

 Can occur anywhere in a line

 All text after // up to the new line will be ignored.

 # property style comments

 Work the same way as //

 -- separator comments useful for visually dividing content

 Work the same way as //

 Slash star (/*) style multiline comments

 Everything in between is ignored

SDL
Documents

 Made up of tags = data structure with a list of values, a map of
attributes, and (if it has a body) child tags

 Tag contains:

 a name

 If not present, the name “content” is used

 a namespace (optional)

 0 or more values (optional)

 0 or more attributes (optional)

 0 or more children (optional)

a tag having only a name

my_tag

name value pairs

first_name "Akiko"

last_name "Johnson"

height 68 # a tag with a value list

person "Akiko" "Johnson" 68

SDL
Documents

a tag with attributes

person first_name="Akiko" last_name="Johnson" height=68

a tag with values and attributes

person "Akiko" "Johnson" height=60

a tag with attributes using namespaces

person name:first-name="Akiko" name:last-name="Johnson"

a tag with values, attributes, namespaces, and children

my_namespace:person "Akiko" "Johnson" dimensions:height=68 {

 son "Nouhiro" "Johnson"

 daughter "Sabrina" "Johnson" location="Italy" {

 hobbies "swimming" "surfing"

 languages "English" "Italian"

 smoker false

 }

}

anonymous tag examples

files {

 "/folder1/file.txt"

 "/file2.txt"

}

SDL
String Literals

 Within double quotes (“”)

 Double quotes, backslash characters (\), and

new lines (\n) must be escaped

 Within backquotes (``)

 Not necessary (or possible) to escape any type of

character within a backquote string literal

file "C:\\folder\\file.txt"

say "I said \"something\""

line "this is a \

 long string of text"

file `C:\folder\file.txt`

say `I said "something"`

regex `\w+\.suite\(\)`

long_line `This is

 a long line

 fee fi fo fum`

SDL
Binary Literals

 Base64 characters enclosed in square
brackets []

key [sdf789GSfsb2+3324sf2] name="my key"

image [

 R3df789GSfsb2edfSFSDF

 uikuikk2349GSfsb2edfS

 vFSDFR3df789GSfsb2edf

]

upload from="ikayzo.com" data=[

 R3df789GSfsb2edfSFSDF

 uikuikk2349GSfsb2edfS

 vFSDFR3df789GSfsb2edf

]

SDL
DateTime Literals

 Date, time span, and date/time literals

 If a timezone is not specified, the locale

timezone is used

date 2005/12/05

hours 03:00:00

minutes 00:12:00

seconds 00:00:42

short_time 00:12:32.423 # 12 minutes, 32 seconds, 423 milliseconds

long_time 30d:15:23:04.023 # 30 days, 15 hours, 23 mins, 4 secs, 23 millis

before -00:02:30 # 2 hours and 30 minutes ago

in_japan 2005/12/05 14:12:23.345-JST

SDL and Ruby

 SDL4R = SDL parser for Ruby

http://sdl4r.rubyforge.org/

require 'fileutils'

require 'sdl4r'

root = SDL4R::Tag.new("root") do

 new_child("server") do

 set_attribute("port", 1234)

 end

end

File.open("my_directory/my_config.sdl", "w") { |io|

 io.write(root.children_to_string)

}

server port=1234

root = Tag.new("root").read(Pathname.new("values.sdl"))

size = root.child("size").value

smoker = root.child("smoker").value

size 4

smoker false

http://sdl4r.rubyforge.org/

Base64

 Binary-to-text encoding

 Represent binary data in an ASCII string format

 e.g., for data transfer

 To ensure that the data remains intact

 First task: choice of 64 encoding characters

 A subset common to most encodings

 Printable

 e.g., MIME's Base64 implementation uses A–Z, a–z,

and 0–9 for the first 62 values

 Other versions differ in the last two characters

Base64
Example

Man is distinguished, not only by his reason, but by this

singular passion fromother animals, which is a lust of the

mind, that by a perseverance of delightin the continued and

indefatigable generation of knowledge, exceeds the

shortvehemence of any carnal pleasure.

TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24s

IGJ1dCBieSB0aGlzIHNpbmd1bGFyIHBhc3Npb24gZnJvbSBvdGhlciBhbmlt

YWxzLCB3aGljaCBpcyBhIGx1c3Qgb2YgdGhlIG1pbmQsIHRoYXQgYnkgYSBw

ZXJzZXZlcmFuY2Ugb2YgZGVsaWdodCBpbiB0aGUgY29udGludWVkIGFuZCBp

bmRlZmF0aWdhYmxlIGdlbmVyYXRpb24gb2Yga25vd2xlZGdlLCBleGNlZWRz

IHRoZSBzaG9ydCB2ZWhlbWVuY2Ugb2YgYW55IGNhcm5hbCBwbGVhc3VyZS4=

 Approx. 33% longer

Base64
Example

 In ASCII M, a, n are stored as 77, 97, 110

 8-bit binary values: 01001101, 01100001, 01101110

 Joined together: 010011010110000101101110

 Groups of 6 bits are converted into individual
numbers from left to right
 26 = 64 different binary values

 The input is extended with 0s if necessary

Base64 Index Table

References

 MicroXML: http://www.w3.org/community/microxml/

 Introducing MicroXML:
http://archive.xmlprague.cz/2013/presentations/Intro
ducing_MicroXML.pdf

 SOX: http://www.langdale.com.au/SOX/

 YAML: http://yaml.org/

 YAML specification:
http://www.yaml.org/spec/1.2/spec.html

 Simple Declarative Language:
http://sdl4r.rubyforge.org/

 http://sdl4r.rubyforge.org/doc/

http://www.w3.org/community/microxml/
http://archive.xmlprague.cz/2013/presentations/Introducing_MicroXML.pdf
http://archive.xmlprague.cz/2013/presentations/Introducing_MicroXML.pdf
http://www.langdale.com.au/SOX/
http://yaml.org/
http://www.yaml.org/spec/1.2/spec.html
http://sdl4r.rubyforge.org/
http://sdl4r.rubyforge.org/doc/

