
Advanced Aspects and New

Trends in XML (and Related)

Technologies

RNDr. Irena Holubová, Ph.D.

holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NPRG039/

NPRG039

Lecture 3. XML Alternatives

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NPRG039/

XML Alternatives

 YAML

 OGDL

 SDL

 DL

 Boulder

 ONX

 JSON

 SMEL

 Property Lists

 ATerms

 SOX

 MicroXML

 LMNL

 JITTs

 ConsiceXML

 SML

 TexMecs

 Waterken Doc

 UBF

 Xqueeze

 …

separate lecture

MicroXML

 Motivation: XML is difficult to understand and process

 Various historical reasons: namespaces, complex structures of
XPath, XQuery, XSLT which are often not exploited, …

 HTML5: better combined with JSON (simplicity)

 MicroXML = simplification of XML compatible with earlier
versions

 Emerged from discussions of issues of XML

 XML-DEV mailing list

 Open, publicly archived, unmoderated list supporting XML implementation
and development

 XML-DEV archives are publicly accessible

 Under W3C

 Start of specification: December 2010

 First specification draft: October 2012

http://www.w3.org/community/microxml/ http://www.xml.org/xml-dev

compare W3C

specifications

http://www.w3.org/community/microxml/
http://www.xml.org/xml-dev
http://www.xml.org/xml-dev
http://www.xml.org/xml-dev

Note: What is HTML5?

 Status: W3C Recommendation

 News:
 Support for the latest multimedia

 <video>, <audio>, <canvas>

 Integration of SVG and MathML
 Replaces generic <object>

 New elements/attributes to enrich the semantic content of
documents
 <section>, <article>, <header>

 Some elements, such as <a>, <cite> and <menu> have been
changed, redefined or standardized

 Scripting application programming interfaces
 Element canvas for 2D drawing, drag-and-drop, document editing,

web storage, …

 Used with JavaScript

http://www.w3.org/TR/html5/

http://www.w3.org/TR/html5/
http://en.wikipedia.org/wiki/File:HTML5_logo_and_wordmark.svg

MicroXML Goals

 Key goals of the community group:
 The syntax of MicroXML is a subset of XML 1.0.

 MicroXML specifies a data model and a mapping from the syntax
to the data model, which is substantially consistent with XML 1.0.

 MicroXML is dramatically simpler than XML regarding its
specification, syntax, and data model.

 MicroXML is designed to complement rather than replace XML,
JSON, and HTML.

 MicroXML supports the needs of documents, in particular mixed
content.

 MicroXML supports Unicode.

 MicroXML supports the use of text editors for authoring.

 MicroXML is able to straightforwardly represent HTML.

 The specification of MicroXML is as self-contained as is practical.

MicroXML
Well-formedness

 XML: parsers are required to halt immediately upon
encountering the first error
 User-unfriendly for users used to HTML

 MicroXML: does not insist on any approach to
handling errors
 Parser should signal error, but can halt, recover, continue,

…

 e.g., parser can add to correct the input, but it
cannot claim that it is a MicroXML input

<para>Hello, I claim to be MicroXML</para>

MicroXML
Basic Constructs

 Supports only one encoding: UTF-8

 Document contains markup and character data
 Elements, attributes, character data

 Namespaces are not supported
 Colons (‘:’) are forbidden in element and attribute names

 xmlns attribute is forbidden

 Whitespaces in attribute values are not normalized

<para>Hi. I'm some form of

 <abbr ref="Extensible Markup Language">XML</abbr></para>

<para>Hi. I'm some form of

 <abbr ref="Extensible Markup

Language">XML</abbr></para>

Two same XML

documents, but different

MicroXML documents

MicroXML
PIs, Comments, Declarations

 PIs are prohibited in MicroXML

 Comments are allowed, but they are not a part of

the data model

 Ignored by applications

 Idea: “comments are for people, not programs”

 XML declarations are not supported

 Entities: only hexadecimal-encoded character

Simply Speaking:

 Elements = structure

 Attributes = metadata

 Content = content

MicroXML Grammar

Documents

 document ::= comments (doctype comments)? element comments

 comments ::= (comment | s)*

 doctype ::= "<!DOCTYPE" s+ name s* ">"

Elements

 element ::= startTag content endTag

 | emptyElementTag

 content ::= (element | comment | dataChar | charRef)*

 startTag ::= '<' name (s+ attribute)* s* '>'

 emptyElementTag ::= '<' name (s+ attribute)* s* '/>'

 endTag ::= '</' name s* '>'

Attributes

 attribute ::= attributeName s* '=' s* attributeValue

 attributeValue ::= '"' ((attributeValueChar – '"') | charRef)* '"'

 | "'" ((attributeValueChar – "'") | charRef)* "'"

 attributeValueChar ::= char – ('<'|'&')

 attributeName ::= "xml:"? name

Data characters

 dataChar ::= char – ('<'|'&'|'>')

Character references

 charRef ::= decCharRef | hexCharRef | namedCharRef

 decCharRef ::= '&#' [0-9]+ ';'

 hexCharRef ::= '&#x' [0-9a-fA-F]+ ';'

 namedCharRef ::= '&' charName ';'

 charName ::= 'amp' | 'lt' | 'gt' | 'quot' | 'apos'

MicroXML Grammar

Comments

 comment ::= '<!--' (commentContentStart commentContentContinue*)? '-->'

Enforce the HTML5 restriction that comments cannot start with '-' or '->'

 commentContentStart ::= (char – ('-'|'>')) | ('-' (char – ('-'|'>')))

As in XML 1.0

 commentContentContinue ::= (char – '-') | ('-' (char – '-'))

Names

 name ::= nameStartChar nameChar*

 nameStartChar ::= [A-Z] | [a-z] | "_" | [#xC0-#xD6] | [#xD8-#xF6] | [#xF8-#x2FF]

 | [#x370-#x37D] | [#x37F-#x1FFF] | [#x200C-#x200D]

 | [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF]

 | [#xF900-#xFDCF] | [#xFDF0-#xFFFD] | [#x10000-#xEFFFF]

 nameChar ::= nameStartChar | [0-9] | "-" | "." | #xB7 | [#x0300-#x036F]

 | [#x203F-#x2040]

White space

 s ::= #x9 | #xA | #xD | #x20

Characters

 char ::= s | ([#x21-#x10FFFF] – forbiddenChar)

 forbiddenChar ::= surrogateChar | #FFFE | #FFFF

 surrogateChar ::= [#xD800-#xDFFF]

MicroXML Example 1

James Clark's

JavaScript parser

(microxml-js)

This parser does

not support DTD

declarations

MicroXML
Future Work

 Many follow-up discussions

 Error recovery

 Micro schemata

 Micro transforms

 More advanced implementations

 Support in various tools

<comment lang="en" date="2012-09-11">

I love µ<!-- MICRO SIGN -->XML!

It's so clean & simple.</comment>

Simple Outline XML (SOX)

 An alternative syntax for XML

 For reading and creating XML content in a text

editor

 To be then easily transformed into correct XML

 Uses indenting to represent the structure of an XML

document

 Eliminates the need for closing tags

 Supports elements, attributes and text

 Comments, PIs, … are not supported

 Java SAX parser and a SAX serialiser is provided

http://www.langdale.com.au/SOX/

http://www.langdale.com.au/SOX/

SOX Grammar

 Each line represents a(n) element/attribute/text
node

element>

 ...

 ...

<element ... >

 ...

</element>

element>

 attribute=value

 ...

<element

 attribute="value"

 ... >

 ...

</element>

element>

 ...

 text node

 ...

<element ...>

 ... text node ...

</element>

SOX XML

SOX Grammar

 Indentation represents element-subelement
relationship

A>

 B>

 C>

 D>

<A>

<C/>

<D/>

SOX Grammar

 Multiline text is quoted with triple quote marks

pre>

 """Text spanning several

 lines forming a single XML

 'so-called' text node"""

<pre>Text spanning several

lines forming a single XML

'so-called' text node</pre>

SOX and White Spaces

 Whitespaces = spaces and tabs

 Whitespace is treated as follows:

 Lines consisting only of whitespace are ignored.

 Indentation is represented by a whitespace at the beginning of a
line

 Tabs = 8 spaces

 In unquoted text:

 Leading and trailing whitespace (other than the indent) is ignored

 Internal span of whitespace is treated as a single space

 A single space is unconditionally appended to the unquoted text
forming an XML text node.

 Can be prevented by quoting

 All other whitespace is ignored

SOX Examples

stylesheet>

 xmlns=http://www.w3.org/1999/XSL/Transform

 version=1.0

 template>

 match=node()

 copy>

 apply-templates>

 select=node()

html>

 head>

 title> My Home Page

 body>

 h1> Contact Details

 p> I can be contacted at

 a> href=mailto:me@myplace.net

 this address

 except when on vacation.

XSLT script

XHTML document

YAML (Ain't Markup Language)

 Originally: Yet Another Markup Language

 Human-readable data serialization format

 Concepts from programming languages
 C, Perl, and Python

 Aim: easy mapping of data types

 Ideas from XML and data format of electronic mail
(RFC0822)
 Hierarchical data representation

 First proposal: 2001

 Sample use-cases: configuration files, debugging
dumps, document headers (similar to, e.g., e-mails),
…

http://yaml.org/

http://yaml.org/

YAML
Design Goals

 YAML is easily readable by humans.

 YAML data is portable between programming
languages.

 YAML matches the native data structures of agile
languages.
 Python, Ruby, PHP, …

 Simplicity, automated unit testing, quickness and lightness
of development, …

 YAML has a consistent model to support generic
tools.

 YAML supports one-pass processing.

 YAML is expressive and extensible.

 YAML is easy to implement and use.

YAML
Basics

 Unicode encoding

 Basic primitives:

 mappings (hashes/dictionaries)

 sequences (arrays/lists)

 scalars (strings/numbers)

 Indentation-based scoping

 Similar to Python

 For easy inspection of the data’s structure

 No support for tabs (must be replaced with spaces)

 Content can be nested

YAML
Collections

 Collections
 Use indentation for scope

 Begin each entry on its own line

 Entries:
 In sequences: begin with “- ”

 In mappings: use “: ”

 Comments begin with “#”

- Mark McGwire

- Sammy Sosa

- Ken Griffey

Sequence of scalars

hr: 65 # Home runs

avg: 0.278 # Batting average

rbi: 147 # Runs Batted In

Mapping scalars to scalars

american:

 – Boston Red Sox

 – Detroit Tigers

 – New York Yankees

national:

 – New York Mets

 – Chicago Cubs

 – Atlanta Braves

Mapping scalars to sequences

-

 name: Mark McGwire

 hr: 65

 avg: 0.278

-

 name: Sammy Sosa

 hr: 63

 avg: 0.288

Sequence of mappings

comment

YAML
Simplifications

 In case of small, simple data
 Sequence: comma-separated list within square brackets

[]

 Mapping: comma separated list within curly braces {}

- [name , hr, avg]

- [Mark McGwire, 65, 0.278]

- [Sammy Sosa , 63, 0.288]

Sequence of sequences

Mark McGwire: {hr: 65, avg: 0.278}

Sammy Sosa: {

 hr: 63,

 avg: 0.288

 }

Mapping of mappings # Products purchased

- item : Super Hoop

 quantity: 1

- item : Basketball

 quantity: 4

- item : Big Shoes

 quantity: 1

Compact nested mapping

 Within a collection, key:
value pairs can start
immediately following the “-”,
“:”, or “?” (see later)

YAML
Structures

 “---” indicate start of a document

 “...” indicate end of a document
 Without starting a new one, closing a stream connection etc.

Ranking of 1998 home runs

- Mark McGwire

- Sammy Sosa

- Ken Griffey

Team ranking

- Chicago Cubs

- St Louis Cardinals

Two documents in a stream

(each with a leading comment)

time: 20:03:20

player: Sammy Sosa

action: strike (miss)

...

time: 20:03:47

player: Sammy Sosa

action: grand slam

...

Play by play feed from a game

a logical part of data

YAML
Anchors and Aliases

 Repeated nodes (objects) are first identified by an
anchor
 Marked with “&”

 Then they can be aliased
 Referenced with “*”

DTD: ID, IDREF(S)

XML Schema: key, keyref

hr:

 – Mark McGwire

 # Following node labeled SS

 – &SS Sammy Sosa

rbi:

 – *SS # Subsequent occurrence

 – Ken Griffey

Node for “Sammy Sosa” appears twice in this document

YAML
Complex Keys

 “? ” indicates a complex mapping key

? – Detroit Tigers

 – Chicago cubs

:

 – 2001-07-23

? [New York Yankees,

 Atlanta Braves]

: [2001-07-02, 2001-08-12,

 2001-08-14]

Mapping between sequences

keys

values

YAML
Strings

 Scalar string content:
 Literal style (indicated by “|”) where all line breaks are

significant

 Folded style (indicated by “>”): each line break is folded to
a space

 Unless it ends an empty or a more-indented line

ASCII Art

--- |

 \//||\/||

 // || ||__

ASCII art, new lines are preserved

--- >

 Mark McGwire's

 year was crippled

 by a knee injury.

In the folded scalars,

newlines become spaces

YAML
Strings

>

 Sammy Sosa completed another

 fine season with great stats.

 63 Home Runs

 0.288 Batting Average

 What a year!

Folded newlines are preserved

for "more indented" and empty lines

name: Mark McGwire

accomplishment: >

 Mark set a major league

 home run record in 1998.

stats: |

 65 Home Runs

 0.278 Batting Average

Indentation determines scope of
“>” and “|”

YAML
Quotation

 YAML’s quotation:
 Plain style (most examples so far)

 Quoted styles
 Double-quoted style – provides escape sequences

 For arbitrary strings

 Single-quoted style – when escaping is not needed
 Only the quote can be escaped when needed

 All can span multiple lines
 Line breaks are always folded

unicode: "Sosa did fine.\u263A"

control: "\b1998\t1999\t2000\n"

hex esc: "\x0d\x0a is \r\n"

single: '"Howdy!" he cried.'

quoted: ' # Not a ''comment''.'

tie-fighter: '|\-*-/|'

Quotation

plain:

 This unquoted scalar

 spans many lines.

quoted: "So does this

 quoted scalar.\n"

Multi-line scalar

e.g., when a key
involves “:”

YAML
Data Types

 Untagged nodes are given a type depending on the
application
 seq, map, str, int, float, null, binary, omap (ordered map),

set, …

canonical: 12345

decimal: +12345

octal: 0o14

hexadecimal: 0xC

Integers

canonical: 1.23015e+3

exponential: 12.3015e+02

fixed: 1230.15

negative infinity: -.inf

not a number: .NaN

Floating point

null:

booleans: [true, false]

string: '012345'

Miscellaneous

canonical: 2001-12-15T02:59:43.1Z

iso8601: 2001-12-14t21:59:43.10-05:00

spaced: 2001-12-14 21:59:43.10 -5

date: 2002-12-14

Timestamps

YAML
Explicit Typing

 Denoted with a tag
 Identifier starting with “!”

 Global tags = URIs (i.e., unique across all applications)
 May be specified in a tag shorthand notation using a handle

 Application-specific local tags may also be used

not-date: !!str 2002-04-28

picture: !!binary |

 R0lGODlhDAAMAIQAAP//9/X

 17unp5WZmZgAAAOfn515eXv

 Pz7Y6OjuDg4J+fn5OTk6enp

 56enmleECcgggoBADs=

application specific tag: !something |

 The semantics of the tag

 above may be different for

 different documents.

Explicit typing

%TAG ! tag:clarkevans.com,2002:

--- !shape

 # Use the ! handle for presenting

 # tag:clarkevans.com,2002:circle

- !circle

 center: &ORIGIN {x: 73, y: 129}

 radius: 7

- !line

 start: *ORIGIN

 finish: { x: 89, y: 102 }

- !label

 start: *ORIGIN

 color: 0xFFEEBB

 text: Pretty vector drawing.

Global tags

YAML
Explicit Typing

Unordered sets are represented as a

mapping where each key is associated

with a null value

--- !!set

? Mark McGwire

? Sammy Sosa

? Ken Griff

Unordered set

Ordered maps are represented as

a sequence of mappings, with

each mapping having one key

--- !!omap

- Mark McGwire: 65

- Sammy Sosa: 63

- Ken Griffy: 58

Ordered mapping

Bigger

Example 1
An Invoice

--- !<tag:clarkevans.com,2002:invoice>

invoice: 34843

date : 2001-01-23

bill-to: &id001

 given : Chris

 family : Dumars

 address:

 lines: |

 458 Walkman Dr.

 Suite #292

 city : Royal Oak

 state : MI

 postal : 48046

ship-to: *id001

product:

 – sku : BL394D

 quantity : 4

 description : Basketball

 price : 450.00

 – sku : BL4438H

 quantity : 1

 description : Super Hoop

 price : 2392.00

tax : 251.42

total: 4443.52

comments:

 Late afternoon is best.

 Backup contact is Nancy

 Billsmer @ 338-4338.

Bigger

Example 2
Log File

Time: 2001-11-23 15:01:42 -5

User: ed

Warning:

 This is an error message

 for the log file

Time: 2001-11-23 15:02:31 -5

User: ed

Warning:

 A slightly different error

 message.

Date: 2001-11-23 15:03:17 -5

User: ed

Fatal:

 Unknown variable "bar"

Stack:

 – file: TopClass.py

 line: 23

 code: |

 x = MoreObject("345\n")

 – file: MoreClass.py

 line: 58

 code: |-

 foo = bar

How YAML Processor Works

 Translating between native data structures and a character
stream

 Dump native data structures → character stream

 Load native data structures character stream

How YAML Processor Works
Dump

 Representing Native Data Structures
 Using sequences, mappings and scalars

 Form a directed graph

 Serializing the Representation Graph
 Representation is serialized to an ordered tree

 Problem:
 Maps are not ordered

 An ordering is imposed

 Nodes may be referenced more than once
 Replaced by anchors and aliases

 Presenting the Serialization Tree
 Presenting the YAML serializations as a character stream in a

human-friendly manner

 Requires presentation details: the amount of indentation, how to
format scalar content, …

Particular strategy depends

on the YAML processor

How YAML Processor Works
Load

 Parsing the Presentation Stream
 Stream of characters → a series of events

 Discards all the details introduced in the presentation
process
 Indentation, formatting, …

 Composing the Representation Graph
 Takes a series of serialization events and produces a

representation graph

 Constructing Native Data Structures
 Based only on the information available in the

representation
 Not on comments, directives, mapping key order, node

styles, scalar content format, indentation levels, …

YAML
Relation to JSON

 JSON:

 Primary design goal: simplicity and universality

 Trivial to generate and parse

 At the cost of reduced human readability

 Lowest common denominator information model

 Can be easily processed by every modern programming environment

 YAML:

 Primary design goal: human readability

 Support for serializing arbitrary native data structures

 Consequence: more difficult to parse/generate

 YAML can be viewed as a natural superset of JSON

 Every JSON file is also a valid YAML file

http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=l_yxMvC_ErjFyM&tbnid=7Of8EuwsGxrmwM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.json.org%2F&ei=AW9lUvqGL4Loswalq4DgCg&bvm=bv.54934254,d.Yms&psig=AFQjCNH4Pg49zrh5bZpJmVI38SgK09-Eig&ust=1382465663870470

YAML
Relation to XML

 No direct correlation

 Ongoing efforts to define standard XML/YAML

mappings

 Results in usage of subsets at both sides

 XML

 Based on SGML → many structural constraints

 A pioneer in many aspects

 YAML:

 Primarily a data serialization language

 Result of lessons learned from XML and other technologies

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=r-fFWBeLXKggnM&tbnid=FbJplR4SdLEXhM:&ved=0CAUQjRw&url=https%3A%2F%2Fblog.apigee.com%2Fdetail%2Fwhy_xml_wont_die_xml_vs._json_for_your_api&ei=KW9lUr29JMPetAbdiYGIAw&bvm=bv.54934254,d.Yms&psig=AFQjCNFP8riYCEbpljwtiskzi5wvUYsm1Q&ust=1382465699003622

YAML
Implementations and Bindings

 C++

 Ruby

 Python

 Java

 Pearl

 C#

 PHP

 JavaScript

 Haskell

 …

http://www.yaml.org/

http://www.yaml.org/

Simple Declarative Language

(SDL)

 An XML alternative

 “Easy way to describe lists, maps, and trees of

typed data in a compact, easy-to-read and type-

aware representation”

 Use-cases: property files, configuration files, logs,

and simple serialization requirements, …

http://sdl4r.rubyforge.org/doc/

http://www.techhui.com/profiles/blogs/the-simple-declarative
http://sdl4r.rubyforge.org/doc/

SDL
Data Types

 Type-aware:
 Unicode string – examples: "hello" or `aloha`

 character (32 bits signed) – example: '/'

 long integer (64 bits signed)

 float (32 bits signed)

 double float (64 bits signed)

 decimal (128+ bits signed)

 boolean – examples: true or false or on or off

 date yyyy/mm/dd – example 2005/12/05

 date time yyyy/mm/dd hh:mm(:ss)(.xxx)(-ZONE)
example – 2005/12/05 05:21:23.532-JST

 time span

 Base64
 null

SDL
Comments

 Four comment types

 // single line comments identical to Java, C, etc.

 Can occur anywhere in a line

 All text after // up to the new line will be ignored.

 # property style comments

 Work the same way as //

 -- separator comments useful for visually dividing content

 Work the same way as //

 Slash star (/*) style multiline comments

 Everything in between is ignored

SDL
Documents

 Made up of tags = data structure with a list of values, a map of
attributes, and (if it has a body) child tags

 Tag contains:

 a name

 If not present, the name “content” is used

 a namespace (optional)

 0 or more values (optional)

 0 or more attributes (optional)

 0 or more children (optional)

a tag having only a name

my_tag

name value pairs

first_name "Akiko"

last_name "Johnson"

height 68 # a tag with a value list

person "Akiko" "Johnson" 68

SDL
Documents

a tag with attributes

person first_name="Akiko" last_name="Johnson" height=68

a tag with values and attributes

person "Akiko" "Johnson" height=60

a tag with attributes using namespaces

person name:first-name="Akiko" name:last-name="Johnson"

a tag with values, attributes, namespaces, and children

my_namespace:person "Akiko" "Johnson" dimensions:height=68 {

 son "Nouhiro" "Johnson"

 daughter "Sabrina" "Johnson" location="Italy" {

 hobbies "swimming" "surfing"

 languages "English" "Italian"

 smoker false

 }

}

anonymous tag examples

files {

 "/folder1/file.txt"

 "/file2.txt"

}

SDL
String Literals

 Within double quotes (“”)

 Double quotes, backslash characters (\), and

new lines (\n) must be escaped

 Within backquotes (``)

 Not necessary (or possible) to escape any type of

character within a backquote string literal

file "C:\\folder\\file.txt"

say "I said \"something\""

line "this is a \

 long string of text"

file `C:\folder\file.txt`

say `I said "something"`

regex `\w+\.suite\(\)`

long_line `This is

 a long line

 fee fi fo fum`

SDL
Binary Literals

 Base64 characters enclosed in square
brackets []

key [sdf789GSfsb2+3324sf2] name="my key"

image [

 R3df789GSfsb2edfSFSDF

 uikuikk2349GSfsb2edfS

 vFSDFR3df789GSfsb2edf

]

upload from="ikayzo.com" data=[

 R3df789GSfsb2edfSFSDF

 uikuikk2349GSfsb2edfS

 vFSDFR3df789GSfsb2edf

]

SDL
DateTime Literals

 Date, time span, and date/time literals

 If a timezone is not specified, the locale

timezone is used

date 2005/12/05

hours 03:00:00

minutes 00:12:00

seconds 00:00:42

short_time 00:12:32.423 # 12 minutes, 32 seconds, 423 milliseconds

long_time 30d:15:23:04.023 # 30 days, 15 hours, 23 mins, 4 secs, 23 millis

before -00:02:30 # 2 hours and 30 minutes ago

in_japan 2005/12/05 14:12:23.345-JST

SDL and Ruby

 SDL4R = SDL parser for Ruby

http://sdl4r.rubyforge.org/

require 'fileutils'

require 'sdl4r'

root = SDL4R::Tag.new("root") do

 new_child("server") do

 set_attribute("port", 1234)

 end

end

File.open("my_directory/my_config.sdl", "w") { |io|

 io.write(root.children_to_string)

}

server port=1234

root = Tag.new("root").read(Pathname.new("values.sdl"))

size = root.child("size").value

smoker = root.child("smoker").value

size 4

smoker false

http://sdl4r.rubyforge.org/

Base64

 Binary-to-text encoding

 Represent binary data in an ASCII string format

 e.g., for data transfer

 To ensure that the data remains intact

 First task: choice of 64 encoding characters

 A subset common to most encodings

 Printable

 e.g., MIME's Base64 implementation uses A–Z, a–z,

and 0–9 for the first 62 values

 Other versions differ in the last two characters

Base64
Example

Man is distinguished, not only by his reason, but by this

singular passion fromother animals, which is a lust of the

mind, that by a perseverance of delightin the continued and

indefatigable generation of knowledge, exceeds the

shortvehemence of any carnal pleasure.

TWFuIGlzIGRpc3Rpbmd1aXNoZWQsIG5vdCBvbmx5IGJ5IGhpcyByZWFzb24s

IGJ1dCBieSB0aGlzIHNpbmd1bGFyIHBhc3Npb24gZnJvbSBvdGhlciBhbmlt

YWxzLCB3aGljaCBpcyBhIGx1c3Qgb2YgdGhlIG1pbmQsIHRoYXQgYnkgYSBw

ZXJzZXZlcmFuY2Ugb2YgZGVsaWdodCBpbiB0aGUgY29udGludWVkIGFuZCBp

bmRlZmF0aWdhYmxlIGdlbmVyYXRpb24gb2Yga25vd2xlZGdlLCBleGNlZWRz

IHRoZSBzaG9ydCB2ZWhlbWVuY2Ugb2YgYW55IGNhcm5hbCBwbGVhc3VyZS4=

 Approx. 33% longer

Base64
Example

 In ASCII M, a, n are stored as 77, 97, 110

 8-bit binary values: 01001101, 01100001, 01101110

 Joined together: 010011010110000101101110

 Groups of 6 bits are converted into individual
numbers from left to right
 26 = 64 different binary values

 The input is extended with 0s if necessary

Base64 Index Table

References

 MicroXML: http://www.w3.org/community/microxml/

 Introducing MicroXML:
http://archive.xmlprague.cz/2013/presentations/Intro
ducing_MicroXML.pdf

 SOX: http://www.langdale.com.au/SOX/

 YAML: http://yaml.org/

 YAML specification:
http://www.yaml.org/spec/1.2/spec.html

 Simple Declarative Language:
http://sdl4r.rubyforge.org/

 http://sdl4r.rubyforge.org/doc/

http://www.w3.org/community/microxml/
http://archive.xmlprague.cz/2013/presentations/Introducing_MicroXML.pdf
http://archive.xmlprague.cz/2013/presentations/Introducing_MicroXML.pdf
http://www.langdale.com.au/SOX/
http://yaml.org/
http://www.yaml.org/spec/1.2/spec.html
http://sdl4r.rubyforge.org/
http://sdl4r.rubyforge.org/doc/

