NPRGO039

Advanced Aspects and New
Trends in XML (and Related)
Technologies

RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

Lecture 3. XML Alternatives

http://www.ksi.mff.cuni.cz/~holubova/NPRG039/

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NPRG039/

XML Alternatives

OGDL

DL
Boulder
ONX 2

separate lecture

SMEL
Property Lists
ATerms

LMNL

JITTs
ConsiceXML
SML

TexMecs
Waterken Doc
UBF

Xqueeze

MicroXML

e Motivation: XML is difficult to understand and process

Various historical reasons: namespaces, complex structures of
XPath, XQuery, XSLT which are often not exploited, ...

HTMLS5: better combined with JISON (simplicity)

e MicroXML = simplification of XML compatible with earlier
versions

Emerged from discussions of issues of XML

Open, publicly archived, unmoderated list supporting XML implementation

and development
XML-DEV archives are publicly accessible compare W3C

Under W3C specifications
Start of specification: December 2010
First specification draft: October 2012

http://www.w3.org/community/microxml/
http://www.xml.org/xml-dev
http://www.xml.org/xml-dev
http://www.xml.org/xml-dev

Note: What is HTML5?

e Status: W3C Recommendation
e News:

HTML

5|

Support for the latest multimedia
<video>, <audio>, <canvas>
Integration of SVG and MathML
Replaces generic <object>
New elements/attributes to enrich the semantic content of
documents
<section>,<article>, <header>
Some elements, such as <a>, <cite> and <menu> have been
changed, redefined or standardized
Scripting application programming interfaces

Element canvas for 2D drawing, drag-and-drop, document editing,
web storage, ...

Used with JavaScript

http://www.w3.org/TR/html5/
http://en.wikipedia.org/wiki/File:HTML5_logo_and_wordmark.svg

000
000
o0
[
MicroXML Goals
e Key goals of the community group:
The of MicroXML is a 1.0.
MicroXML specifies a and a mapping from the syntax
to the data model, which is substantially 1.0.
MicroXML is dramatically regarding its
specification, syntax, and data model.
MicroXML is designed to rather than replace

MicroXML supports the needs of documents, in particular

MicroXML supports :

MicroXML supports the for authoring.
MicroXML is straightforwardly

The of MicroXML

MicroXML

Well-formedness

e XML.: parsers are required to halt immediately upon
encountering the first error

User-unfriendly for users used to HTML

e MicroXML: does not insist on any approach to
handling errors

Parser should signal error, but can halt, recover, continue,

<para>Hello, I claim to be MicroXML</para>

e.g., parser can add to correct the input, but it
cannot claim that it is a MicroXML input

MicroXML

Basic Constructs

e Supports only one encoding: UTF-8

e Document contains and
Elements, attributes, character data

e Namespaces are not supported
Colons (:) are forbidden in element and attribute names

xmlns attribute is forbidden
e \Whitespaces in attribute values are not normalized

<para>Hi. I'm some form of
<abbr ref="Extensible Markup Language'">XML</abbr></para>

<para>Hi. I'm some form of

<abbr ref="Extensible Markup \Qiiﬂ Two same XML

Language">XML</abbr></para> documents, but different
MicroXML documents

MicroXML

Pls, Comments, Declarations

e Pls are prohibited in MicroXML

e Comments are allowed, but they are not a part of
the data model
Ignored by applications
ldea: “comments are for people, not programs”

e XML declarations are not supported
e Entities: only hexadecimal-encoded character

Simply Speaking:

e Elements = structure
e Attributes = metadata
e Content = content

MicroXML Grammar

Documents

document ::= comments (doctype comments)? element comments
comments ::= (comment | s)*
doctype = "<!DOCTYPE" s+ name s* ">"

Elements
element = startTag content endTag

| emptyElementTag

content = (element | comment | dataChar | charRef) *
startTag ::= '<' name (s+ attribute)* s* '>'
emptyElementTag ::= '<' name (s+ attribute)* s* '/>'
endTag ::= '</' name s* '>'

Attributes
attribute ::= attributeName s* '=' s* attributeValue
attributeValue ::= '"' ((attributeValueChar - '"') | charRef) *

| "'" ((attributeValueChar - "'") | charRef) *

attributeValueChar ::= char - ('<'|'&")
attributeName ::= "xml:"? name

Data characters
dataChar ::= char - ('<'|'&'|'"'>")

Character references
charRef ::= decCharRef | hexCharRef | namedCharRef
decCharRef ::= '&#' [0-9]+ ';'
hexCharRef ::= '&#x' [0-9a-fA-F]+ ';'
namedCharRef ::= '&' charName ';'

charName ::= 'amp' | 'lt' | 'gt' | 'quot' | 'apos'

vy

mrw

MicroXML Grammar

Comments

comment ::= '<!--' (commentContentStart commentContentContinue*)? '-->'
Enforce the HTML5 restriction that comments cannot start with '-' or '->'
commentContentStart ::= (char - ('=-'|'>")) | ('-'" (char —- ('=-"|'>")))
As in XML 1.0
commentContentContinue ::= (char - '-') | ('-' (char - '-"'))
Names
name ::= nameStartChar nameChar*
nameStartChar ::= [A-Z] | [a-z] | "_" | [#xCO-#xD6] | [#xD8-#xF6] | [#xF8-#x2FF]

| [#x370-#x37D] | [#x37F-#x1FFF] | [#x200C-#x200D]
| [#x2070-#x218F] | [#x2C00-#x2FEF] | [#x3001-#xD7FF]
| [#xF900-#xFDCF] | [#XFDFO-#xFFFD] | [#x10000-#xXEFFFF]
nameChar ::= nameStartChar | [0-9] | "-" | "." | #xB7 | [#x0300-#x036F]
| [#x203F-#x2040]
White space

s ::= #x9 | #xA | #xD | #x20

Characters
char ::= s | ([#x21-#x10FFFF] - forbiddenChar)
forbiddenChar ::= surrogateChar | #FFFE | #FFFF

surrogateChar ::= [#xD800-#xDFFF]

MicroXML Example 1
bee ~ MicroXML Parser Test Micme:L.sarserTeSt ‘a.‘

(d) @ file:

—

MicroXML Parser Test

<Rtml lang-en'>
<!{-- A comment -->
<head>
<title>Welcome page</title>
</head>
<body>
<p>wWelcome to 1BM

Case
Correct

JSON data model

("html”,{"lang":"en"},("\n \n ",("head",{},["\n ", ("title",{},["Welcome page”]],"\n

James Clark's
JavasScript parser
(microxml-js)

000
e 0o MicroXML Parser Test 1) 0000
=N ' 00006
J3 MicroXML Parser Test 1 + 0000
@ file:///Users/uche/src/mici = = — C | 00060
S : ‘ (X X
ting Started |y Latest Headlines >» |54 Bookmarks o0
MicroXML Parser Test
<para>Hello, I claim to be MicroXML</para>
A .
(el MicroXML Parser Test 1 »
Parse error: name "para” in end-tag does not match name “strong" in start-tag. 1 | y
JSON data model

MicroXML Parser Test

{<IBOCT'BE heml>

himi lang="en">
] :l;; A comment -->
This parser does g7 R

</head>

not support DTD <body>

<p>Welcome to IBM

declarations developeriorks.</p>

Parse error: expected *-".
JSON data model

MicroXML

Future Work

e Many follow-up discussions
Error recovery
Micro schemata
Micro transforms

e More advanced implementations
e Support in various tools

<comment lang="en" date="2012-09-11">
I love µ<!-- MICRO SIGN -->XML!

It's so clean & simple.</comment>

Simple Outline XML (SOX)

e An alternative syntax for XML

e For reading and creating XML content in a text
editor

To be then easily transformed into correct XML

e Uses to represent the structure of an XML
document

Eliminates the need for closing tags

e Supports elements, attributes and text
Comments, Pls, ... are not supported

e Java SAX parser and a SAX serialiser is provided

http://www.langdale.com.au/SOX/

SOX Grammar

e Each line represents a(n) element/attribute/text

node

SOX

element> <element ... >
</element>
element> <element
attribute=value attribute="value"
. >
</element>
element> <element ...>

text node

. text node ...

</element>

XML

SOX Grammar

e Indentation represents element-subelement
relationship

A>
B>

D>

c>

<C/>

<D/>

000
000
o0
[

SOX Grammar

e Multiline text is quoted with triple quote marks

pre> <pre>Text spanning several
"nnText spanning several lines forming a single XML

lines forming a single XML 'so-called' text node</pre>

'so-called' text node"""

SOX and White Spaces

e Whitespaces = spaces and tabs
e Whitespace is treated as follows:
Lines consisting only of whitespace are ignored.
Indentation is represented by a whitespace at the beginning of a
line
Tabs = 8 spaces
In unquoted text:
Leading and trailing whitespace (other than the indent) is ignored
Internal span of whitespace is treated as a single space

A single space is unconditionally appended to the unguoted text
forming an XML text node.

Can be prevented by quoting
All other whitespace is ignored

SOX Examples

stylesheet>
xmlns=http://www.w3.0rg/1999/XSL/Transform
version=1.0
template>
match=node ()
copy>
apply-templates>
select=node ()

XSLT script

html>
head>
title> My Home Page
body>
hl> Contact Details

this address

XHTML document except when on vacation.

p> I can be contacted at
a> href=mailto:me@myplace.net

YAML (Ain't Markup Language)

e Originally: Yet Another Viarkup Language
e Human-readable data serialization format
e Concepts from programming languages

C, Perl, and Python
Aim: easy mapping of data types

e Ildeas from XML and data format of electronic mail
(RFC0822)

Hierarchical data representation
e First proposal: 2001

e Sample use-cases: configuration files, debugging
dumps, document headers (similar to, e.g., e-mails),

http://yaml.org/

YAML

Design Goals

e YAML is by humans.
e YAML data is between programming
languages.

e YAML matches the native

Python, Ruby, PHP, ...

Simplicity, automated unit testing, quickness and lightness
of development, ...

e YAML has a consistent model to support generic
tools.

e YAML supports one-pass processing.
e YAML is expressive and extensible.
e YAML Is

YAML

Basics

e Unicode encoding
e Basic primitives:
mappings (hashes/dictionaries)

sequences (arrays/lists)
scalars (strings/numbers)

e Indentation-based scoping
Similar to Python
For easy inspection of the data’s structure
No support for tabs (must be replaced with spaces)

e Content can be nested

YAML

Collections

e Collections
Use indentation for scope
Begin each entry on its own line
e Entries:
In sequences: begin with “- ~
In mappings: use “: ”
e Comments begin with “#”

american:

— Boston Red Sox

— Detroit Tigers

— New York Yankees
national:

— New York Mets

— Chicago Cubs

— Atlanta Braves

Mapping scalars to sequences

o0
o0
o0
[
- Mark McGwire
- Sammy Sosa
- Ken Griffey
Sequence of scalars
comment
/
V
hr: 65 # Home runs

avg: 0.278 # Batting average
rbi: 147 # Runs Batted In

Mapping scalars to scalars

name: Mark McGwire
hr: 65
avg: 0.278

name: Sammy Sosa
hr: 63
avg: 0.288

Sequence of mappings

YAML

Simplifications

e In case of small, simple data
Sequence: comma-separated list within square brackets

[]

Mapping: comma separated list within curly braces {}

[name , hr, avg]
[Mark McGwire, 65, 0.278]
[Sammy Sosa , 63, 0.288]

Sequence of sequences

Mark McGwire: {hr: 65, avg: 0.278}
Sammy Sosa: {
hr: 63,
avg: 0.288
}

#

Products purchased
item : Super Hoop
quantity: 1

item : Basketball
quantity: 4

item : Big Shoes
quantity: 1

Compact nested mapping

Mapping of mappings

e Within a collection, kevy:

value pairs can start
iImmediately following the “-",
“:7, or 2?7 (see later)

YAML

Structures

a logical part of data
o =
e “——-"Indicate start of a document

e “...” Indicate end of a document
Without starting a new one, closing a stream connection etc.

Ranking of 1998 home runs -—=

=== time: 20:03:20

- Mark McGwire player: Sammy Sosa

- Sammy Sosa action: strike (miss)
- Ken Griffey

Team ranking time: 20:03:47
-—= player: Sammy Sosa
- Chicago Cubs action: grand slam

- St Louis Cardinals

Two documents in a stream Play by play feed from a game
(each with a leading comment)

YAML

Anchors and Aliases

e Repeated nodes (objects) are first identified by an
anchor

Marked with “&”

e Then they can be aliased DTD: ID, IDREF(S)
: XML Schema: key, keyref
Referenced with “*”

— Mark McGwire
Following node labeled SS
— &SS Sammy Sosa

- *SS # Subsequent occurrence
— Ken Griffey

Node for “Sammy Sosa” appears twice in this document

YAML

Complex Keys

e “? ” Indicates a complex mapping key

? Detroit Tigers
— Chicago cubs
ooz,
values
ew York Yankees,

Atlan i I-iill.'—
2001-07-02, 2001-08-12,

001-08-14]

Mapping between sequences

YAML

Strings

e Scalar string content:
Literal style (indicated by * |) where all line breaks are
significant
Folded style (indicated by “>"): each line break is folded to
a space
Unless it ends an empty or a more-indented line

ASCII Art -—= >

=== | Mark McGwire's
\VVARRVAR year was crippled
/7 T by a knee injury.

ASCII art, new lines are preserved In the folded scalars,
newlines become spaces

YAML

Strings

>
Sammy Sosa completed another

fine season with great stats.

63 Home Runs
0.288 Batting Average

What a year!

name: Mark McGwire
accomplishment: >

Mark set a major league

home run record in 1998.
stats: |

65 Home Runs

0.278 Batting Average

Folded newlines are preserved
for "more indented" and empty lines

Indentation determines scope of
\\>// and A\ | ”

YAML

Quotation

e YAML'’s quotation:
Plain style (most examples so far) ‘ e.g., when a key

Quoted styles — Involves ™.~

Double-quoted style — provides escape sequences
For arbitrary strings

Single-quoted style — when escaping is not needed
Only the quote can be escaped when needed

e All can span multiple lines
Line breaks are always folded

unicode: "Sosa did fine.\u263A" plain:
control: "\b1998\t1999\t2000\n" This unquoted scalar
hex esc: "\x0d\x0a is \r\n" spans many lines.

single: '"Howdy!'" he cried.' quoted: "So does this
quoted: ' # Not a ''comment''.' quoted scalar.\n"

tie-fighter: '|\-*-/|'

Multi-line scalar

Quotation

YAML

Data Types

e Untagged nodes are given a type depending on the

application

seq, map, str, int, float, null, binary, omap (ordered map),

set, ...

canonical: 12345
decimal: +12345
octal: 0Ool4
hexadecimal: 0xC

Integers

canonical: 1.23015e+3
exponential: 12.3015e+02
fixed: 1230.15

negative infinity: -.inf
not a number: .NaN

Floating point

null:
booleans: [true, false]
string: '012345'

Miscellaneous

canonical: 2001-12-15T02:59:43.12Z
iso8601: 2001-12-14t21:59:43.10-05:00
spaced: 2001-12-14 21:59:43.10 -5
date: 2002-12-14

Timestamps

YAML

Explicit Typing

e Denoted with a tag
|dentifier starting with ™!~

o = URIs (i.e., unique across all applications)
May be specified in a tag shorthand notation using a handle

e Application-specific

not-date: !!str 2002-04-28

picture: !!'binary |
RO1GOD1hDAAMAIQAAP//9/X
17unp5WZmZgAAAOfn515eXv
Pz7Y60juDg4J+£fn50Tk6enp
56enmleECcgggoBADs=

application specific tag:

The semantics of the tag
above may be different for
different documents.

!something |

may also be used

Explicit typing

$TAG !

tag:clarkevans.com,2002:
-- !shape

Use the ! handle for presenting
tag:clarkevans.com,2002:circle
lcircle

center: &ORIGIN {x: 73, y: 129}
radius: 7

'line

start: *ORIGIN

finish: { x: 89, y: 102 }
!'label

start: *ORIGIN

color: OxFFEEBB

text: Pretty vector drawing.

Global tags

YAML

Explicit Typing

with a null value
--- llset

? Mark McGwire

? Sammy Sosa

? Ken Griff

Unordered sets are represented as a
mapping where each key is associated

Unordered set

Ordered maps are represented as

a sequence of mappings, with
each mapping having one key
-—-- !'!omap

- Mark McGwire: 65

- Sammy Sosa: 63

- Ken Griffy: 58

Ordered mapping

Bigger
Example 1

An Invoice

--- I<tag:clarkevans.com,2002:invoice>

invoice: 34843
date : 2001-01-23
bill-to: &id001
given : Chris
family : Dumars
address:
lines: |
458 Walkman Dr.
Suite #292
city : Royal Oak
state : MI
postal : 48046
ship-to: *id001

product:

- sku : BL394D
quantity : 4
description : Basketball
price : 450.00

- sku : BL4438H
quantity 1
description : Super Hoop
price : 2392.00

tax : 251.42

total: 4443.52

comments:
Late afternoon is best.
Backup contact is Nancy
Billsmer @ 338-4338.

Bigger

Example 2
Log File

Time: 2001-11-23 15:01:42 -5
User: ed
Warning:
This is an error message
for the log file
Time: 2001-11-23 15:02:31 -5
User: ed
Warning:
A slightly different error
message.

Date: 2001-11-23 15:03:17 -5
User: ed
Fatal:
Unknown variable "bar"
Stack:
— file: TopClass.py
line: 23
code: |
x = MoreObject("345\n")
— file: MoreClass.py
line: 58
code: |-
foo = bar

How YAML Processor Works

e Translating between native data structures and a character
stream

e native data structures — character stream
o native data structures < character stream
Application YAML
. Dump -
/Rem:_esent \ / Serialize \ / Present \
Mative Representation | [Serialization ' [Presentation
| (Data Structure) (Mode Graph) _ . (Event Tree) | | (Character Stream)
opague . taags, anchaors, styles, comments,
program | mapping/segquence/scalar, aliases, directives, spacing,
data canonical string values key arder formatted string values, ...
\ Cun;tl'uct / \ Compose / \ Parse '/
-+ Load

How YAML Processor Works

Dump

e Representing Native Data Structures
Using sequences, mappings and scalars
Form a directed graph

e Serializing the Representation Graph
Representation is serialized to an

Problem: :
Particular strategy depends

Maps are not ordered
- Anordering is imposed\ on the YAML processor

Nodes may be referenced more than once
Replaced by anchors and aliases
e Presenting the Serialization Tree
Presenting the YAML serializations as a character stream in a
human-friendly manner
Requires presentation details: the amount of indentation, how to
format scalar content, ...

How YAML Processor Works

Load

e Parsing the Presentation Stream
Stream of characters — a series of events

Discards all the detalls introduced in the presentation
process

Indentation, formatting, ...

e Composing the Representation Graph

Takes a series of serialization events and produces a
representation graph

e Constructing Native Data Structures

Based only on the information available in the
representation

Not on comments, directives, mapping key order, node
styles, scalar content format, indentation levels, ...

000

0000

X XX J
YAML i
Relation to JSON

e JSON:
e Primary design goal: simplicity and universality
Trivial to generate and parse
At the cost of reduced human readability

e Lowest common denominator information model
Can be easily processed by every modern programming environment

e YAML:
e Primary design goal: human readability
e Support for serializing arbitrary native data structures
o Consequence: more difficult to parse/generate

e YAML can be viewed as a natural superset of JSON
e Every JSON file is also a valid YAML file

http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=l_yxMvC_ErjFyM&tbnid=7Of8EuwsGxrmwM:&ved=0CAUQjRw&url=http%3A%2F%2Fwww.json.org%2F&ei=AW9lUvqGL4Loswalq4DgCg&bvm=bv.54934254,d.Yms&psig=AFQjCNH4Pg49zrh5bZpJmVI38SgK09-Eig&ust=1382465663870470

YAML

Relation to XML

e No direct correlation
e Ongoing efforts to define standard XML/YAML
mappings
Results in usage of subsets at both sides

e XML

Based on SGML — many structural constraints
A pioneer in many aspects

e YAML:

Primarily a data serialization language
Result of lessons learned from XML and other technologies

<?2xml?>

https://www.google.cz/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=r-fFWBeLXKggnM&tbnid=FbJplR4SdLEXhM:&ved=0CAUQjRw&url=https%3A%2F%2Fblog.apigee.com%2Fdetail%2Fwhy_xml_wont_die_xml_vs._json_for_your_api&ei=KW9lUr29JMPetAbdiYGIAw&bvm=bv.54934254,d.Yms&psig=AFQjCNFP8riYCEbpljwtiskzi5wvUYsm1Q&ust=1382465699003622

YAML

Implementations and Bindings

C++

Ruby
Python
Java
Pearl

C#

PHP
JavaScript
Haskell

http://www.yaml.org/

Simple Declarative Language
(SDL)

e An XML alternative

e “Easy way to describe lists, maps, and trees of
typed data in a compact, easy-to-read and type-
aware representation”

e Use-cases: property files, configuration files, logs,
and simple serialization requirements, ...

http://www.techhui.com/profiles/blogs/the-simple-declarative
http://sdl4r.rubyforge.org/doc/

SDL

Data Types

e T[ype-aware:
Unicode string — examples: "hello" or "aloha’
character (32 bits signed) — example: '/
long integer (64 bits sighed)
float (32 bits signed)
double float (64 bits signed)
decimal (128+ bits signed)
boolean — examples: true or false Or on Or of £
date yyyy/mm/dd — example 2005/12/05

date time yyyy/mm/dd hh:mm(:ss) (.xxx) (-ZONE)
example —2005/12/05 05:21:23.532-JST

time span
Base64
null

SDL

Comments

e Four comment types

// single line comments identical to Java, C, etc.
Can occur anywhere in a line
All text after // up to the new line will be ignored.

property style comments
Work the same way as //

—— separator comments useful for visually dividing content
Work the same way as //

Slash star (/ *) style multiline comments
Everything in between is ignored

000
000
o0
SDL °
Documents
e Made up of = data structure with a list of values, a map of
attributes, and (if it has a body) child tags
e Tag contains:
a hame
If not present, the name “content” is used
a namespace (optional)
O or more values (optional)
O or more attributes (optional)
O or more children (optional)
name value pairs # a tag having only a name
first name "Akiko" my tag
last name "Johnson"
height 68 # a tag with a value list
person "Akiko" "Johnson" 68

000
000
o0
SDL -
Documents
a tag with attributes
person first name="Akiko" last name="Johnson" height=68
a tag with values and attributes
person "Akiko" "Johnson" height=60
a tag with attributes using namespaces
person name:first-name="Akiko" name:last-name="Johnson"
a tag with values, attributes, namespaces, and children
my namespace:person "Akiko" "Johnson" dimensions:height=68 {
son "Nouhiro" "Johnson"
daughter "Sabrina" "Johnson" location="Italy" ({
hobbies "swimming" "surfing"
languages "English" "Italian"
smoker false # anonymous tag examples
} files {
} "/folderl/file. txt"

"/file2.txt"

SDL

String Literals

e Within double quotes (™)

Double quotes, backslash characters (\), and
new lines (\n) must be escaped

e Within backquotes (")

Not necessary (or possible) to escape any type of
character within a backgquote string literal

file "C:\\folder\\file. txt" file "C:\folder\file.txt"
say "I said \"something\"" say I said "something"®
regex ~\w+\.suite\ (\)°

line "this is a \
long string of text" long line "This is

a long line

fee fi fo fum’

SDL

Binary Literals

e Base64 characters enclosed in square
brackets []

key [sdf789GSfsb2+3324sf2] name="my key"

image [
R3df789GSfsb2edfSFSDF
uikuikk2349GSfsb2edfsS
vFSDFR3df789GSfsb2edf

]

upload from="ikayzo.com" data=[
R3df789GSfsb2edfSFSDF
uikuikk2349GSfsb2edfsS
vFSDFR3df789GSfsb2edf

SDL

DateTime Literals

e Date, time span, and date/time literals

e |f a timezone Is not specified, the locale
timezone is used

date 2005/12/05

hours 03:00:00

minutes 00:12:00

seconds 00:00:42

short time 00:12:32.423 # 12 minutes, 32 seconds, 423 milliseconds

long time 30d:15:23:04.023 # 30 days, 15 hours, 23 mins, 4 secs, 23 millis
before -00:02:30 # 2 hours and 30 minutes ago

in japan 2005/12/05 14:12:23.345-JST

SDL and Ruby
e SDL4R = SDL parser for Ruby
size 4 [::> root = Tag.new('"root") .read(Pathname.new("values.sdl"))

smoker false size = root.child("size") .value

smoker = root.child ("smoker") .value

require 'fileutils'
require 'sdl4r'

root = SDL4R::Tag.new("root") do
new_child("server") do
set_attribute("port", 1234)
end
end

File.open("my_directory/my_config.sdl", "w") { |io]

io.write(root.children to_string)

}

—

server port=1234

http://sdl4r.rubyforge.org/

Baseo64

e Binary-to-text encoding
Represent binary data in an ASCII string format
e.g., for data transfer
To ensure that the data remains intact

e First task: choice of 64 encoding characters
A subset common to most encodings
Printable

e e.9., MIME's Base64 implementation uses A—Z, a-z,
and 0-9 for the first 62 values
Other versions differ in the last two characters

Baseo64

Example

Man is distinguished, not only by his reason, but by this
singular passion fromother animals, which is a lust of the
mind, that by a perseverance of delightin the continued and
indefatigable generation of knowledge, exceeds the
shortvehemence of any carnal pleasure.

TWFuIGlzIGRpc3RpbmdlaXNoZWQsIG5vdCBvbmx5IGJI5IGhpcyByZWFzb24s
IGJ1dCBieSB0aGlzIHNpbmdlbGFyIHBhc3Npb24gZnJvbSBvdGhlciBhbmlt
YWxzLCB3aGljaCBpcyBhIGx1lc3Qgb2YgdGhlIGlpbmQsIHRoYXQgYnkgYSBw
ZXJzZXZ1cmFuY2Ugb2YgZGVsaWdodCBpbiB0aGUgY29udGludWVkIGFuZCBp
bmR1ZmF0aWdhYmx1IGdlbmVyYXRpb24gb2Yga25vd2x1Z2Gd1LCBleGN1ZWRz
IHRO0ZSBzaG9ydCB2ZWhlbWVuY2Ugb2YgYW55IGNhcm5S5hbCBwbGVhcec3VyZS4=

e Approx. 33% longer

000
0000
Base64 1
Example :
e In ASCII M, a, n are storedas 77, 97, 110
e 8-bit binary values: 01001101, 01100001, 01101110
e Joined together: 010011010110000101101110
e Groups of 6 bits are converted into individual

numbers from left to right
o 2% =64 different binary values

e The input is extended with Os if necessary

Text
content

ASCII 77 (Ox4d) 97 (0x61) 110 (Ox6e)

M a n

Bit
pattern

Index 19 22) 46

0|1{0|0(1]|1({0|1|0|1|1|0|0|0|0|1]|0|1|1|0(1|1|1|0

Baseb64-
encoded

W F u

Base64 Index Table

Value Char Value Char| Value Char 'Value Char
0 2 16 Q 32 g 45 W
1 B 17 R 33 45 X
2 C 18 s 34 i 50 v
3 D 19 T 32] 21 z
4 E 20 U 36 k 52 0
] F 21 v 37 1 53 1
6 G 22 W 38 | m 54 2
7 H 23 X 39 n 25 3
] I 24 ¥ 40 o 56 4
9 J 25 A 41 P 57 5

10 K 26 a 42 q 58 €
11 L 27 b 43 r 59 7
12 M 28 c 44 s 60 8
13 N 29 d 45 t 61 g
14 0 30 = 46 u 62 +
15 = 31 £ 47 v 63 /

References ece

e MicroXML: hitp://www.w3.org/community/microxml/

e Introducing MicroXML.:
http://archive.xmlprague.cz/2013/presentations/Intro
ducing MicroXML.pdf

e SOX: http://www.langdale.com.au/SOX/
e YAML: http://yvam!.org/

e YAML specification:
http://www.yaml.org/spec/1.2/spec.html

e Simple Declarative Language:
http://sdl4r.rubyforge.org/

http://sdl4r.rubyforge.org/doc/

http://www.w3.org/community/microxml/
http://archive.xmlprague.cz/2013/presentations/Introducing_MicroXML.pdf
http://archive.xmlprague.cz/2013/presentations/Introducing_MicroXML.pdf
http://www.langdale.com.au/SOX/
http://yaml.org/
http://www.yaml.org/spec/1.2/spec.html
http://sdl4r.rubyforge.org/
http://sdl4r.rubyforge.org/doc/

