
Advanced Aspects and New

Trends in XML (and Related)

Technologies

RNDr. Irena Holubová, Ph.D.

holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NPRG039/

NPRG039

Lecture 1. Modelling and generating of XML data, XML

benchmarking

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NPRG039/

Problem: How to

Design/Create XML Data?

 We need: XML schema + XML data
 Design of structure + creation of instances

 Simple structures
 XML data editor (highlighting, hints, well-

formedness/validity checking, …)

 Complex structures
 Modelling of XML data

 Instances
 Created by applications themselves

 XML data generators – testing purposes

 XML benchmarking

Design of XML Data

Structure of XML Data

 XML schemas
 DTD, XML Schema, RELAX NG, Schematron

 Specification of structure of XML documents

 What elements and attributes can be used

 Problems
 Complex to learn

 Too technical for non-technical people

 Dealing with technical details (special syntax, well-
formedness, …)

 Absence of semantics

 We describe just structure + integrity contraints

XML Schema Languages

 Real world

 Different groups of users  various types of XML

documents ("XML views") in system

 Data

<<XML schema>>

PurchaseRequest

<<XML schema>>

PurchaseResponse

<<XML schema>>

Catalogue

<<XML schema>>

SalesReport

XML View of Data

 One real-world concept (e.g., customer or

product) is represented in various XML

formats in different ways

 Description distributed across various XML

schemas

 Redundancy & incompleteness

 Lack of complete & non-redundant

description

Example: Standard XML

Schema Formats

 HL7 (Health Level Seven)

 Exchanging medical records

 OASIS UBL (Universal Business Language)

 Exchanging business data

 ISO20022

 Exchanging financial data

 opentravel.org

 Data in travel business

 Google AdWords Web Services

 Advertising via Google

 Common characteristics:

 Hundreds of XML schemas

 Related, overlapping

 Changed regularly

http://www.hl7.org/index.cfm
https://www.oasis-open.org/
http://www.opentravel.org/Default.aspx

Visualization of XML Schemas

 Altova XML Spy

 Stylus Studio

 Oxygen XML Editor

 …

 Visualization of each construct of an XML

schema language

 Usually XML Schema

http://www.altova.com/download/2013/default.asp?product=x&edition=e&os=any&server=us
http://www.oxygenxml.com/

Visualization of XML Schemas

 Easier to understand

XML schemas

 Just visualization –

does not provide

complete & non-

redundant

description

Solution: Model-Driven

Architecture (MDA)

 Considers description of data at various abstraction

levels

 PIM (Platform-Independent Model)

 Description of data independent of any data model and

particular user view

 We describe entities, their attributes and mutual

associations

 PSM (Platform-Specific Model)

 Description of data from particular user view

 Description of implementation in particular logical data

model

 Relational, XML, object, graph, …

PIM Diagram

 class P...

Contract

- referenceNumber

- title

- description

- mainObject

- additionalObject [0..*]

- startDate

- endDate

- estimatedPrice

- agreedPrice

- actualPrice

- numberOfTenders

Organization

- legalName

- officialNumber

ItemType

- code

- title

Address

- streetName

- streetNumber

- city

- countryTender

- estimatedEndDate

- offeredPrice

+issuedContract 0..*

+contractingAuthority 1

+parentContract 1

+lot 0..*

+tenderingSupplier

0..*

+tenderedContract

0..*

+suppliedContract

0..*

+awardedSupplier

0..1

0..*0..*

0..1 1

0..1

+mainAddress 1

0..1

+tenderAddress

0..1

General UML

PSM Diagram – Relational Schema

 class PSM_RELATIONAL

Contract

«column»

* referenceNumber: NUMBER(8)

* title: VARCHAR2(50)

 description: CLOB

* startDate: DATE

* endDate: DATE

* estimatedPrice: NUMBER(9)

 agreedPrice: NUMBER(9)

 actualPrice: NUMBER(9)

 numberOfTenders: NUMBER(2)

*PK contractId: NUMBER(8)

*FK contractingAuthorityId: NUMBER(8)

 FK awardedSupplierId: NUMBER(8)

*FK mainAddressId: NUMBER(8)

 FK tenderAddressId: NUMBER(8)

 FK parentContractId: NUMBER(8)

«FK»

+ FK_Contract_Address(NUMBER)

+ FK_Contract_Address(NUMBER)

+ FK_Contract_Contract(NUMBER)

+ FK_Contract_Organization(NUMBER)

+ FK_Contract_Organization(NUMBER)

«PK»

+ PK_Contract(NUMBER)

«unique»

+ UQ_Contract_referenceNumber()

Organization

«column»

* legalName: VARCHAR2(50)

* officialNumber: NUMBER(9)

*PK organizationId: NUMBER(8)

*FK addressId: NUMBER(8)

«FK»

+ FK_Organization_Address(NUMBER)

«PK»

+ PK_Organization(NUMBER)

«unique»

+ UQ_Organization_officialNumbe(NUMBER)
Tender

«column»

* estimatedEndDate: DATE

* offeredPrice: NUMBER(9)

*PK tenderId: NUMBER(8)

*FK tenderingSupplierId: NUMBER(8)

*FK tenderedContractId: NUMBER(8)

«FK»

+ FK_Tender_Contract(NUMBER)

+ FK_Tender_Organization(NUMBER)

«PK»

+ PK_Tender(NUMBER)

Address

«column»

 streetName: VARCHAR2(50)

 streetNumber: VARCHAR2(50)

 city: VARCHAR2(50)

 country: VARCHAR2(50)

*PK addressId: NUMBER(8)

«PK»

+ PK_Address(NUMBER)

ItemType

«column»

*PK code: NUMBER(8)

* title: VARCHAR2(50)

«PK»

+ PK_ItemType(NUMBER)

Item

«column»

* code: NUMBER(8)

 FK contractId: NUMBER(8)

«FK»

+ FK_Item_Contract(NUMBER)

+ FK_Item_ItemType(NUMBER)

+FK_Contract_Organization 0..*

(awardedSupplierId = organizationId)

«FK»

+PK_Organization 1

+FK_Tender_Organization 0..*

(tenderingSupplierId = organizationId)

«FK»

+PK_Organization

1

+FK_Tender_Contract 0..*

(tenderedContractId = contractId)
«FK»

+PK_Contract

1

+FK_Contract_Organization

0..*

(awardedSupplierId = organizationId)

«FK»

+PK_Organization

1

+FK_Contract_Address

0..*

(tenderAddressId = addressId)

«FK»

+PK_Address
1

+FK_Contract_Address

0..*

(tenderAddressId = addressId)

«FK»

+PK_Address 1

+FK_Organization_Address

0..*

(addressId = addressId)

«FK»

+PK_Address 1

+FK_Item_Contract

0..*
(contractId = contractId)

«FK»

+PK_Contract

1

+FK_Item_ItemType
0..*

(contractId = code)

«FK»

+PK_ItemType 1

+FK_Contract_Contract

0..*

(parentContractId = contractId)

«FK»

+PK_Contract

1 UML Extended

for Relational

Model

• Stereotypes

Model-Driven Architecture

 Can be naturally applied on designing XML

as well

 PSM = UML class model extended with set of

stereotypes for modelling constructs of

particular XML schema language

 PSM for XML Schema

PIM Diagram

PSM Diagram – XML Schema

PSM Diagram – XML Schema

Model-Driven Architecture and

XML

 Allows describing a problem domain independently

of XML format

 Complete and non-redundant description

 Problem: No or weak binding between PIM and

PSM level in current tools

 Evolution of applications is hard to manage

 Applications are usually dynamic

 User requirements change, new information come, …

 Structure of data needs to be changed

 Old schema Sold, new schema Snew

 We still want to work with both old and new data

 Without any loss if possible

Evolution of XML Applications

 Approaches:

 XML schema/data evolution

 The old data valid against Sold are transformed to be
valid against Snew

 User poses queries over Snew

 XML data versioning

 We must preserve all versions V1, V2, … Vn of the data

 User poses queries over any Vi; 1  i  n

 Retrieves data from all versions V1, V2, … Vn

 Retrieves data from V1, V2, … Vi

Evolution of XML Applications

 Situations:

 We are provided with Sold and Snew and we look

for an optimal transformation sequence

 We are provided with Sold and a sequence of

changes C = {c1, c2, … cm} made by a user

 We can follow users steps in C

 Problem: C is usually not optimal

Example: Oracle Types of XML

Schema Evolution

 Copy-based:

 All documents that conform to Sold are copied to a temporary
location

 Sold is deleted

 Snew is registered

 Instance documents are transformed and inserted into their new
locations from the temporary area

 In-place:

 Does not require copying, deleting, inserting existing data

 Much faster, but restricted:

 Changes do not invalidate existing documents

 Not changing the storage model

 DB2 + MS SQL server support only this

backwards

compatibility

XSLT script

Modelling, Evolution and

Current XML Approaches

 Differ in

 The level where user specifies the modifications

 The way of propagation of modifications

What If We Have Multiple

Schemas?

 OpenTravel.org
 2012: 319 XML schemas

 Changes: twice a year

 Solution: preserve backward compatibility as much as possible

 Problems:
 Artificial schemas, strange structure

 Backward compatibility is not always possible

Exploitation of MDA

 Not many to many mappings, just one-to-many

 Preserving of relations between all the levels

 Upwards and downwards propagation

Exploitation of MDA
PIM

PSM 1 PSM 2

Related Problems

 Forward Engineering

 The user starts with PIM, then derives PSM form PIM etc.

 Top-down approach

 Reverse Engineering

 A new schema (or a system of schemas) must be integrated

 Bottom-up approach

 We must find the mapping – schema matching problem

 Adaptation of XML documents

 Semi-automatic generating of XSLT scripts

 Adaptation of Queries

 Difficult problem

And We Can Go Farther…

So…

 …now we know how to create XML schemas

 simple – XML editors

 complex/evolving – XML modeling tools

 Where do we get the instances (XML data)?

 If they are not created by the applications

themselves

 Typically for testing purposes

XML Benchmarking,

XML Data Generators

What is the Purpose of

Benchmarking?

 There exists a huge amount of systems for XML data management
 Operations with XML data: parsing, validation, storing, querying, updating,

transformation, compressing, …

 Problems:
 User: Searching for a system optimal for a given application

 Vendor: Testing of correctness/performance of own system, comparison with
other systems
 Aim: Finding advantages of a particular system

 General analysis: Comparison of various systems from various points of
view
 Aim: Objective comparison

 Solution: We can find results of a respective analysis

 But:
 The development of systems is fast  results are soon obsolete

 The found results usually do not cover exactly what we want

 We need to prepare own tests

What is a Benchmark?

 Benchmark = a set of test cases = data + operations (+ expected
results)

 We test: correctness of operations, functionality, efficiency, …

 Our case:
 Data = XML documents (possibly with a schema)

 Operations = any (XML) operation

 Classification according to the type of data
 Real vs. synthetic

 Fixed vs. dynamic

 Classification according to the type of operations
 Parsing, validation, querying, …

 Classification according to the type/version of the tested
technology
 DTD vs. XML Schema, XPath vs. XQuery, XPath 1.0 vs. XPath 2.0,

…

Fixed Sets of

Real-World XML Data

 The simplest approach, rather interesting than useful
 The Bible in XML, Shakespeare’s plays in XML, …

 Exports of XML databases
 The most usual data, but just data-oriented documents

 e.g., IMDb (films and actors), DBLP (research papers), Medical
Subject Headings (medical terms), …

 Data stores of real-world XML data
 Sometimes involve XML data which were not originally in XML

 e.g., INEX, Ibiblio, …

 Disadvantages: Usually simple structure and no operations

 Special collections of real-world XML data
 Unusual structures

 e.g., protein sequences, astronomical data from NASA, linguistic
trees, …

https://inex.mmci.uni-saarland.de/about.html

Example: The Bible in XML

5 MB

Example: Shakespeare’s Plays

in XML

Example: IMDb – DTD

Example: DNA in XML

Analysis of Real-World XML

Data

 How do the real-world XML data look like?
 In general: They are very simple

 How to find out exact values:

1. Gather a representative set of XML data

 XML documents + XML schemas, XML queries, XSLT
scripts …

2. Measure the characteristics

 Current analyses:

 Analyze XML documents, schemas, documents vs.
schemas, DTDs vs. XSDs

 There seem to exists no analyses of XML operations

 Not simple gathering of queries  we need special tools

Characteristics of XML Data

 XML document = tree
 Number of nodes

 Element, attribute, text, mixed-content

 Distance of nodes

 Node level
 Distance from root

 Tree depth

 Fan-out

 Lengths of text nodes

 Amount of text vs. markup

 Minimum, maximum, average

maximum depth

fan-out

level

Characteristics of XML

Schemas

 The same as in XML data but with regard to schemas

 i.e., what is allowed (not what is used in instances)

 Complexity and types of content models (regular expressions):

 e.g., depth of content model α is defined as follows:

 depth() = depth() = 0

 depth(pcdata) = depth(a) = 1

 where ∀a  

 depth(α1, α2, …, αn) = depth(α1| α2| …| αn) = max(depth(αi)) +

1; 1 ≤ i ≤ n

 where αi are regular expressions

 depth(β*) = depth(β+) = depth(β?) = depth(β) + 1

 where β is a regular expression

DTD Analysis (1)

 Paper [1] 2001: 12 real-world DTDs
 Number of elements, attributes, entities

 Depth of content model

 Mixed-content elements

 ANY, ID, IDREF(S)

 Attributes: implied, required and fixed

 Findings:
 Depth < 6

 ID and IDREF(S) are not used often

 Real-world DTDs contain lots of mistakes
 Apparently they are not used properly

 Not for checking validity, but for documentation

 General observations of limits of DTD
 To be solved in XML Schema

DTD Analysis (2)

 Paper [2] 2002: 60 DTDs
 Local characteristics: Different types of elements, depth of

content model, non-determinism

 Global characteristics: Reachability, recursion, simple paths,
cycles, fan-in

 Conclusions:
 Local: depth < 9, non-deterministic content models occur often,

though the standard dose not allow them
 Another proof of incorrect usage

 Global: Unreachable elements do not occur often, recursion
occurs in 58% of DTD
 Many methods do no support recursion

Analysis of DTD vs. XSD

 Paper [3] 2004: 109 DTD, 93 XSD (30% of XSDs incorrect)

 Aim: Which of XML Schema constructs are used in practise?

 Exploitation of XML Schema constructs:

 restriction (73%) of simple types

 extension (37%) and restriction (7%) of complex types

 substitution groups (11%), unordered sequences (4%)

 unique (7%), key/keyref (4%) constructs

 namespaces (22%)

 85% XSD = local tree grammars

 Expressive power of DTD

 Complexity of regular expressions:

 Similar results to the previous ones

Analysis of XML Documents

 Paper [4] 2003: 200 000 XML documents

 Analysis of XML web:

 Clustering according to domains (.com, .edu, .net, …) and
geography (Asia, EU, …)

 Number of documents per zone

 DTD (48%) and XSD (0.09%) exploitation

 Namespaces exploitation (40%)

 Types of documents (.rdf, .rss, .wml, .xml, …)

 Structural analysis:

 Size of documents (4,6kB on average), text vs. markup
(50:50), mixed content (72%), recursion (15%), …, depth (<
4), …

Distribution of Documents by

Size

Size of Structural vs. Textual

Content by Document’s Cluster
C1 = documents < 512B

…

C4 = documents > 4096B

Analysis of Documents vs.

Schemas (1)

 Paper [5] 2006: 16 500 documents from 133 collections divided into 6
categories

 Problem: Randomly downloaded data are trivial (2000 documents have
depth 0 [4])  semi-automatic collection of data

 Collections:

 data-centric documents (dat)
 e.g., database exports, lists of employees, lists of IMDb movies and

actors, etc.

 document-centric documents (doc)
 e.g., Shakespeare's plays, XHTML documents, novels in XML, DocBook

documents, etc.

 documents for data exchange (ex)
 e.g., medical information on patients and illnesses, etc.

 reports (rep), i.e., overviews or summaries of data

 research documents (res)
 e.g., protein sequences, DNA/RNA structures, NASA findings, etc.

 semantic web documents (sem), i.e., RDF documents

Number of Files

Sizes of Documents

Analysis of Documents vs.

Schemas (2)

 Conclusions:

 Most of the data contains mistakes and errors

 74.6% of DTDs, 38.2% of XSDs – more precise

 XML documents contain much simpler data than respective
schemas allow

 Recursion, mixed content

 Depth of mixed-content elements is < 3 on average

 Recursion is quite common, but simple

 Single element, no branching

 Nesting < 5

 Most common XML Schema constructs are simple types,
default values, ID, IDREF(S), unordered sequences

XML Data Generators

 Solution to problems of real-world collections: synthetic
XML data

 Classification:
 Schema-less generators – e.g., NiagDataGen, MemBeR

 General parameters: depth of XML document, number of
elements, …

 Schema-based generators – ToXgene, VeXGene

 Input: annotated schema

 Distribution of attributes, distribution of lengths of textual values,
values of data types, …

 Aim: As realistic structure as possible
 Zipf’s law, Markov chains, statistical distributions, …

 Disadvantages: Too many parameters  user unfriendly

MemBeR Example

<Tree xmlns="http://microbenchmarks.org/treegen"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://microbenchmarks.org/treegen TreeGen.xsd"

 depth="6"

 size="10000"

 distribution="normal">

 <Tag name="t01" levels="1" frequency ="1" fanout="10"/>

 <Tag name="t02" levels="2" frequency="0.5" fanout="3"/>

 <Tag name="t03" levels="2" frequency="0.5" fanout="1"/>

 <Tag name="t04" levels="3-4" frequency="0.33" fanout="6"/>

 <Tag name="t05" levels="3-4" frequency="0.33" fanout="6"/>

 <Tag name="t06" levels="3-4" frequency="0.33" fanout="3"/>

 <Tag name="t06" levels="5" frequency="1" fanout="0"/>

</Tree>

http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html

http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html
http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html
http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html
http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html

ToXgene Example

 Toronto XML Server Data Generator
 http://www.cs.toronto.edu/tox/toxgene/

 http://www.cs.toronto.edu/tox/toxgene/docs/ToXgene_manual.pdf
 Installation, all constructs

 Annotated “XML schema”
 Not true XSD

 tsl file

 Root element tox-template:

<!ELEMENT tox-template

 (tox-distribution|

 simpleType|complexType|

 tox-list|

 tox-document)*>

http://www.cs.toronto.edu/tox/toxgene/
http://www.cs.toronto.edu/tox/toxgene/docs/ToXgene_manual.pdf

tox-distribution

<tox-distribution name="age" type="normal"

 minInclusive="18" maxInclusive="127"

 mean="30" variance="15">

</tox-distribution>

<tox-distribution name="watches" type="exponential"

 minInclusive="0" maxInclusive="10" mean="4">

</tox-distribution>

<tox-distribution name="discount" type="user-defined"

min="0" max="30">

 <enumeration value="0" tox-percent="50"/>

 <enumeration value="5" tox-percent="25"/>

 <enumeration value="10" tox-percent="15"/>

 <enumeration value="30" tox-percent="10"/>

</tox-distribution>

simpleType

<simpleType name="pick_category">

 <restriction base="nonNegativeInteger">

 <tox-number tox-distribution="c1"/>

 </restriction>

</simpleType>

<simpleType name="lname">

 <restriction base="string">

 <tox-string type="lname"/>

 </restriction>

</simpleType>

<simpleType name="year">

 <restriction base="string">

 <tox-value>1942</tox-value>

 </restriction>

</simpleType>

tox-string types

complexType

<complexType name="PurchaseOrderType">

 <element name="shipTo" type="USAddress"/>

 <element name="billTo" type="USAddress"/>

 <element name="comment" type="string"/>

 <element name="items" type="Items"/>

 <attribute name="orderDate">

 <simpleType>

 <restriction base="string">

 <tox-string type="city"/>

 </restriction>

 </simpleType>

 </attribute>

</complexType>

tox-document

<tox-document name="output/review" copies="1000"

 starting-number="0">

 <element name="purchaseOrder"

 type="PurchaseOrderType"

 minOccurs="1" maxOccurs="1"/>

</tox-document>

XML Benchmarking:

Parsing and Validation

 Primary operation with XML data

 W3C: XML Conformance Test Suites

 http://www.w3.org/XML/Test/

 Check against: W3C XML 1.0 Recommendation, Extensible Markup
Language (XML) 1.0 (Second Edition), Extensible Markup Language (XML)
1.0 (Third Edition), Extensible Markup Language (XML) 1.1, Extensible
Markup Language (XML) 1.0 (Fourth Edition), Extensible Markup Language
(XML) 1.1 (Second Edition), Proposed Extensible Markup Language (XML)
1.0 (Fifth Edition), Namespaces in XML 1.0, Namespaces in XML 1.0
(Second Edition), Namespaces in XML 1.1, Namespaces in XML 1.1
(Second Edition)

 2 000 XML documents

 Binary tests

 Parser must correctly accept/refuse document

 Output tests

 Parser must correctly identify a mistake in document

http://www.w3.org/XML/Test/

Example: XML Conformance Test

Suites

„Test demonstrates that all text within a valid

CDATA section is considered text and not

recognized as markup.“

<!DOCTYPE doc [

<!ELEMENT doc (#PCDATA)>

<!ENTITY e "<![CDATA[&foo;]]>">

]>

<doc>&e;</doc>

<doc>&foo;</doc> →

XML Benchmarking:

Querying

 W3C:
 XML Query Use Cases

 http://www.w3.org/TR/xquery-use-cases/

 Not a benchmark but a set of examples of XML
queries

 XML Query Test Suite

 http://www.w3.org/XML/Query/test-suite/

 15 000 test examples (query + result)

 Tests full support for XQuery
 Lots of existing benchmarks

 XMark, XOO7, XMach-1, MBench, XBench, XPathMark, TPoX

 Test the amount of supported constructs + efficiency

 Assumption: tested systems return correct results

http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/XML/Query/test-suite/
http://www.w3.org/XML/Query/test-suite/
http://www.w3.org/XML/Query/test-suite/

Example: XML Query Use

Cases
„For each book found at both bstore1.example.com

and bstore2.example.com, list the title of the book

and its price from each source.“

<books-with-prices>

 {

 for $b in doc("http://bstore1.example.com/bib.xml")//book,

 $a in doc("http://bstore2.example.com/reviews.xml")//entry

 where $b/title = $a/title

 return

 <book-with-prices>

 { $b/title }

 <price-bstore2>{ $a/price/text() }</price-bstore2>

 <price-bstore1>{ $b/price/text() }</price-bstore1>

 </book-with-prices>

 }

</books-with-prices>

Example: XML Query Test

Suite
upper-case()

upper-case("string", "wrong param")

upper-case(()) eq ""

lower-case("ABc!D") eq "abc!d"

sub-string("a string")

sub-string("a string", 1, 2, "wrong param")

substring((), 1, 3) eq "

substring("12345", -42, 1 div 0E0) eq "12345"

substring("metadata", 4, 3) eq "ada"

XMark

 The most popular benchmark

 Simple

 1 DTD – Internet auction

 Text content: 17 000 most often words from
Shakespeare’s plays

 20 XQuery queries

 1 XML document + generator

 Parameter: data size

 Default: 100MB

http://www.xml-benchmark.org/

http://www.xml-benchmark.org/
http://www.xml-benchmark.org/
http://www.xml-benchmark.org/

XMark – Elements

XMark XOO7 XMach-1 MBench XBench XPathMark TPoX

Type Application Application Application Micro Application Application Application

users 1 1 More 1 1 1 More

applications 1 1 1 1 4 1 1 complex

documents 1 1 More 1 1/ More 1 More

XML schema DTD of an

Internet

auction

DTD derived

from a

relational

schema

DTD of a

document with

chapters,

sections and

paragraphs

DTD /

XSD of a

recursive

element

DTD / XSD DTD XSD

schemas 1 1 More 9 1 2 1 consisting of

more

Data generator yes yes yes yes yes yes yes

Key data

parameters
Size Depth, fan

out, length of

textual data

Number of

documents,

elements, words

Size Size Size Size + number of

users

Default data One 100MB

document
3 documents

(small,

middle, large)

with pre-

defined

parameters

4 collections

of 10 000 / 100

000 / 1 000 000

/ 1 000 000

documents

One

document

with 728

000 nodes

Small

(10MB) /

normal

(100MB) / big

(1GB) / huge

(10GB)

document

1 XMark

document a 1

sample

document

(books in a

library)

XS (3.6 millions

of documents, 10

users), S, M, L,

XL, XXL (360

billions of

documents, 1

million of users)

queries 20 23 8 49 19,17,14,16 47 + 12 7

Query

language
XQuery XQuery XQuery SQL,

XPath
XQuery XPath XQuery

updates 0 0 3 7 0 0 10

Comparison of Benchmarks (1)

 Type

 Application – comparison of various applications  queries
differ a lot

 Most benchmarks

 Micro – efficiency of one application in various use cases 
similar queries, differ, e.g., in selectivity

 MBench

 Simulated situation

 Number of users, applications, documents

 Typically: 1 user, 1 application, 1 document

 XBench – 4 classes of applications

 Document/data-oriented with a single/multiple document(s)

 XMach-1, TPoX – multi-user  test other aspects

 Concurrent access, transactions, network characteristics, …

Comparison of Benchmarks(2)

 Data sets

 All benchmarks have DTD/XSD + simple generator

 Typical parameter: size of data

 Operations

 Except for XPathMark all involve XQuery queries

 Some benchmarks involve also general description of

queries  can be expressed in any language

 XMach-1, MBench, TPoX – update operations

 XMach-1, TPoX (multi-user)  also non-XML

operations

Other XML Technologies

 Benchmarking of basic XML operations solved
 Parsing, validation, querying

 What about other?
 Transformation, compression, updating, new versions of query languages,

…

 Currently: No or obsolete benchmarks

 Example 1. XSLTMark

 From 2000, no update  XSLT 1.0

 Example 2: XQuery Update benchmark
 Not much supported  not much tested

 Query: Do we need new benchmarks?

 NO: We can test basic XML technologies from which others result

 YES: Their exploitation can vary, only a subset/an extension is
used within other technologies, …
 e.g., XPath within XSLT

References

1. A. Sahuguet. Everything You Ever Wanted to Know About DTDs, But Were
Afraid to Ask (Extended Abstract). In Selected papers from the 3rd
International Workshop WebDB 2000 on The World Wide Web and Databases,
pages 171-183, London, UK, 2001. Springer-Verlag.

2. B. Choi. What are real DTDs like? In WebDB '02, Proceedings of the 5th
International Workshop on the Web and Databases, pages 43-48, Madison,
Wisconsin, USA, 2002. ACM Press.

3. G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: a
Practical Study. In WebDB '04, Proceedings of the 7th International Workshop
on the Web and Databases, pages 79-84, New York, NY, USA, 2004. ACM
Press.

4. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In WWW
'03, Proceedings of the 12th international conference on World Wide Web,
Volume 2, pages 500-510, New York, NY, USA, 2003. ACM Press.

5. I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real XML Data
Collections. In COMAD'06: Proc. of the 13th Int. Conf. on Management of
Data, pages 20-31, New Delhi, India, 2006. Tata McGraw-Hill Publishing Co.
Ltd.

