
Advanced Aspects and New

Trends in XML (and Related)

Technologies

RNDr. Irena Holubová, Ph.D.

holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NPRG039/

NPRG039

Lecture 1. Modelling and generating of XML data, XML

benchmarking

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NPRG039/

Problem: How to

Design/Create XML Data?

 We need: XML schema + XML data
 Design of structure + creation of instances

 Simple structures
 XML data editor (highlighting, hints, well-

formedness/validity checking, …)

 Complex structures
 Modelling of XML data

 Instances
 Created by applications themselves

 XML data generators – testing purposes

 XML benchmarking

Design of XML Data

Structure of XML Data

 XML schemas
 DTD, XML Schema, RELAX NG, Schematron

 Specification of structure of XML documents

 What elements and attributes can be used

 Problems
 Complex to learn

 Too technical for non-technical people

 Dealing with technical details (special syntax, well-
formedness, …)

 Absence of semantics

 We describe just structure + integrity contraints

XML Schema Languages

 Real world

 Different groups of users various types of XML

documents ("XML views") in system

 Data

<<XML schema>>

PurchaseRequest

<<XML schema>>

PurchaseResponse

<<XML schema>>

Catalogue

<<XML schema>>

SalesReport

XML View of Data

 One real-world concept (e.g., customer or

product) is represented in various XML

formats in different ways

 Description distributed across various XML

schemas

 Redundancy & incompleteness

 Lack of complete & non-redundant

description

Example: Standard XML

Schema Formats

 HL7 (Health Level Seven)

 Exchanging medical records

 OASIS UBL (Universal Business Language)

 Exchanging business data

 ISO20022

 Exchanging financial data

 opentravel.org

 Data in travel business

 Google AdWords Web Services

 Advertising via Google

 Common characteristics:

 Hundreds of XML schemas

 Related, overlapping

 Changed regularly

http://www.hl7.org/index.cfm
https://www.oasis-open.org/
http://www.opentravel.org/Default.aspx

Visualization of XML Schemas

 Altova XML Spy

 Stylus Studio

 Oxygen XML Editor

 …

 Visualization of each construct of an XML

schema language

 Usually XML Schema

http://www.altova.com/download/2013/default.asp?product=x&edition=e&os=any&server=us
http://www.oxygenxml.com/

Visualization of XML Schemas

 Easier to understand

XML schemas

 Just visualization –

does not provide

complete & non-

redundant

description

Solution: Model-Driven

Architecture (MDA)

 Considers description of data at various abstraction

levels

 PIM (Platform-Independent Model)

 Description of data independent of any data model and

particular user view

 We describe entities, their attributes and mutual

associations

 PSM (Platform-Specific Model)

 Description of data from particular user view

 Description of implementation in particular logical data

model

 Relational, XML, object, graph, …

PIM Diagram

 class P...

Contract

- referenceNumber

- title

- description

- mainObject

- additionalObject [0..*]

- startDate

- endDate

- estimatedPrice

- agreedPrice

- actualPrice

- numberOfTenders

Organization

- legalName

- officialNumber

ItemType

- code

- title

Address

- streetName

- streetNumber

- city

- countryTender

- estimatedEndDate

- offeredPrice

+issuedContract 0..*

+contractingAuthority 1

+parentContract 1

+lot 0..*

+tenderingSupplier

0..*

+tenderedContract

0..*

+suppliedContract

0..*

+awardedSupplier

0..1

0..*0..*

0..1 1

0..1

+mainAddress 1

0..1

+tenderAddress

0..1

General UML

PSM Diagram – Relational Schema

 class PSM_RELATIONAL

Contract

«column»

* referenceNumber: NUMBER(8)

* title: VARCHAR2(50)

 description: CLOB

* startDate: DATE

* endDate: DATE

* estimatedPrice: NUMBER(9)

 agreedPrice: NUMBER(9)

 actualPrice: NUMBER(9)

 numberOfTenders: NUMBER(2)

*PK contractId: NUMBER(8)

*FK contractingAuthorityId: NUMBER(8)

 FK awardedSupplierId: NUMBER(8)

*FK mainAddressId: NUMBER(8)

 FK tenderAddressId: NUMBER(8)

 FK parentContractId: NUMBER(8)

«FK»

+ FK_Contract_Address(NUMBER)

+ FK_Contract_Address(NUMBER)

+ FK_Contract_Contract(NUMBER)

+ FK_Contract_Organization(NUMBER)

+ FK_Contract_Organization(NUMBER)

«PK»

+ PK_Contract(NUMBER)

«unique»

+ UQ_Contract_referenceNumber()

Organization

«column»

* legalName: VARCHAR2(50)

* officialNumber: NUMBER(9)

*PK organizationId: NUMBER(8)

*FK addressId: NUMBER(8)

«FK»

+ FK_Organization_Address(NUMBER)

«PK»

+ PK_Organization(NUMBER)

«unique»

+ UQ_Organization_officialNumbe(NUMBER)
Tender

«column»

* estimatedEndDate: DATE

* offeredPrice: NUMBER(9)

*PK tenderId: NUMBER(8)

*FK tenderingSupplierId: NUMBER(8)

*FK tenderedContractId: NUMBER(8)

«FK»

+ FK_Tender_Contract(NUMBER)

+ FK_Tender_Organization(NUMBER)

«PK»

+ PK_Tender(NUMBER)

Address

«column»

 streetName: VARCHAR2(50)

 streetNumber: VARCHAR2(50)

 city: VARCHAR2(50)

 country: VARCHAR2(50)

*PK addressId: NUMBER(8)

«PK»

+ PK_Address(NUMBER)

ItemType

«column»

*PK code: NUMBER(8)

* title: VARCHAR2(50)

«PK»

+ PK_ItemType(NUMBER)

Item

«column»

* code: NUMBER(8)

 FK contractId: NUMBER(8)

«FK»

+ FK_Item_Contract(NUMBER)

+ FK_Item_ItemType(NUMBER)

+FK_Contract_Organization 0..*

(awardedSupplierId = organizationId)

«FK»

+PK_Organization 1

+FK_Tender_Organization 0..*

(tenderingSupplierId = organizationId)

«FK»

+PK_Organization

1

+FK_Tender_Contract 0..*

(tenderedContractId = contractId)
«FK»

+PK_Contract

1

+FK_Contract_Organization

0..*

(awardedSupplierId = organizationId)

«FK»

+PK_Organization

1

+FK_Contract_Address

0..*

(tenderAddressId = addressId)

«FK»

+PK_Address
1

+FK_Contract_Address

0..*

(tenderAddressId = addressId)

«FK»

+PK_Address 1

+FK_Organization_Address

0..*

(addressId = addressId)

«FK»

+PK_Address 1

+FK_Item_Contract

0..*
(contractId = contractId)

«FK»

+PK_Contract

1

+FK_Item_ItemType
0..*

(contractId = code)

«FK»

+PK_ItemType 1

+FK_Contract_Contract

0..*

(parentContractId = contractId)

«FK»

+PK_Contract

1 UML Extended

for Relational

Model

• Stereotypes

Model-Driven Architecture

 Can be naturally applied on designing XML

as well

 PSM = UML class model extended with set of

stereotypes for modelling constructs of

particular XML schema language

 PSM for XML Schema

PIM Diagram

PSM Diagram – XML Schema

PSM Diagram – XML Schema

Model-Driven Architecture and

XML

 Allows describing a problem domain independently

of XML format

 Complete and non-redundant description

 Problem: No or weak binding between PIM and

PSM level in current tools

 Evolution of applications is hard to manage

 Applications are usually dynamic

 User requirements change, new information come, …

 Structure of data needs to be changed

 Old schema Sold, new schema Snew

 We still want to work with both old and new data

 Without any loss if possible

Evolution of XML Applications

 Approaches:

 XML schema/data evolution

 The old data valid against Sold are transformed to be
valid against Snew

 User poses queries over Snew

 XML data versioning

 We must preserve all versions V1, V2, … Vn of the data

 User poses queries over any Vi; 1 i n

 Retrieves data from all versions V1, V2, … Vn

 Retrieves data from V1, V2, … Vi

Evolution of XML Applications

 Situations:

 We are provided with Sold and Snew and we look

for an optimal transformation sequence

 We are provided with Sold and a sequence of

changes C = {c1, c2, … cm} made by a user

 We can follow users steps in C

 Problem: C is usually not optimal

Example: Oracle Types of XML

Schema Evolution

 Copy-based:

 All documents that conform to Sold are copied to a temporary
location

 Sold is deleted

 Snew is registered

 Instance documents are transformed and inserted into their new
locations from the temporary area

 In-place:

 Does not require copying, deleting, inserting existing data

 Much faster, but restricted:

 Changes do not invalidate existing documents

 Not changing the storage model

 DB2 + MS SQL server support only this

backwards

compatibility

XSLT script

Modelling, Evolution and

Current XML Approaches

 Differ in

 The level where user specifies the modifications

 The way of propagation of modifications

What If We Have Multiple

Schemas?

 OpenTravel.org
 2012: 319 XML schemas

 Changes: twice a year

 Solution: preserve backward compatibility as much as possible

 Problems:
 Artificial schemas, strange structure

 Backward compatibility is not always possible

Exploitation of MDA

 Not many to many mappings, just one-to-many

 Preserving of relations between all the levels

 Upwards and downwards propagation

Exploitation of MDA
PIM

PSM 1 PSM 2

Related Problems

 Forward Engineering

 The user starts with PIM, then derives PSM form PIM etc.

 Top-down approach

 Reverse Engineering

 A new schema (or a system of schemas) must be integrated

 Bottom-up approach

 We must find the mapping – schema matching problem

 Adaptation of XML documents

 Semi-automatic generating of XSLT scripts

 Adaptation of Queries

 Difficult problem

And We Can Go Farther…

So…

 …now we know how to create XML schemas

 simple – XML editors

 complex/evolving – XML modeling tools

 Where do we get the instances (XML data)?

 If they are not created by the applications

themselves

 Typically for testing purposes

XML Benchmarking,

XML Data Generators

What is the Purpose of

Benchmarking?

 There exists a huge amount of systems for XML data management
 Operations with XML data: parsing, validation, storing, querying, updating,

transformation, compressing, …

 Problems:
 User: Searching for a system optimal for a given application

 Vendor: Testing of correctness/performance of own system, comparison with
other systems
 Aim: Finding advantages of a particular system

 General analysis: Comparison of various systems from various points of
view
 Aim: Objective comparison

 Solution: We can find results of a respective analysis

 But:
 The development of systems is fast results are soon obsolete

 The found results usually do not cover exactly what we want

 We need to prepare own tests

What is a Benchmark?

 Benchmark = a set of test cases = data + operations (+ expected
results)

 We test: correctness of operations, functionality, efficiency, …

 Our case:
 Data = XML documents (possibly with a schema)

 Operations = any (XML) operation

 Classification according to the type of data
 Real vs. synthetic

 Fixed vs. dynamic

 Classification according to the type of operations
 Parsing, validation, querying, …

 Classification according to the type/version of the tested
technology
 DTD vs. XML Schema, XPath vs. XQuery, XPath 1.0 vs. XPath 2.0,

…

Fixed Sets of

Real-World XML Data

 The simplest approach, rather interesting than useful
 The Bible in XML, Shakespeare’s plays in XML, …

 Exports of XML databases
 The most usual data, but just data-oriented documents

 e.g., IMDb (films and actors), DBLP (research papers), Medical
Subject Headings (medical terms), …

 Data stores of real-world XML data
 Sometimes involve XML data which were not originally in XML

 e.g., INEX, Ibiblio, …

 Disadvantages: Usually simple structure and no operations

 Special collections of real-world XML data
 Unusual structures

 e.g., protein sequences, astronomical data from NASA, linguistic
trees, …

https://inex.mmci.uni-saarland.de/about.html

Example: The Bible in XML

5 MB

Example: Shakespeare’s Plays

in XML

Example: IMDb – DTD

Example: DNA in XML

Analysis of Real-World XML

Data

 How do the real-world XML data look like?
 In general: They are very simple

 How to find out exact values:

1. Gather a representative set of XML data

 XML documents + XML schemas, XML queries, XSLT
scripts …

2. Measure the characteristics

 Current analyses:

 Analyze XML documents, schemas, documents vs.
schemas, DTDs vs. XSDs

 There seem to exists no analyses of XML operations

 Not simple gathering of queries we need special tools

Characteristics of XML Data

 XML document = tree
 Number of nodes

 Element, attribute, text, mixed-content

 Distance of nodes

 Node level
 Distance from root

 Tree depth

 Fan-out

 Lengths of text nodes

 Amount of text vs. markup

 Minimum, maximum, average

maximum depth

fan-out

level

Characteristics of XML

Schemas

 The same as in XML data but with regard to schemas

 i.e., what is allowed (not what is used in instances)

 Complexity and types of content models (regular expressions):

 e.g., depth of content model α is defined as follows:

 depth() = depth() = 0

 depth(pcdata) = depth(a) = 1

 where ∀a

 depth(α1, α2, …, αn) = depth(α1| α2| …| αn) = max(depth(αi)) +

1; 1 ≤ i ≤ n

 where αi are regular expressions

 depth(β*) = depth(β+) = depth(β?) = depth(β) + 1

 where β is a regular expression

DTD Analysis (1)

 Paper [1] 2001: 12 real-world DTDs
 Number of elements, attributes, entities

 Depth of content model

 Mixed-content elements

 ANY, ID, IDREF(S)

 Attributes: implied, required and fixed

 Findings:
 Depth < 6

 ID and IDREF(S) are not used often

 Real-world DTDs contain lots of mistakes
 Apparently they are not used properly

 Not for checking validity, but for documentation

 General observations of limits of DTD
 To be solved in XML Schema

DTD Analysis (2)

 Paper [2] 2002: 60 DTDs
 Local characteristics: Different types of elements, depth of

content model, non-determinism

 Global characteristics: Reachability, recursion, simple paths,
cycles, fan-in

 Conclusions:
 Local: depth < 9, non-deterministic content models occur often,

though the standard dose not allow them
 Another proof of incorrect usage

 Global: Unreachable elements do not occur often, recursion
occurs in 58% of DTD
 Many methods do no support recursion

Analysis of DTD vs. XSD

 Paper [3] 2004: 109 DTD, 93 XSD (30% of XSDs incorrect)

 Aim: Which of XML Schema constructs are used in practise?

 Exploitation of XML Schema constructs:

 restriction (73%) of simple types

 extension (37%) and restriction (7%) of complex types

 substitution groups (11%), unordered sequences (4%)

 unique (7%), key/keyref (4%) constructs

 namespaces (22%)

 85% XSD = local tree grammars

 Expressive power of DTD

 Complexity of regular expressions:

 Similar results to the previous ones

Analysis of XML Documents

 Paper [4] 2003: 200 000 XML documents

 Analysis of XML web:

 Clustering according to domains (.com, .edu, .net, …) and
geography (Asia, EU, …)

 Number of documents per zone

 DTD (48%) and XSD (0.09%) exploitation

 Namespaces exploitation (40%)

 Types of documents (.rdf, .rss, .wml, .xml, …)

 Structural analysis:

 Size of documents (4,6kB on average), text vs. markup
(50:50), mixed content (72%), recursion (15%), …, depth (<
4), …

Distribution of Documents by

Size

Size of Structural vs. Textual

Content by Document’s Cluster
C1 = documents < 512B

…

C4 = documents > 4096B

Analysis of Documents vs.

Schemas (1)

 Paper [5] 2006: 16 500 documents from 133 collections divided into 6
categories

 Problem: Randomly downloaded data are trivial (2000 documents have
depth 0 [4]) semi-automatic collection of data

 Collections:

 data-centric documents (dat)
 e.g., database exports, lists of employees, lists of IMDb movies and

actors, etc.

 document-centric documents (doc)
 e.g., Shakespeare's plays, XHTML documents, novels in XML, DocBook

documents, etc.

 documents for data exchange (ex)
 e.g., medical information on patients and illnesses, etc.

 reports (rep), i.e., overviews or summaries of data

 research documents (res)
 e.g., protein sequences, DNA/RNA structures, NASA findings, etc.

 semantic web documents (sem), i.e., RDF documents

Number of Files

Sizes of Documents

Analysis of Documents vs.

Schemas (2)

 Conclusions:

 Most of the data contains mistakes and errors

 74.6% of DTDs, 38.2% of XSDs – more precise

 XML documents contain much simpler data than respective
schemas allow

 Recursion, mixed content

 Depth of mixed-content elements is < 3 on average

 Recursion is quite common, but simple

 Single element, no branching

 Nesting < 5

 Most common XML Schema constructs are simple types,
default values, ID, IDREF(S), unordered sequences

XML Data Generators

 Solution to problems of real-world collections: synthetic
XML data

 Classification:
 Schema-less generators – e.g., NiagDataGen, MemBeR

 General parameters: depth of XML document, number of
elements, …

 Schema-based generators – ToXgene, VeXGene

 Input: annotated schema

 Distribution of attributes, distribution of lengths of textual values,
values of data types, …

 Aim: As realistic structure as possible
 Zipf’s law, Markov chains, statistical distributions, …

 Disadvantages: Too many parameters user unfriendly

MemBeR Example

<Tree xmlns="http://microbenchmarks.org/treegen"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://microbenchmarks.org/treegen TreeGen.xsd"

 depth="6"

 size="10000"

 distribution="normal">

 <Tag name="t01" levels="1" frequency ="1" fanout="10"/>

 <Tag name="t02" levels="2" frequency="0.5" fanout="3"/>

 <Tag name="t03" levels="2" frequency="0.5" fanout="1"/>

 <Tag name="t04" levels="3-4" frequency="0.33" fanout="6"/>

 <Tag name="t05" levels="3-4" frequency="0.33" fanout="6"/>

 <Tag name="t06" levels="3-4" frequency="0.33" fanout="3"/>

 <Tag name="t06" levels="5" frequency="1" fanout="0"/>

</Tree>

http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html

http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html
http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html
http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html
http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html

ToXgene Example

 Toronto XML Server Data Generator
 http://www.cs.toronto.edu/tox/toxgene/

 http://www.cs.toronto.edu/tox/toxgene/docs/ToXgene_manual.pdf
 Installation, all constructs

 Annotated “XML schema”
 Not true XSD

 tsl file

 Root element tox-template:

<!ELEMENT tox-template

 (tox-distribution|

 simpleType|complexType|

 tox-list|

 tox-document)*>

http://www.cs.toronto.edu/tox/toxgene/
http://www.cs.toronto.edu/tox/toxgene/docs/ToXgene_manual.pdf

tox-distribution

<tox-distribution name="age" type="normal"

 minInclusive="18" maxInclusive="127"

 mean="30" variance="15">

</tox-distribution>

<tox-distribution name="watches" type="exponential"

 minInclusive="0" maxInclusive="10" mean="4">

</tox-distribution>

<tox-distribution name="discount" type="user-defined"

min="0" max="30">

 <enumeration value="0" tox-percent="50"/>

 <enumeration value="5" tox-percent="25"/>

 <enumeration value="10" tox-percent="15"/>

 <enumeration value="30" tox-percent="10"/>

</tox-distribution>

simpleType

<simpleType name="pick_category">

 <restriction base="nonNegativeInteger">

 <tox-number tox-distribution="c1"/>

 </restriction>

</simpleType>

<simpleType name="lname">

 <restriction base="string">

 <tox-string type="lname"/>

 </restriction>

</simpleType>

<simpleType name="year">

 <restriction base="string">

 <tox-value>1942</tox-value>

 </restriction>

</simpleType>

tox-string types

complexType

<complexType name="PurchaseOrderType">

 <element name="shipTo" type="USAddress"/>

 <element name="billTo" type="USAddress"/>

 <element name="comment" type="string"/>

 <element name="items" type="Items"/>

 <attribute name="orderDate">

 <simpleType>

 <restriction base="string">

 <tox-string type="city"/>

 </restriction>

 </simpleType>

 </attribute>

</complexType>

tox-document

<tox-document name="output/review" copies="1000"

 starting-number="0">

 <element name="purchaseOrder"

 type="PurchaseOrderType"

 minOccurs="1" maxOccurs="1"/>

</tox-document>

XML Benchmarking:

Parsing and Validation

 Primary operation with XML data

 W3C: XML Conformance Test Suites

 http://www.w3.org/XML/Test/

 Check against: W3C XML 1.0 Recommendation, Extensible Markup
Language (XML) 1.0 (Second Edition), Extensible Markup Language (XML)
1.0 (Third Edition), Extensible Markup Language (XML) 1.1, Extensible
Markup Language (XML) 1.0 (Fourth Edition), Extensible Markup Language
(XML) 1.1 (Second Edition), Proposed Extensible Markup Language (XML)
1.0 (Fifth Edition), Namespaces in XML 1.0, Namespaces in XML 1.0
(Second Edition), Namespaces in XML 1.1, Namespaces in XML 1.1
(Second Edition)

 2 000 XML documents

 Binary tests

 Parser must correctly accept/refuse document

 Output tests

 Parser must correctly identify a mistake in document

http://www.w3.org/XML/Test/

Example: XML Conformance Test

Suites

„Test demonstrates that all text within a valid

CDATA section is considered text and not

recognized as markup.“

<!DOCTYPE doc [

<!ELEMENT doc (#PCDATA)>

<!ENTITY e "<![CDATA[&foo;]]>">

]>

<doc>&e;</doc>

<doc>&foo;</doc> →

XML Benchmarking:

Querying

 W3C:
 XML Query Use Cases

 http://www.w3.org/TR/xquery-use-cases/

 Not a benchmark but a set of examples of XML
queries

 XML Query Test Suite

 http://www.w3.org/XML/Query/test-suite/

 15 000 test examples (query + result)

 Tests full support for XQuery
 Lots of existing benchmarks

 XMark, XOO7, XMach-1, MBench, XBench, XPathMark, TPoX

 Test the amount of supported constructs + efficiency

 Assumption: tested systems return correct results

http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/XML/Query/test-suite/
http://www.w3.org/XML/Query/test-suite/
http://www.w3.org/XML/Query/test-suite/

Example: XML Query Use

Cases
„For each book found at both bstore1.example.com

and bstore2.example.com, list the title of the book

and its price from each source.“

<books-with-prices>

 {

 for $b in doc("http://bstore1.example.com/bib.xml")//book,

 $a in doc("http://bstore2.example.com/reviews.xml")//entry

 where $b/title = $a/title

 return

 <book-with-prices>

 { $b/title }

 <price-bstore2>{ $a/price/text() }</price-bstore2>

 <price-bstore1>{ $b/price/text() }</price-bstore1>

 </book-with-prices>

 }

</books-with-prices>

Example: XML Query Test

Suite
upper-case()

upper-case("string", "wrong param")

upper-case(()) eq ""

lower-case("ABc!D") eq "abc!d"

sub-string("a string")

sub-string("a string", 1, 2, "wrong param")

substring((), 1, 3) eq "

substring("12345", -42, 1 div 0E0) eq "12345"

substring("metadata", 4, 3) eq "ada"

XMark

 The most popular benchmark

 Simple

 1 DTD – Internet auction

 Text content: 17 000 most often words from
Shakespeare’s plays

 20 XQuery queries

 1 XML document + generator

 Parameter: data size

 Default: 100MB

http://www.xml-benchmark.org/

http://www.xml-benchmark.org/
http://www.xml-benchmark.org/
http://www.xml-benchmark.org/

XMark – Elements

XMark XOO7 XMach-1 MBench XBench XPathMark TPoX

Type Application Application Application Micro Application Application Application

users 1 1 More 1 1 1 More

applications 1 1 1 1 4 1 1 complex

documents 1 1 More 1 1/ More 1 More

XML schema DTD of an

Internet

auction

DTD derived

from a

relational

schema

DTD of a

document with

chapters,

sections and

paragraphs

DTD /

XSD of a

recursive

element

DTD / XSD DTD XSD

schemas 1 1 More 9 1 2 1 consisting of

more

Data generator yes yes yes yes yes yes yes

Key data

parameters
Size Depth, fan

out, length of

textual data

Number of

documents,

elements, words

Size Size Size Size + number of

users

Default data One 100MB

document
3 documents

(small,

middle, large)

with pre-

defined

parameters

4 collections

of 10 000 / 100

000 / 1 000 000

/ 1 000 000

documents

One

document

with 728

000 nodes

Small

(10MB) /

normal

(100MB) / big

(1GB) / huge

(10GB)

document

1 XMark

document a 1

sample

document

(books in a

library)

XS (3.6 millions

of documents, 10

users), S, M, L,

XL, XXL (360

billions of

documents, 1

million of users)

queries 20 23 8 49 19,17,14,16 47 + 12 7

Query

language
XQuery XQuery XQuery SQL,

XPath
XQuery XPath XQuery

updates 0 0 3 7 0 0 10

Comparison of Benchmarks (1)

 Type

 Application – comparison of various applications queries
differ a lot

 Most benchmarks

 Micro – efficiency of one application in various use cases
similar queries, differ, e.g., in selectivity

 MBench

 Simulated situation

 Number of users, applications, documents

 Typically: 1 user, 1 application, 1 document

 XBench – 4 classes of applications

 Document/data-oriented with a single/multiple document(s)

 XMach-1, TPoX – multi-user test other aspects

 Concurrent access, transactions, network characteristics, …

Comparison of Benchmarks(2)

 Data sets

 All benchmarks have DTD/XSD + simple generator

 Typical parameter: size of data

 Operations

 Except for XPathMark all involve XQuery queries

 Some benchmarks involve also general description of

queries can be expressed in any language

 XMach-1, MBench, TPoX – update operations

 XMach-1, TPoX (multi-user) also non-XML

operations

Other XML Technologies

 Benchmarking of basic XML operations solved
 Parsing, validation, querying

 What about other?
 Transformation, compression, updating, new versions of query languages,

…

 Currently: No or obsolete benchmarks

 Example 1. XSLTMark

 From 2000, no update XSLT 1.0

 Example 2: XQuery Update benchmark
 Not much supported not much tested

 Query: Do we need new benchmarks?

 NO: We can test basic XML technologies from which others result

 YES: Their exploitation can vary, only a subset/an extension is
used within other technologies, …
 e.g., XPath within XSLT

References

1. A. Sahuguet. Everything You Ever Wanted to Know About DTDs, But Were
Afraid to Ask (Extended Abstract). In Selected papers from the 3rd
International Workshop WebDB 2000 on The World Wide Web and Databases,
pages 171-183, London, UK, 2001. Springer-Verlag.

2. B. Choi. What are real DTDs like? In WebDB '02, Proceedings of the 5th
International Workshop on the Web and Databases, pages 43-48, Madison,
Wisconsin, USA, 2002. ACM Press.

3. G. J. Bex, F. Neven, and J. Van den Bussche. DTDs versus XML Schema: a
Practical Study. In WebDB '04, Proceedings of the 7th International Workshop
on the Web and Databases, pages 79-84, New York, NY, USA, 2004. ACM
Press.

4. L. Mignet, D. Barbosa, and P. Veltri. The XML Web: a First Study. In WWW
'03, Proceedings of the 12th international conference on World Wide Web,
Volume 2, pages 500-510, New York, NY, USA, 2003. ACM Press.

5. I. Mlynkova, K. Toman, and J. Pokorny. Statistical Analysis of Real XML Data
Collections. In COMAD'06: Proc. of the 13th Int. Conf. on Management of
Data, pages 20-31, New Delhi, India, 2006. Tata McGraw-Hill Publishing Co.
Ltd.

