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CAP Theorem  
Recapitulation 

 Consistency 
 Consistent reads and writes  

 Concurrent operations see the same valid and consistent data state 

 Availability 
 The system is available to serve at the time when it is needed 

 Node failures do not prevent survivors from continuing to operate 

 Partition tolerance 
 The ability of a system to continue to service in the event a few of its cluster 

members become unavailable 

 Theorem: In systems that are distributed or scaled out it is impossible to 
achieve all three. 
 First appeared in 1998, published in 1999 

 Established as theorem and proved in 2002: Lynch, Nancy and Gilbert, Seth. 
Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant 
web services. ACM SIGACT News, volume 33 issue 2, 2002, pages 51-59. 



CAP Theorem  
Recapitulation 

 Consistency + Availability 
 Single-site databases, cluster databases, … 

 Consistency + Partition Tolerance 
 Distributed databases, distributed Locking, majority protocols, … 

 Availability + Partition Tolerance 
 Web caching, DNS 

 

 Examples:  
 RDBMS: CA 

 Apache Cassandra: AP 

 Google BigTable: CA 

 Apache CouchDB: AP 



CAP Theorem  
Proof 

 Formalization of the notion of consistency, availability 
and partition tolerance: 
 Atomic Consistency, Atomic Data Object 

 There must exist a total order on all operations such that each 
operation looks as if it were completed at a single instant 

 i.e., any read operation that begins after a write operation completes 
must return that value 

 Equivalent to requiring requests of the distributed shared memory to act 
as if they were executing on a single node, responding to operations 
one at a time 

 Available Data Object 
 Every request received by a non-failing node in the system must 

result in a response 
 i.e., any algorithm must eventually terminate 

 Although we do not say how long it will take 

 Partition Tolerance 
 The network is allowed to lose arbitrarily many messages sent from 

one node to another 



CAP Theorem  
Proof 

Theorem 1. It is impossible in the asynchronous network model to implement a 
read/write data object that guarantees the following properties: 
 Availability 

 Atomic consistency 

 in all fair executions (including those in which messages are lost). 

 

Proof (by contradiction). Assume an algorithm A exists that meets the three 
criteria: atomicity, availability, and partition tolerance. We construct an 
execution of A in which there exists a request that returns an inconsistent 
response.  

 Assume that the network consists of at least two nodes  it can be divided 
into two disjoint, non-empty sets G1 and G2. 

 Assume that all messages between G1 and G2 are lost.  

 If a write occurs in G1, and later a read occurs in G2, then the read operation 
cannot return the results of the earlier write operation. 

 

More formally… 

No clock, nodes make decisions 

on the basis of messages and 

local computations 

Get fair turns to perform steps 



CAP Theorem  
Proof 

 Let v0 be the initial value of the atomic object.  

 Let 1 be the prefix of an execution of A in which a single write of a value not equal to 
v0 occurs in G1, ending with the termination of the write operation. 

 Assume that no other client requests occur in either G1 or G2, no messages from G1 
are received in G2 and vice versa.  

 We know that this write completes, by the availability requirement.  

 Let 2 be the prefix of an execution in which a single read occurs in G2, and no other 
client requests occur, ending with the termination of the read operation.  

 During 2 no messages from G2 are received in G1 and vice versa. 

 Again we know that the read returns a value by the availability requirement. The 
value returned by this execution must be v0, as no write operation has occurred in 2. 

 Let  be an execution beginning with 1 and continuing with 2.  

 To the nodes in G2,  is indistinguishable from 2, as all the messages from G1 to G2 
are lost, and 1 does not include any client requests to nodes in G2. Therefore in the 
 execution, the read request (from 2) must still return v0.  

 However the read request does not begin until after the write request (from 1) has 
completed. This therefore contradicts the atomicity property, proving that no such 
algorithm exists. 



CAP Theorem  
Proof 

Corollary. It is impossible in the asynchronous network model to implement 
a read/write data object that guarantees the following properties: 
 Availability, in all fair executions, 

 Atomic consistency, in fair executions in which no messages are lost. 

 

Proof. Main idea: In the asynchronous model an algorithm has no way of 
determining whether a message has been lost, or has been arbitrarily 
delayed in the transmission channel. 

 For the sake of contradiction assume that there exists an algorithm A that 
always terminates, and guarantees atomic consistency in fair executions 
in which all messages are delivered.  

 Theorem 1 implies that A does not guarantee atomic consistency in all 
fair executions, so there exists some fair execution of A in which some 
response is not consistent. I.e., at some finite point  in execution the 
algorithm A returns a response that is not atomic consistent.  

 Let ’ be the prefix of ending with the invalid response. Next, extend ’ to 
a fair execution ’’, in which all messages are delivered. The execution ’’  
is now a fair execution in which all messages are delivered. However this 
execution is not atomic. Therefore no such algorithm A exists. 



CAP Theorem  
Proof 

 In the real world, most networks are not purely 
asynchronous 

 Partially Synchronous Networks 
 Each node in the network has a clock 

 All clocks increase at the same rate 

 The clocks are not synchronized 

 Clocks = timers = can measure how much time has 
passed 
 Can be used for scheduling 

 Every message is either delivered within a given, known time tmsg 
or it is lost 



CAP Theorem  
Proof 

Theorem 2. It is impossible in the partially synchronous network model 
to implement a read/write data object that guarantees the following 
properties: 
 Availability 

 Atomic consistency 

 in all executions (even those in which messages are lost). 

 

Proof (similar to Theorem 1). We divide the network into two 
components G1 and G2, and construct an admissible execution in 
which a write happens in one component, followed by a read 
operation in the other component. This read operation can be shown 
to return inconsistent data. 

 More formally… 



CAP Theorem  
Proof 

 We will construct execution 1 as in Theorem 1: a single write 
request and acknowledgment in G1, whereas all messages between 
G1 and G2 are lost.  

 We will construct the second execution ’2 slightly differently: Let ’2 
be an execution that begins with a long interval of time during which 
no client requests occur. This interval must be at least as long as the 
entire duration of 1.  

 Then append to ’2 the events of 2, as defined in Theorem 1: a 
single read request and response in G2, again assuming all 
messages between the two components are lost.  

 Finally, construct  by superimposing the two executions 1 and ’2.  

 The long interval of time in 2 ensures that the write request in 1 
completes before the read request in ’2 begins.  

 However, as in Theorem 1, the read request returns the initial value, 
rather than the new value written by the write request, violating 
atomic consistency. 



Managing Transactions 

 Critics of NoSQL databases focus on the lack of support 
for transactions 

 Business transaction 
 e.g., browsing a product catalogue, choosing a bottle of Talisker 

at a good price, filling in credit card information, and confirming 
the order 

 System transaction 
 At the end of the interaction with the user 

 Locks are only held for a short period of time 

 Business transaction = a series of system transactions  



Managing Transactions 

 Offline concurrency involves manipulating data for a business 
transaction that spans multiple data requests 
 Having a system transaction open for the whole business transaction is 

not usually possible 
 Long system transactions are not supported 

 Problems: 
 Overwriting uncommitted data 

 More transactions select the same row and then update the row based on 
the value originally selected unaware of the other 

 Reading uncommitted data 
 A transaction accesses the same row several times and reads different data 

each time  

 i.e., calculations and decisions may be made based on data that is 
changed 
 e.g., price list may be updated, someone may update the customer’s 

address, changing the shipping charges, … 



overwriting uncommitted data  

(blind write) 

reading uncommitted data 

(dirty read) 



Managing Transactions 
Optimistic Offline Lock 

 Assumes that the chance of conflict is low  

 A form of conditional update  
 Ensures that changes about to be committed by one session do 

not conflict with the changes of another session  

 Pre-commit validation  
1. Client operation re-reads any information that the business 

transaction relies on 

2. It checks that it has not changed since it was originally read and 
displayed to the user 

 Obtaining a lock indicating that it is okay to go ahead 
with the changes to the record data  





Managing Transactions 
Pessimistic Offline Lock 

 Problems of optimistic approach:  
 There might be many conflicts 

 The conflict can be detected at the end of a lengthy business transaction  

 Pessimistic solution: allows only one business transaction at a time to 
access data  

 Forces a business transaction to acquire a lock on each piece of data 
before it starts to use it 
 Once a business transaction begins, it surely completes 

 Lock manager 
 Simple, single (for all business transactions), centralized (or based on the 

database in the distributed system) 

 Standard issue: deadlock 
 Timeout for an application 

 Automatically rolled-back after a period of time of non responding 

 Timestamp attribute for a lock 
 Automatically released after a period of time 





Managing Transactions 
Coarse-grained Lock 

 When objects are edited as a 
group  
 Logically related objects 

 e.g., a customer and its set of 
addresses  
 We want to lock any one of them  

 A separate lock for individual 
objects presents a number of 
challenges  
 We need to find them all in order 

to lock them  
 Gets tricky as we get more 

locking groups  

 When the groups get complicated 
 Nested groups  

 Idea: a single lock that covers 
many objects  
 A sophisticated lock manager 



Managing Transactions 
Implicit Lock 

 Problem: forgetting to write a single line of code that 
acquires a lock  entire offline locking scheme is 
useless  
 Failing to retrieve a read lock  other transactions use write 

locks  not getting up-to-date session data 

 Failing to use a version count  unknowingly writing over 
someone's changes 

 Not releasing locks  bring productivity to a halt  

 Fact: If an item might be locked anywhere it must be 
locked everywhere  

 Idea: locks are automatically acquired  
 Not explicitly by developers but implicitly by the application  





Performance Tuning 
Goals 

 MapReduce creates a bottleneck-free way of scaling out  

 To reduce latency  
 Latency: 

 Non-parallel systems: time taken to execute the entire program 

 Parallel systems: time taken to execute the smallest atomic sub-task 

 Strategies: 
 Reducing the execution time of a program 

 Choosing the most optimal algorithms for producing the output 

 Parallelizing the execution of sub-tasks 

 To increase throughput 
 Throughput = the amount of input that can be manipulated to generate 

output within a process 

 Non-parallel systems: 
 Constrained by the available resources (amount of RAM, number of CPUs) 

 Parallel systems: 
 “No” constraints 

 Parallelization allows for any amount of commodity hardware 

Example from 2010: Tweets 

add up to 12 Terabytes per day. 

This amount of data needs 

around 48 hours to be written to 

a disk at a speed of about 80 

Mbps. 



Performance Tuning 
Linear Scalability 

 Typical horizontally scaled MapReduce-based model: 
linear scalability 
 “One node of a cluster can process x MBs of data every second 
 n nodes can process x  n amounts of data every second.” 

 Time taken to process y amounts of data on a single node = t 
seconds 

 Time taken to process y amounts of data on n nodes = t / n seconds 

 Assumption: tasks can be parallelized into equally 
balanced units 



Performance Tuning 
Amdahl’s Law 

 Formula for finding the maximum improvement in performance of a 
system when a part is improved 
 P = the proportion of the program that is parallelized  

 1 – P = the proportion of the program that cannot be parallelized  

 N = the times the parallelized part performs as compared to the non-
parallelized one 
 i.e., how many times faster it is  

 e.g., the number of processors 

 Tends to infinity in the limit 

 Example: a process that runs for 5 hours (300 minutes); all but a 
small part of the program that takes 25 minutes to run can be 
parallelized 
 Percentage of the overall program that can be parallelized: 91.6% 

 Percentage that cannot be parallelized: 8.4% 

 Maximum increase in speed: 1 / (1 – 0.916) = ~11.9 times faster 
 N tends to infinity 



Performance Tuning 
Little’s Law 

 Origins in economics and queuing theory (mathematics) 

 Analyzing the load on stable systems 
 Customer joins the queue and is served (in a finite time) 

 “The average number of customers (L) in a stable system is the 
product of the average arrival rate (k) and the time each customer 
spends in the system (W).” 
 Intuitive but remarkable result 

 i.e., the relationship is not influenced by the arrival process distribution, 
the service distribution, the service order, or practically anything else  

 Example: a gas station with cash-only payments over a single 
counter 
 4 customers arrive every hour  

 Each customer spends about 15 minutes (0.25 hours) at the gas station 

 There should be on average 1 customer at any point in time 

 If more than 4 customers arrive at the same station, it would lead to a 
bottleneck 

L = kW 



Performance Tuning 
Message Cost Model 

 Breaks down the cost of sending a message from one end to the 
other in terms of its fixed and variable costs 
 C = cost of sending the message from one end to the other 

 a = the upfront cost for sending the message 

 b = the cost per byte of the message 

 N = number of bytes of the message 

 Example: gigabit Ethernet 
 a is about 300 microseconds = 0.3 milliseconds 

 b is 1 second per 125 MB 
 Implies a transmission rate of 125 MBps. 

 100 messages of 10 KB => take 100  (0.3 + 10/125) ms = 38 ms 

 10 messages of 100 KB => take 10  (0.3 + 100/125) ms = 11 ms  

 A way to optimize message cost is to send as big  

 packet as possible each time 

C = a + bN 

0,08 

0,8 

initialization 

linear dependence 

on size 



Polyglot Persistence 

 Different databases are designed to solve different 
kinds of problems 

 Using a single database engine for all of the 
requirements usually leads to partially non-performant 
solutions 

 Example: e-commerce 
 Many types of data 

 Business transactions,  

 session management data,  

 reporting, data warehousing,  

 logging information, … 

 Do not need the same  

 properties of availability,  

 consistency, or backup  

 requirements 



Polyglot Persistence 

 Polyglot programming (2006) 
 Applications should be written in a mix of languages  

 Different languages are suitable for tackling different problems 

 Polyglot persistence 
 Hybrid approach to  

 persistence 

 e.g., a data store for the  

 shopping cart which is  

 highly available vs.  

 finding products bought  

 by the customers’ friends 



Polyglot Persistence 

 There may be other applications in the enterprise 
 e.g., the graph data store can serve data to applications that 

need to understand which products are being bought by a 
certain segment of the customer base 

 Instead of each application talking independently to the 
graph database, we can wrap the graph database into a 
service 
 Assumption: 

 Nodes can be saved in one place  

 Queried by all the applications 

 Allows for the databases inside the services to evolve without 
having to change the dependent applications 
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