Big Data Management

and NoSQL Databases

Lecture 10. Graph databases

Doc. RNDr. Irena Holubova, Ph.D.

holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

" J
Graph Databases

Basic Characteristics

m To store entities and relationships between these entities
Node is an instance of an object
Nodes have properties
= e.g., hame
Edges have directional significance
Edges have types
m e.g., likes, friend, ...
m Nodes are organized by relationships
Allow to find interesting patterns

e.g., “Get all nodes employed by Big Co that like NoSQL
Distilled”

" S
Example:

/ i W 7 \
|
likes A
likes i
Refactoring

- N\
NoSQL catefory
Distilled ’

Database
Refactoring

Databases

20
0
Ty

autyor

or

Graph Databases
RDBMS vs. Graph Databases

m When we store a graph-like structure in RDBMS, it is for a single
type of relationship
“Who is my manager”

Adding another relationship usually means schema changes, data
movement etc.

In graph databases relationships can be dynamically created / deleted
m There is no limit for number and kind
m In RDBMS we model the graph beforehand based on the
we want
If the Traversal changes, the data will have to change
We usually need a lot of join operations
m |n graph databases the relationships are not calculated at query time
but persisted

Shift the bulk of the work of navigating the graph to inserts, leaving
gueries as fast as possible

"
Graph Databases

Representatives

~ Neogyj

0 the graph database

‘Qﬂen’rDB

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg

" J
Graph Databases

Suitable Use Cases

Connected Data

m Social networks

m Any link-rich domain is well suited for graph databases

Routing, Dispatch, and Location-Based Services

m Node = location or address that has a delivery

m Graph = nodes where a delivery has to be made

m Relationships = distance

Recommendation Engines

m “your friends also bought this product”

m “when invoicing this item, these other items are usually invoiced”

" J
Graph Databases

When Not to Use

m \When we want to update all or a subset of entities

Changing a property on all the nodes is not a straightforward
operation

e.g., analytics solution where all entities may need to be updated
with a changed property

O gome graph databases may be unable to handle lots of
ata

Distribution of a graph is difficult or impossible

Graph Databases
A bit of theory

m Data: a set of entities and their relationships
e.g., social networks, travelling routes, ...
We need to

m Basic operations: finding the neighbours of a node,
checking If two nodes are connected by an edge,
updating the graph structure, ...

We need

O IS commonly modelled as
set of nodes (vertices)
set of edges

= V[, m=1E]
m \Which data structure should be used?

Adjacency Matrix

m Bi-dimensional array A of Boolean values
Indexes of the array = node identifiers of the graph

The Boolean junction A of the two indices indicates
whether the two nodes are connected

m Variants:
Directed graphs
Weighted graphs

"
Adjacency Matrix

s+ 6 mPros:
/ Adding/removing edges
- Checking if two nodes are
AN connected
37 m Cons:

Quadratic space with respect to

m We usually have sparse graphs —
) lots of O values

Addition of nodes Is expensive

Retrieval of all the neighbouring
nodes takes linear time with
respect to

L= e =
[e e Y
[l = e R e
== Rl -

" J
Adjacency List

m A set of lists where each accounts for the
neighbours of one node

A vector of n pointers to adjacency lists
m Undirected graph:

An edge connects nodes | and | => the list of
neighbours of | contains the node | and vice versa

m Often compressed

Exploitation of regularities in graphs, difference from
other nodes, ...

" J
Adjacency List

4 — 6 m Pros:

/ Obtaining the neighbours of a
)& node
S s Cheap addition of nodes to the
o 8 structure

More compact representation of

sparse matrices
N1- {N2,N3}

N2 = {N1,N3,N5} = Cons

N3 > {N1,N2,N5} Checking if there is an edge
N4 (N2 N6} between two nodes

N5 {N2.N3) m Optimization: sorted lists =>

logarithmic scan, but also logarithmic
NoZ (N insertion

Incidence Matrix

m Bi-dimensional Boolean matrix of n rows
and m columns
A column represents an edge
= Nodes that are connected by a certain edge

A row represents a node
m All edges that are connected to the node

Incidence Matrix

== e o e

(== =

(== = -

[e e Y

[e e] e

= = = =

H Pros.

For representing
hypergraphs, where one
edge connects an arbitrary
number of nodes

m Cons:
Requires n x m bits

" J
Laplacian Matrix

m Bi-dimensional array of n X n integers
Diagonal of the Laplacian matrix indicates the
degree of the node

The rest of positions are set to -1 if the two
vertices are connected, 0 otherwise

Laplacian Matrix

4 6 mPros:

/ .
O Allows analyzing the graph
AN structure by means of
’ spectral analysis

m Calculates the eigenvalues

Graph Traversals
Single Step

n from element | to element |, where

m Expose explicit adjacencies in the graph
€.t - traverse to the outgoing edges of the vertices
e, . traverse to the incoming edges of the vertices
Vit - traverse to the outgoing vertices of the edges
Vv;, : traverse to the incoming vertices of the edges
e - allow (or filter) all edges with the label
€ . get element property values for key r
e, : allow (or filter) all elements with the property s for key r
e- . allow (or filter) all elements that are the provided element

" J
Graph Traversals

Composition

m Single step traversals can compose
of arbitrary length

e.g., find all friends of Alberto

,1raverse to the outgoing edges of vertex
(representing Alberto), then only allow those edges
with the label friend, then traverse to the incoming
(l.e. head) vertices on those friend-labeled edges.
Finally, of those vertices, return their name property.”

JEANE a J_f“." d , .
S(i) = (€™ ov, oe ™ oe (i)

in lab

"
Improving Data Locality

m |dea: take into account computer architecture in the data
structures to reach a good performance

The way data is laid out physically in memory determines the
locality to be obtained

= once a certain data item has been accessed,
the nearby data items are likely to be accessed in the following
computations

m e.g., graph traversal
m Strategy: in graph adjacency matrix representation,
exchange rows and columns to improve the cache hit
ratio

"
Breadth First Search Layout
(BFSL)

Trivial algorithm
Input: sequence of vertices of a graph

Output: a permutation of the vertices which obtains
better cache performance for graph traversals

Selects a node (at random) that is the origin of the traversal

Traverses the graph following a breadth first search algorithm,
generating a list of vertex identifiers in the order they are visited

Takes the generated list and assigns the node identifiers
sequentially

Pros: optimal when starting from the selected node
Cons: starting from other nodes

" I
Bandwidth of a Matrix

m Graphs <> matrices

m Locality problem = minimum bandwidth problem

= the maximum distance between
nonzero elements, with the condition that one is on the left of the
diagonal and the other on the right of the diagonal

= maximum of the bandwidth of its rows

m Matrices with low bandwidths are more cache friendly
Non zero elements (edges) are clustered across the diagonal

O (BMP) is NP hard
For large matrices (graphs) the solutions are only approximated

9\»

1 0 0 0O 0O O O

1

1
1

0 0 0 0 0 O

1 0 0 O
1 0 0 O

1
1

0

1
1

1

0O 0 0 O

1
1

0O 0 0 0 O

1

0 0 0 0 0 O

0 0 O
1

0 0 0 1

1

0

0 0
0

1
1
0
0O 0 O

1

0O 0 O

1

1 0

0 0

0 0 O

0O 0 O
1

1

0

1

0

1

0

0

0 0

1

0O 0 O

1 0 0 0 1

0

(1969) Thog

A
m Popular bandwidth minimization . ‘-h;.::;,-,'fj:-;.:,;j:;
technique for sparse matrices o B

m Re-labels the vertices of a matrix according to a
sequence, with the aim of a heuristically guided

traversal

m Algorithm:
Node with the first identifier (where the traversal starts) is the
node with the smallest degree in the whole graph
Other nodes are labeled sequentially as they are visited by BFS

traversal
o In addition, the heuristic prefers those nodes that have the
smallest degree

http://en.wikipedia.org/wiki/File:Can_73_cm_svg.svg

" J
Graph Partitioning

m Some graphs are to be fully loaded into
the main memory of a single computer

Usage of secondary storage degrades the
performance of graph applications

Scalable solution distributes the graph on multiple
computers

m \We need to partition the graph reasonably
Usually for particular (set of) operation(s)

The shortest path, finding frequent patterns, BFS,
spanning tree search, ...

" I
One and Two Dimensional
Graph Partitioning

m Aim: partitioning the graph to solve BES more
efficiently
Distributed into shared-nothing parallel system
Partitioning of the adjacency matrix

Matrix rows are randomly assigned to the P nodes
(processors) in the system

Each vertex and the edges emanating from it are
owned by one processor

1 - - . l-1 (8 I8 A0 J] J1_-I-_I-I-I-

Slge © o~ — Ojjo © ~Hjo © O
/1= o ollo o© 1_m1 o 1. — O O
I 1 i i
- -B]
ol'lo o ollo o ollo o ollo = ~
0 [i]
e - A0 O O+ © Oj© © O
M~ -D o 1-__0 - 1__0 — ...U_ ~ =~ O
) I i ;
Ol © O © o)~ © oo ~ O
nlVlo o o'"a o o o ollo o ~
I [i]
|10 © ol = oOJjo © oo o
mlo - oo o0 ol ~ ollo o ©
I 1 T]
~n|{lo © ~llo © olio ~ oljo o o
0 1 i]
|, 0 O O,;/,0 O OxF0 O Oi+d — O
| gt | B | E——— =l
— N M S 1N W ™~ 0 oo N
[T e B

" I
One and Two Dimensional
Graph Partitioning

= Input: starting node s having level 0

m Output: every vertex v becomes labeled with its level, denoting its
distance from the starting node

Each processor has a set of frontier vertices

m At the beginning it is node s where the BFS starts

The edge lists of the vertices in - are merged to form a set of
neighbouring vertices

m Some owned by the current processor, some by others
Messages are sent to all other processors to (potentially) add
these vertices to their frontier set I for the next level

m A processor may have marked some vertices in a previous
iteration => ignores messages regarding them

" I
One and Two Dimensional
Graph Partitioning

O
Processors are logically arranged in an R x C processor mesh
Adjacency matrix is divided C block columns and R x C block rows
Each processor owns C blocks

m Note: 1D partitioning = 2D partitioning with (or)

m Consequence: each node communicates with at most
nodes instead of all P nodes
In step 2 a message is sent to all processors in the same row
In step 3 a message is sent to all processors in the same column

1 2 3 45 6 7 8 9101112

= S Sh I e S S I S
— = | - | =
(@]
N
%)
Q
O
(®)
S
o
>
o
§o)
o
= S S D s S
(@] < YT = < =
X
O
i)
o)
= ol) e She A e B S,
e ! = =T <t
L J
o I —
lo © ollw = ol/lo o ~llo © ©
= n
_1 o oo o - O Hi+d O O @
I O 2
in o ollo o ~ o oilo - o £ 9
- .. O
j©o © ojo © o O ojjo ~ % VW
= n O
o - ~llo o —~ o ollo o o .m mm
- -
o o Hjlo © j© —~ oj- ~ O o2
I_I"-“-“-" I.I (R I8 §) B Ilu I-"-“-"-“ I.I IIIIIII l.l — D g
I© © Oone © o+ © oo - O O _-C
- = - - ==~
-nU_ o U-__l_ o 0_-0 o 0-_0 o ~il m rum +
I] i 1 i £ o S
Io © olio ~ oilo © oli® © =i S S a
'o = oo o of'a ~ oo o o = 8 PX
_ ' in I i E St
| —~1 1 —~ ol © O - 0.l
.0 ° .“D ° D“.D .“ “ O ao=
O O 00 © 0;;,0 © ©O,:~ = O=
rllll-rul-l-I-Lrllll-r ------- L
- N M 3 1O~ 0 OO0 N
r~~ ™~

Types of Graphs

Edges are homogeneous in meaning
m e.0., all edges represent friendship

Edges are typed or labeled
m e.g., friendship, business, communication

Vertices and edges in a property graph maintain a set
of key/value pairs

m Representation of non-graphical data (properties)
m e.g., hame of a vertex, the weight of an edge

— " Dawn

friend
since=2085

Barbara . - Elizabeth
friend

since=1989
share=[books ,movies, tweets]

" J
Graph Databases

m A graph database = a set of graphs

m Types of graphs:

Directed-labeled graphs
m e.g., XML, RDF, traffic networks

Undirected-labeled graphs
m e.g., social networks, chemical compounds

m Types of graph databases:
= few numbers of very large graphs
@ = e.g., Web graph, social networks, ...
= large set of small graphs

m e.g., chemical compounds, biological pathways, linguistic trees each
representing the structure of a sentence...

Transactional Graph Databases
Types of Queries

Searches for a specific pattern in the graph database

A small graph or a graph, where some parts are uncertain
m e.g., vertices with wildcard labels

More general type: sub-graph isomorphism

Searches for the graph database members of which their whole
structures are contained in the input query

Finds graphs which are similar, but not necessarily isomorphic to
a given query graph

Key question: how to measure the similarity

"

CL1 AA

Graph Subgraph Query
Database

A'ALY =

O A
xeym

0

Database

I

>

N

Query Results

L
QO

Query Results

A

sub-graph: super-graph:
d:: 91, 92 81 82 &3 Q;: &
O,: & SPRNCE

" S
Sub-graph Query Processing

Graph Indexing Techniques

M Idea: if features of query graph ¢ do not exist in data graph G,
then G cannot contain ¢ as its sub-graph
0 Graph-mining methods extract selected features (sub-structures)
from the graph database members
An inverted index is created for each feature

N Answering a sub-graph query
|dentifying the set of features of
Using the inverted index to retrieve all graphs that contain the same
features of

N Cons:

Effectiveness depends on the quality of mining techniques to
effectively identify the set of features

Quality of the selected features may degrade over time (after lots of
iInsertions and deletions)

n Re-identification and re-indexing must be done

S
Sub-graph Query Processing

Graph Indexing Techniques

m Focus on of the graph
database
Instead of indexing only some selected features

m Cons:
Can be less effective in their pruning (filtering) power
May need to conduct expensive structure comparisons in the
filtering process

m Pros:

Can handle graph updates with less cost
m Do not rely on the effectiveness of the selected features
= Do not need to rebuild whole indexes

" J
Graph Similarity Queries

m Find sub-graphs in the database that are
to query
Allows for node mismatches, node gaps, structural
differences, ...
m Usage: when graph databases are noisy or
Incomplete

Approximate graph matching query-processing
technigues can be more useful and effective than
exact matching

m Key guestion: how to measure the similarity?

Graph Query Languages

m |ldea: need for a suitable language to query and
manipulate graph data structures

Some common standard
m Like SQL, XQuery, OQL, ...

m Classification:

General

Special-purpose (= special types of graphs)
m Inspired by existing query languages

(2008)

m General graph query and manipulation language
Supports arbitrary attributes on nodes, edges, and graphs
m Represented as a tuple
m Graphs are considered as the basic unit of information
Query manipulates one or more collections of graphs

] = gqraph motif and a predicate on attributes
of the graph

Simple vs. complex graph motifs
s Concatenation, disjunction, repetition

Predicate = combination of Boolean or arithmetic comparison
expressions

m FLWR expressions

graph G, {
node Vv, Vo, V3] @
edge €4 (v, Vo), ey €3
edge e (v2, Va); @ @
edge e; (s, Vq); €2

}

(a) Simple graph motif

aliases

graph G; { %
graph G, as X; @ @\
graph G, as Y,
edge e4 (X.vq, Y.Vy);

edge es (X.va, Y.V2); @ @
}

(b) Concatenation by edges

" ool graph G, |

graph G, as X;
graph G;as Y;
unify X.vq, Y.vq;
unify X.vj, Y.V5;

}

(¢c) Concatenation by unification

graph Gy {
hode Vv, Vs;
edge e (v1, V2);
{
hode v,
edge e; (vq, Va);
edge e3(vy, V3);
HH
hode Vi, V4]
edge &; (1, Va);
edge e;|(Vo, V4);
edge e4(vs, V4);
¥
}

(d) Disjunction

C:fleﬂ;(@

e

edges are unified if their
nodes are unified

recursion = path
itself + new edge

graph Path { 7 graph Cycle {

graph Path; graph Path;
node v;; edge e, (Path.vy,
edge e (v4, Path.vy); Path.v»);
export Path.v, as v»;
IR declare a new node and unify
node vy, Vo, with a nested one

edge e (vq, V2);

@l @ye

simple path = edge

-\
"
[

&
i
i

#

n
=
-

(e) Path and cycle examples of repetition
(Kleene star)

" A
References

m Pramod J. Sadalage - Martin Fowler: NoSQL
Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence

m Eric Redmond - Jim R. Wilson: Seven
Databases in Seven Weeks: A Guide to
Modern Databases and the NoSQL Movement

m Sherif Sakr - Eric Pardede: Graph Data
Management: Techniques and Applications

