
Big Data Management

and NoSQL Databases

Lecture 10. Graph databases

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

NDBI040

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

Graph Databases
Basic Characteristics

 To store entities and relationships between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all nodes employed by Big Co that like NoSQL
Distilled”

Example:

Graph Databases
RDBMS vs. Graph Databases

 When we store a graph-like structure in RDBMS, it is for a single
type of relationship
 “Who is my manager”

 Adding another relationship usually means schema changes, data
movement etc.

 In graph databases relationships can be dynamically created / deleted
 There is no limit for number and kind

 In RDBMS we model the graph beforehand based on the Traversal
we want
 If the Traversal changes, the data will have to change

 We usually need a lot of join operations

 In graph databases the relationships are not calculated at query time
but persisted
 Shift the bulk of the work of navigating the graph to inserts, leaving

queries as fast as possible

Graph Databases
Representatives

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg

Graph Databases
Suitable Use Cases

Connected Data

 Social networks

 Any link-rich domain is well suited for graph databases

Routing, Dispatch, and Location-Based Services

 Node = location or address that has a delivery

 Graph = nodes where a delivery has to be made

 Relationships = distance

Recommendation Engines

 “your friends also bought this product”

 “when invoicing this item, these other items are usually invoiced”

Graph Databases
When Not to Use

 When we want to update all or a subset of entities
 Changing a property on all the nodes is not a straightforward

operation

 e.g., analytics solution where all entities may need to be updated
with a changed property

 Some graph databases may be unable to handle lots of
data
 Distribution of a graph is difficult or impossible

Graph Databases
A bit of theory

 Data: a set of entities and their relationships
 e.g., social networks, travelling routes, …

 We need to efficiently represent graphs

 Basic operations: finding the neighbours of a node,
checking if two nodes are connected by an edge,
updating the graph structure, …
 We need efficient graph operations

 G = (V, E) is commonly modelled as
 set of nodes (vertices) V

 set of edges E

 n = |V|, m = |E|

 Which data structure should be used?

Adjacency Matrix

 Bi-dimensional array A of n x n Boolean values

 Indexes of the array = node identifiers of the graph

 The Boolean junction Aij of the two indices indicates

whether the two nodes are connected

 Variants:

 Directed graphs

 Weighted graphs

 …

Adjacency Matrix

 Pros:
 Adding/removing edges

 Checking if two nodes are
connected

 Cons:
 Quadratic space with respect to n

 We usually have sparse graphs
lots of 0 values

 Addition of nodes is expensive

 Retrieval of all the neighbouring
nodes takes linear time with
respect to n

Adjacency List

 A set of lists where each accounts for the
neighbours of one node
 A vector of n pointers to adjacency lists

 Undirected graph:
 An edge connects nodes i and j => the list of

neighbours of i contains the node j and vice versa

 Often compressed
 Exploitation of regularities in graphs, difference from

other nodes, …

Adjacency List

 Pros:
 Obtaining the neighbours of a

node

 Cheap addition of nodes to the
structure

 More compact representation of
sparse matrices

 Cons:
 Checking if there is an edge

between two nodes
 Optimization: sorted lists =>

logarithmic scan, but also logarithmic
insertion

Incidence Matrix

 Bi-dimensional Boolean matrix of n rows

and m columns

A column represents an edge

 Nodes that are connected by a certain edge

A row represents a node

 All edges that are connected to the node

Incidence Matrix

 pros:

For representing

hypergraphs, where one

edge connects an arbitrary

number of nodes

 Cons:

Requires n x m bits

Laplacian Matrix

 Bi-dimensional array of n x n integers

Diagonal of the Laplacian matrix indicates the

degree of the node

The rest of positions are set to -1 if the two

vertices are connected, 0 otherwise

Laplacian Matrix

 Pros:

Allows analyzing the graph

structure by means of

spectral analysis

 Calculates the eigenvalues

Graph Traversals
Single Step

 Single step traversal from element i to element j, where i,
j (V E)

 Expose explicit adjacencies in the graph
 eout : traverse to the outgoing edges of the vertices

 ein : traverse to the incoming edges of the vertices

 vout : traverse to the outgoing vertices of the edges

 vin : traverse to the incoming vertices of the edges

 elab : allow (or filter) all edges with the label

 : get element property values for key r

 ep : allow (or filter) all elements with the property s for key r

 = : allow (or filter) all elements that are the provided element

Graph Traversals
Composition

 Single step traversals can compose complex

traversals of arbitrary length

 e.g., find all friends of Alberto

 „Traverse to the outgoing edges of vertex i

(representing Alberto), then only allow those edges

with the label friend, then traverse to the incoming

(i.e. head) vertices on those friend-labeled edges.

Finally, of those vertices, return their name property.“

Improving Data Locality

 Idea: take into account computer architecture in the data
structures to reach a good performance
 The way data is laid out physically in memory determines the

locality to be obtained

 Spatial locality = once a certain data item has been accessed,
the nearby data items are likely to be accessed in the following
computations
 e.g., graph traversal

 Strategy: in graph adjacency matrix representation,
exchange rows and columns to improve the cache hit
ratio

Breadth First Search Layout

(BFSL)

 Trivial algorithm

 Input: sequence of vertices of a graph

 Output: a permutation of the vertices which obtains
better cache performance for graph traversals

 BFSL algorithm:
1. Selects a node (at random) that is the origin of the traversal

2. Traverses the graph following a breadth first search algorithm,
generating a list of vertex identifiers in the order they are visited

3. Takes the generated list and assigns the node identifiers
sequentially

 Pros: optimal when starting from the selected node

 Cons: starting from other nodes

Bandwidth of a Matrix

 Graphs matrices

 Locality problem = minimum bandwidth problem
 Bandwidth of a row in a matrix = the maximum distance between

nonzero elements, with the condition that one is on the left of the
diagonal and the other on the right of the diagonal

 Bandwidth of a matrix = maximum of the bandwidth of its rows

 Matrices with low bandwidths are more cache friendly
 Non zero elements (edges) are clustered across the diagonal

 Bandwidth minimization problem (BMP) is NP hard
 For large matrices (graphs) the solutions are only approximated

Cuthill-McKee (1969)

 Popular bandwidth minimization

 technique for sparse matrices

 Re-labels the vertices of a matrix according to a
sequence, with the aim of a heuristically guided
traversal

 Algorithm:
1. Node with the first identifier (where the traversal starts) is the

node with the smallest degree in the whole graph

2. Other nodes are labeled sequentially as they are visited by BFS
traversal
 In addition, the heuristic prefers those nodes that have the

smallest degree

http://en.wikipedia.org/wiki/File:Can_73_cm_svg.svg

Graph Partitioning

 Some graphs are too large to be fully loaded into
the main memory of a single computer
 Usage of secondary storage degrades the

performance of graph applications

 Scalable solution distributes the graph on multiple
computers

 We need to partition the graph reasonably
 Usually for particular (set of) operation(s)

 The shortest path, finding frequent patterns, BFS,
spanning tree search, …

One and Two Dimensional

Graph Partitioning

 Aim: partitioning the graph to solve BFS more
efficiently
 Distributed into shared-nothing parallel system

 Partitioning of the adjacency matrix

 1D partitioning
 Matrix rows are randomly assigned to the P nodes

(processors) in the system

 Each vertex and the edges emanating from it are
owned by one processor

One and Two Dimensional

Graph Partitioning

 BFS with 1D partitioning
 Input: starting node s having level 0

 Output: every vertex v becomes labeled with its level, denoting its
distance from the starting node

1. Each processor has a set of frontier vertices F

 At the beginning it is node s where the BFS starts

2. The edge lists of the vertices in F are merged to form a set of
neighbouring vertices N

 Some owned by the current processor, some by others

3. Messages are sent to all other processors to (potentially) add
these vertices to their frontier set F for the next level

 A processor may have marked some vertices in a previous
iteration => ignores messages regarding them

One and Two Dimensional

Graph Partitioning

 2D partitioning
 Processors are logically arranged in an R x C processor mesh

 Adjacency matrix is divided C block columns and R x C block rows

 Each processor owns C blocks

 Note: 1D partitioning = 2D partitioning with C = 1 (or R = 1)

 Consequence: each node communicates with at most R +
C nodes instead of all P nodes
 In step 2 a message is sent to all processors in the same row

 In step 3 a message is sent to all processors in the same column

= block owned by processor (i,j)

Partitioning of vertices:

Processor (i, j) owns vertices
corresponding to block row
(j−1) x R + i

Types of Graphs

 Single-relational
 Edges are homogeneous in meaning

 e.g., all edges represent friendship

 Multi-relational (property) graphs
 Edges are typed or labeled

 e.g., friendship, business, communication

 Vertices and edges in a property graph maintain a set
of key/value pairs
 Representation of non-graphical data (properties)

 e.g., name of a vertex, the weight of an edge

Graph Databases

 A graph database = a set of graphs

 Types of graphs:
 Directed-labeled graphs

 e.g., XML, RDF, traffic networks

 Undirected-labeled graphs

 e.g., social networks, chemical compounds

 Types of graph databases:
 Non-transactional = few numbers of very large graphs

 e.g., Web graph, social networks, …

 Transactional = large set of small graphs

 e.g., chemical compounds, biological pathways, linguistic trees each
representing the structure of a sentence…

Transactional Graph Databases
Types of Queries

 Sub-graph queries
 Searches for a specific pattern in the graph database

 A small graph or a graph, where some parts are uncertain
 e.g., vertices with wildcard labels

 More general type: sub-graph isomorphism

 Super-graph queries
 Searches for the graph database members of which their whole

structures are contained in the input query

 Similarity (approximate matching) queries
 Finds graphs which are similar, but not necessarily isomorphic to

a given query graph

 Key question: how to measure the similarity

sub-graph:

q1: g1, g2

q2:

super-graph:

q1:

q2: g3

Sub-graph Query Processing
Mining-Based Graph Indexing Techniques

 Idea: if features of query graph q do not exist in data graph G,
then G cannot contain q as its sub-graph

 Graph-mining methods extract selected features (sub-structures)
from the graph database members

 An inverted index is created for each feature

 Answering a sub-graph query q:
1. Identifying the set of features of q

2. Using the inverted index to retrieve all graphs that contain the same
features of q

 Cons:
 Effectiveness depends on the quality of mining techniques to

effectively identify the set of features

 Quality of the selected features may degrade over time (after lots of
insertions and deletions)
 Re-identification and re-indexing must be done

Sub-graph Query Processing
Non Mining-Based Graph Indexing Techniques

 Focus on indexing whole constructs of the graph
database
 Instead of indexing only some selected features

 Cons:
 Can be less effective in their pruning (filtering) power

 May need to conduct expensive structure comparisons in the
filtering process

 Pros:
 Can handle graph updates with less cost

 Do not rely on the effectiveness of the selected features

 Do not need to rebuild whole indexes

Graph Similarity Queries

 Find sub-graphs in the database that are similar
to query q
 Allows for node mismatches, node gaps, structural

differences, …

 Usage: when graph databases are noisy or
incomplete
 Approximate graph matching query-processing

techniques can be more useful and effective than
exact matching

 Key question: how to measure the similarity?

Graph Query Languages

 Idea: need for a suitable language to query and

manipulate graph data structures

 Some common standard

 Like SQL, XQuery, OQL, …

 Classification:

 General

 Special-purpose (= special types of graphs)

 Inspired by existing query languages

GraphQL
(2008)

 General graph query and manipulation language
 Supports arbitrary attributes on nodes, edges, and graphs

 Represented as a tuple

 Graphs are considered as the basic unit of information
 Query manipulates one or more collections of graphs

 Graph pattern = graph motif and a predicate on attributes
of the graph
 Simple vs. complex graph motifs

 Concatenation, disjunction, repetition

 Predicate = combination of Boolean or arithmetic comparison
expressions

 FLWR expressions

aliases

edges are unified if their

nodes are unified

examples of repetition

(Kleene star)

simple path = edge

recursion = path

itself + new edge

declare a new node and unify

with a nested one

References

 Pramod J. Sadalage - Martin Fowler: NoSQL
Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence

 Eric Redmond - Jim R. Wilson: Seven
Databases in Seven Weeks: A Guide to
Modern Databases and the NoSQL Movement

 Sherif Sakr - Eric Pardede: Graph Data
Management: Techniques and Applications

