Big Data Management

and NoSQL Databases

Lecture 9. Graph databases — Neo4j

Doc. RNDr. Irena Holubova, Ph.D.

holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

. b Kiagai
Neo4j o’ thegrap4h]database
m Open source graph database

A Graph

The most popular

records records

m Initial release: 2007

m \Written in: Java Nodes Relationships
m OS: cross-platform -

m Stores data in nodes connected by = -

directed, typed relationships
With properties on both
Called

http://www.neo4j.orq/

http://en.wikipedia.org/wiki/File:Neo4j.jpg
http://www.neo4j.org/

" J
Neo4;

Main Features (according to Authors)

Intuitive — a graph model for data representation
reliable — with full ACID transactions
durable and fast — disk-based, native storage engine

massively scalable — up to several billions of nodes /
relationships / properties

highly-available — when distributed across multiple
machines

expressive — powerful, human readable graph query
language

fast — powerful traversal framework

embeddable

simple — accessible by REST interface / object-oriented
Java API

RDBMS vs.
Neo4|
O IS optimized for aggregated data

m Neo4j is optimized for highly connected data

[Al ' Bl \
A2 B2
C3 Al A2 | c1 | A3
B3
B4

N

Bé6

B7
c3 _

" S
Key-Value (Column Family) Store
vS. Neo4;

0 model is for lookups of simple values or lists

store can be considered as a step in evolution of key/value stores
m The value contains a list of columns

m Neo4j lets you elaborate the simple data structures into
more complex data

Interconnected

@

"
Document Store vs.
Neo4j

[| D1 D2

database
accommodates
data that can
easily be

represented as
atree

Schema-free

m Referencesto
other
documents
within the tree =
more
expressive
representation

" J
Neo4;

Data Model — Node, Relationship, Property

m Fundamental units: + relationships

m Both can contain
Key-value pairs where the key is a string
Value can be primitive or an array of one
primitive type
m €.0., String, int, int[], ...
null is not a valid property value
= nulls can be modelled by the absence of a key

Directed (incoming and outgoing edge)
s Equally well traversed in either direction = no need to add both
directions to increase performance
m Direction can be ignored when not needed by applications

Always have start and end node
Can be recursive _ loop

can be an array of

hasz a can have Primitive long
float
(Relationship type) Properties double
char
uniguely identified by :
HqEE g l'\._ String

WName

Type Description Value range
boolean true/false
byte 8-bit integer -128 to 127, inclusive
short 16-bit integer -32768 to 32767, inclusive
int 32-bit integer -2147483648 to 2147483647,
inclusive
long 64-bit integer -9223372036854775808 to
9223372036854775807,
Inclusive
float 32-bit IEEE 754 floating-point
number
double | 64-bit IEEE 754 floating-point
number
char 16-bit unsigned integers u0000 to uffff (O to 65535)

representing Unicode
characters

String

sequence of Unicode characters

What How

get who a person follows | outgoing follows relationships,

S depth one
get the followers of a incoming follows relationships,
person depth one
get who a person blocks | outgoing blocks relationships,
depth one
get who a person is incoming blocks relationships,
blocked by depth one
What How
get the full path of a file incoming f£ile relationships
get all paths for a file incoming file and symbolic link
relationships
get all files in a directory outgoing file and symbolic link
relationships, depth one
get all files in a directory, outgoing £ile relationships, depth
excluding symbolic links one ?'mbﬂl_if;ff
get all files in a directory, outgoing file and symbolic link
recursively relationships

" J
Neo4;

“Hello World” Graph — Java API

// enum of types of relationships:
private static enum RelTypes
{

KNOWS

};

GraphDatabaseService graphDb;
Node firstNode;

Node secondNode;

Relationship relationship;

// starting a database (directory is created if not exists):

graphDb = new
GraphDatabaseFactory () . (DB_PATH) ;

/] ..

"
Neo4)

“Hello World” Graph

// create a small graph:

firstNode = graphDb. ()

firstNode. ("message", "Hello, ");
secondNode = graphDb.createNode () ;

secondNode. setProperty("message'", "World!");

relationship = firstNode.
(secondNode,) ;

relationship.
("message", "brave Neo4j "), meszage = 'Hello, '

/- ENOWS

sszge = 'brave Meod) '

"
Neo4;

“Hello World” Graph

// print the result:

System.out.print(firstNode. ("message"));
System.out.print(relationship. ("message"));
System.out.print(secondNode.getProperty("message"))

// let's remove the data:
firstNode.getSingleRelationship

(RelTypes .KNOWS, Direction.OUTGOING) . ()
firstNode. (),
secondNode. ()

// shut down the database:
()

" J
Neo4;

"Hello World” Graph — Transactions

// all (creating, deleting and updating any data)
// have to be performed ,
// otherwise

Transaction = graphDb. ()
try
{
// updating operations go here
0 // transaction is committed on close

}

catch (Exception e)

{

(), // transaction is rolled back on close

}
finally

{
() // or deprecated tx.finish()

}

" J
Neo4;

Data Model — Path, Traversal

m Path = one or more nodes
with connecting
relationships

Typically retrieved as a
guery or traversal result

.
m Traversing a graph =

visiting its nodes, following accompanied by 2

relationships according to

some rules
Mostly a subgraph is visited

Neo4j: Traversal framework
+ Java API, Cypher, Gremlin

has an

can contain one of more

Relationship

" J
Neo4;

Traversal Framework

m A traversal is influenced by

— define what to traverse
m i.e., relationship direction and type

— depth-first / breadth-first

— visit nodes (relationships, paths) only
once

— what to return and whether to stop or
continue traversal beyond a current position

where the traversal will begin

Dreprth Farst i i i i Direction

what to Taverze

Eelzttonzhip Type

Neo4;

Traversal Framework — Java APl

m TraversalDescription

The main interface used for defining and initializing traversals
Not meant to be implemented by users

= Just used
Can specify branch ordering

m breadthFirst () / depthFirst ()

m Relationships

Adds a relationship to traverse

m Empty (default) = traverse all relationships

m At least one in the list = traverse the specified ones
Two methods: including / excluding

m Direction.BOTH

m Direction.INCOMING

m Direction.OUTGOING

"
Neo4;

Traversal Framework — Java APl

m Evaluator

Used for deciding at each position: should the traversal continue,
and/or should the node be included in the result

Actions:

= Evaluation.INCLUDE AND CONTINUE: Include this node in the
result and continue the traversal

= Evaluation.INCLUDE AND PRUNE!: Include this node in the
result, but do not continue the traversal

= Evaluation.EXCLUDE AND CONTINUE: Exclude this node from
the result, but continue the traversal

m Evaluation.EXCLUDE AND PRUNE: Exclude this node from the
result and do not continue the traversal
Pre-defined evaluators:
m Evaluators.excludeStartPosition|()

m Evaluators.toDepth(int depth) /
Evaluators. fromDepth (int depth)

Neo4;

Traversal Framework — Java APl

m Uniqueness
Can be supplied to the TraversalDescription

Indicates under what circumstances a traversal may revisit the
same position in the graph

m NONE: Any position in the graph may be revisited.

= NODE_GLOBAL: No node in the graph may be re-visited (default)

m [raverser

Traverser which is used to step through the results of a traversal
Steps can correspond to

m Path (default)

m Node

m Relationship

"
Neo4j

Example .
P membership
of a group
a" |Hakan &= |can
EABETE{:hniciarE
MEM R_OF 2" | Burcu &~ | Demet
MEMBER_ DF
MEMB[ER_OF MEM\B‘T—DF
ETechnlclans -
& Jale &4 HelpDesk
MWF NF‘
¥

& |Irmak E USErS |\« 1EmpER_OF
PA W{GF
ﬁ Managers
8 | Fuat M EM}E,H OF
@ | Gul

=+ Reference Node

top level
group

et

MEMBER_OF
E'_'Engin PARLT OF

0T @~ |Ali —MEMBER—OF» | |4 Admins

group
hierarchy

" J
Neo4;

Task 1. Get the Admins

Node admins = ("Admins") ;
TraversalDescription traversalDescription = Traversal.description()
()
.evaluator(Evaluators. ())
.relationships(RoleRels. , Direction.
.relationships(RoleRels. , Direction.) ;
Traverser traverser = traversalDescription.traverse(admins) ;

String output = ""; Found: HelpDesk at depth: 0
for (Path path : traverser) Found: Ali at depth: 0
{ Found: Engin at depth: 1
Node node = path.endNode () ; Found: Demet at depth: 1
output += "Found: "
+ node.getProperty(NAME) + " at depth: "
+ (path.length() - 1) + "\n";

" J
Neo4;

Task 2. Get Group Membership of a User

Node jale = getNodeByName("Jale");

traversalDescription = Traversal.description ()

()

.evaluator (Evaluators. ())

.relationships(RoleRels. , Direction.

.relationships(RoleRels. , Direction.) ;
traverser = traversalDescription.traverse(jale);

Found: ABCTechnicians at depth: 0
Found: Technicians at depth: 1
Found: Users at depth: 2

" J
Neo4;

Task 3. Get All Groups

Node referenceNode = getNodeByName ("Reference Node")
traversalDescription = Traversal.description ()

0

.
4

.evaluator (Evaluators. ())

.relationships(RoleRels. , Direction.)

.relationships(RoleRels. , Direction.) ;
traverser = traversalDescription.traverse(referenceNode) ;

Found: Admins at depth: 0

Found: Users at depth: 0

Found: HelpDesk at depth: 1
Found: Managers at depth: 1
Found: Technicians at depth: 1
Found: ABCTechnicians at depth: 2

" J
Neo4;

Task 4. Get All Members of a Group

Node referenceNode = getNodeByName ("Reference Node") ;
traversalDescription = Traversal.description ()

0

.evaluator (

Evaluators.
(RoleRels.))
traverser = traversalDescription.traverse(referenceNode) ;

Found: Ali at depth: 1
Found: Engin at depth: 1
Found: Burcu at depth: 1
Found: Can at depth: 1
Found: Demet at depth: 2
Found: Gul at depth: 2
Found: Fuat at depth: 2
Found: Hakan at depth: 2
Found: Irmak at depth: 2
Found: Jale at depth: 3

Neog]

Cypher Ll I

m Neodj graph query language

For querying and updating
m Still growing = syntax changes are probable
m Declarative — we describe what we want, not

how to get it
Not necessary to express traversals

m Human-readable
Inspired by SQL and SPARQL

http://docs.neo4dj.org/chunked/stable/cypher-query-lang.html

http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://en.wikipedia.org/wiki/File:Neo4j.jpg

Cypher Clauses

START: In the graph, obtained via index
lookups or by element IDs.

MATCH: The , bound to the
starting points in START.

WHERE: criteria.

RETURN: What to .

CREATE: nodes and relationships.

DELETE: nodes, relationships and properties.
SET: to properties.

FOREACH: Performs updating actions once per element
In a list.

WITH: Divides a query into multiple, distinct parts.

"
Cypher Examples

Creating Nodes

CREATE n CREATE (a {name : 'Andres'})
RETURN a

(empty result)

Nodes created: 1 a
Node[2] {name: "Andres"}
1 row

Nodes created: 1
Properties set: 1

CREATE (n {name : 'Andres', title : 'Developer'})

(empty result)
Nodes created: 1
Properties set: 2

" S
Cypher Examples

| . g (1) benode (2
Creating Relationships START a=node (1), b=node (2)

CREATE a-[r:RELTYPE]->b
RETURN r

r
-RELTYPE[1] {}

1 row

Relationships created: 1

START a=node(l), b=node(2)
CREATE a-[r:RELTYPE {name : a.name + '<->' + b.name }]->b
RETURN r

r
:RELTYPE[1] {name:"Andres<->Michael"}
1 row

Relationships created: 1

Properties set: 1

" S
Cypher Examples

Creating Paths

CREATE p = (andres {name:'Andres'})-[:WORKS AT]->neo<-
[:WORKS AT] - (michael {name: 'Michael'})

RETURN p

p
[Node[4] {name:"Andres"}, :WORKS AT[2]
{} /Node[5]{}, :WORKS AT[3] {},Node[6] {name:"Michael"}]

1l row
Nodes created: 3
Relationships created: 2

Properties set: 2 all parts of the pattern not
already in scope are created

" Nedz2]

name = 'Andres

Cypher Examples A

Changing Properties

OWs
START n = node (2)
SET n.surname = 'Taylor' rr Node[1] ﬂ‘
RETURN n
name = 'Peter’
age =134 J
n

Node[2] {name: "Andres" ,age:36,awesome: true, surname: "Taylor"}

1l row

Properties set: 1 START n = node (2)
SET n.name = null
RETURN n
n

Node[2] {age:36,awesome: true}
1l row
Properties set: 1

"
Cypher Examples

Delete

START n = node (4)
DELETE n

(empty result)
Nodes deleted: 1 (F Naode[3]
N

START n = node (3)
MATCH n-[r]-() ows WS
DELETE n, r

(Mode[1] \ r, Mode[2 ‘\
(empty result) o e
Nodes deleted: 1 age =13 age =3

Relationships deleted: 2

Cypher Examples

Foreach

START begin = node(2), end = node(1l)

MATCH p = begin -[*]-> end foreach(n in nodes(p) :

SET n.marked = true)

(empty result)
Properties set: 4

J

can be combined with any

update command

" S
Cypher Examples

Querying in general: node : index-name (key = "value")
START john=node:node auto index(name = 'John')

MATCH john-[:friend]->()-[:friend]->fof
RETURN john, fof

frisnd friend

:)) (ol) ((vears)

neo4]j.properties file: kh J) kh J)
name = 'Sara’ name = 'Jos'
node auto_indexing=true
relationship auto_indexing=true friend friend
node keys indexable=name, phone
relationship keys indexable=since (- - —
YR Nodel2]) (eas)

" S
Cypher Examples

Querying

List of users
START user=node (5,4,1,2 3)%

14 14 4 ’

MATCH user-[:friend]->follower
WHERE follower.name =~ 'S.*'

RETURN user, follower.name (’ Node[4] ‘1

" S
Cypher Examples

Order by

START n=node(3,1,2)

RETURN n We can use:
ORDER BY n.name multiple properties
» asc/desc

'age’ =32 :mt

length’' = 185 : mt

" S
Cypher Examples

Count

START n=node (2)
MATCH (n)-->(x)

RETURN n, count(¥*)

START n=node (2)
MATCH (n)-[r]->()
RETURN type (r), count(*)

D

count the groups of
relationship types

AN

" J
Cypher

m And there are many other features
Other aggregation functions
= Count, sum, avg, max, min
LIMIT n - returns only subsets of the total result

m SKIP n = trimmed from the top
m Often combined with order by

Predicates ALL and ANY

Functions

s LENGTH of a path, TYPE of a relationship, ID of node/relationship,
NODES of a path, RELATIONSHIPS of a path, ...

Operators

Gremlin

m Gremlin = graph traversal language for
traversing

Maintained by
m Open source software development group
m Focuses on technologies related to graph databases

Implemented by most graph database vendors
Neo4j Gremlin Plugin

m Scripts are executed on the server database

m Results are returned as Neo4j Node and
Relationship representations

http://gremlindocs.com/

http://gremlindocs.com/

" EEE——
Gremlin
Property Graph

PROPERTIES

\ key/value

VERTEX
; . epge EDGE LABEL

f I
f ! |
! ! i

I
|
; I
/ y i :
| |name ="marko" | i |name = "lop" \
' |age =29 ' [weight = 0.4] L lang = "java" ,
N\ P

\\ f[
- "h. ‘ ‘."’ _ - -
9 created >

http://www.slideshare.net/sakrsherif/gremlin

http://www.slideshare.net/sakrsherif/gremlin

TinkerPop and Related Stuff

— Interface for graph databases
Like ODBC (JDBC) for graph databases

— dataflow framework for evaluating
graph traversals

— superset of Java used by
Gremlin as a host language

http://groovy.codehaus.orqg/ http://www.tinkerpop.com/

http://www.tinkerpop.com/
http://blueprints.tinkerpop.com/
http://pipes.tinkerpop.com/
http://groovy.codehaus.org/

'_
Gremlin = -,;‘3;:'

Exam p I eS name = "markou Welght B 0 4
agamed created = ht =
Q 4 @z
1

created
8 created
7 W .
knows
KNOwWS \ 1 name = "peter” J
‘ age 35

name = "josh"

[name % "VadaS"] |
e weight = 1.0
created
5

name = "ripp]e“
Iang = "java"

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals

https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals
https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals
https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals
https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals
https://github.com/tinkerpop/gremlin/wiki/Basic-Graph-Traversals

Gremlin
Examples

gremlin> g = new Neo4jGraph('I:\\tmp\\myDB.graphdb')
==> neo4jgraph[EmbeddedGraphDatabase[I:\tmp\myDB.graphdb]]
gremlin> v =

==>v[1] Z Gremlin steps:

gremlin> v. - adjacency: outE, inE, bothE, outV,
==>e[7] [1-knows->2] inV, bothV

==>e[9] [1-created->3] |, 4 skip edges: out, in, and both

==>e[8] [1-knows->4]
gremlin> v.

vertex 1 out edges venex 3,""‘ edges

edge 9 label

edge 9 out vertex edge 9 in vertex

==>V [2] ’ edge 9 id
==>v[3] . ' B /
==>v[4] ' -
created
gremlin> v.outE.inV.outE.inV
8 1
==>V [5] }nows ;i

==>v[3]

vertex 4 properties vertex 4 id

"
Gremlin
Example; variable

gremlin> v = g.v (1)
==>v[1l]
gremlin>

==>marko
gremlin> v. .inV.

==>josh

gremlin> v.out('knows') .filter{it.age > _——
('jo.{2}|J0.{2}")}.bac

21} .as('x') .name.filter{it.
k('x') .age
==>32

.name

regular expression

Gremlin
Examples

gremlin> g.v(1l) .note= "my friend"

==> my friend

gremlin> g.v(1l) .map

==> {name=marko, age=29, note=my friend}

gremlin> vl= g. ([name: "irena'"])
==> v[7]

gremlin> v2 = g.v(1)

==> v[1l]

gremlin> g. (vl, v2, 'knows')

==> e[7] [7T-knows->1]

More on

p :E:];egr(:p4hjdatabase I n te rn aI S

http://en.wikipedia.org/wiki/File:Neo4j.jpg

Neo4;

Transaction Management

m Support for ACID properties
m All write operations that work with the graph must be
performed in a transaction
Can have nested transactions

Rollback of nested transaction = rollback of the whole
transaction

m Required steps:
Begin a transaction

Operate on the graph performing write operations
Mark the transaction as successful or not

Finish the transaction
= Memory + locks are released (= necessary step)

" J
Neo4;

Transaction Example

// all (creating, deleting and updating any data)
// have to be performed
// otherwise

’

Transaction = graphDb. ()
try
{

// updating operations go here

0 // transaction is committed on close

}
catch (Exception e)
{

(), // transaction is rolled back on close

}
finally

{
() // or deprecated tx.finish()
}

Neo4;

Transaction Management —

m Default;

Read operation reads the last committed value

Reads do not block or take any locks
= Non-repeatable reads can occur

A row is retrieved twice and the values within the row differ
between reads

m Higher level of isolation: read locks can be
acquired explicitly

Neo4;

Transaction Management —

m All modifications performed in a transaction are kept in
memory

Very large updates have to be split
m Default locking:

Adding/changing/removing a property of a node/relationship =
write lock on the node/relationship

Creating/deleting a node = write lock on the specific node

Creating/deleting a relationship = write lock on the relationship
+ its nodes

m Deadlocks:
Can occur
Are detected and an exception is thrown

"
Neo4;

Transaction Management —

m Node/relationship is deleted = all properties are
removed

m Deleted node can not have any attached relationships
Otherwise an exception is thrown

m \Write operation on a node or relationship after it has
been deleted (but not yet committed) = exception

It is possible to acquire a reference to a deleted relationship /
node that has not yet been committed

After commit, trying to acquire new / work with old reference to a
deleted node / relationship = exception

" J
Neo4|

m Index
Has a unique, user-specified name
Indexed entities = nodes / relationships

m Index = associating any number of key-value
pairs with any number of entities

We can index a node / relationship with several key-
value pairs that have the same key

= An old value must be deleted to set new (otherwise
we have both)

" J
Neo4|

Indexing — Create / Delete Index

graphDb = new
GraphDatabaseFactory () .newEmbeddedDatabase (DB_PATH) ;
index = graphDb.index() ;

// check existence of an index
boolean indexExists = index. ("actors") ;

// create three indexes

Index<Node> actors = index. ("actors") ;
Index<Node> movies = index.forNodes ("movies") ;
RelationshipIndex roles = index. ("roles") ;

// delete index
actors. ()

"
Neo4,

Indexing — Add Nodes

Node reeves = graphDb.createNode() ;
reeves.setProperty ("name", "Keanu Reeves'")
actors. (reeves, '"name", reeves.getProperty("name"));

Node bellucci = graphDb.createNode () ;
bellucci.setProperty ("name", "Monica Bellucci") ;

// multiple index values for a field
actors. (bellucci, "name", bellucci.getProperty(''name")) ;

actors. (bellucci, "name", "La Bellucci");

Node matrix = graphDb.createNode () ;

matrix.setProperty("title", "The Matrix");
matrix.setProperty ("year", 1999);
movies. (matrix, "title", matrix.getProperty("title"));

movies. (matrix, "year", matrix.getProperty("year")):;

Neo4|

Indexing — Add Relationships, Remove

Relationship rolel =

reeves.createRelationshipTo (matrix, ACTS IN);

rolel.setProperty ("name", "Neo");
roles. (rolel, "name", rolel.getProperty('"name"))

3 options
// completely remove bellucci from actors index for removal
actors. (bellucci); L

// remove any "name" entry of bellucci from actors index
actors. (bellucci, "name");
// remove the "name" -> "La Bellucci" entry of bellucci

actors. (bellucci, "name", "La Bellucci") ;

Neo4|

Indexing — Update

Node fishburn = graphDb.createNode() ;

fishburn.setProperty (''name", "Fishburn") ;

// add to index

actors.add (fishburn, "name", fishburn.getProperty('"name")) ;

// update the index entry when the property value changes
actors.

(fishburn, "name", fishburn.getProperty("name")) ;
fishburn.setProperty (''name", "Laurence Fishburn'");

actors. (fishburn, "name", fishburn.getProperty("name"))

Neo4|

Indexing — Search using get ()

// get single exact match
IndexHits<Node> hits = actors. ("name", "Keanu Reeves'") ;
Node reeves = hits.getSingle();\Qﬁ

iterator

Relationship persephone =

roles. ("name", "Persephone'") .getSingle();
Node actor = persephone.getStartNode() ;
Node movie = persephone.getEndNode () ;

// iterate over all exact matches from index
for (Relationship role : roles. ("name", "Neo"))
{

// this will give us Reeves e.g. twice

Node reeves = role.getStartNode() ;

Neo4|

Indexing — Search using query ()

for (Node a : actors. ("name", "*e*'"))

{

// This will return Reeves and Bellucci

for (Node m : movies. ("title:*Matrix* AND year:1999"))

{
// This will return "The Matrix" from 1999 only

" J
Neo4|

Indexing — Search for Relationships

// find relationships filtering on start node (exact match)
IndexHits<Relationship> reevesAsNeoHits =
roles. ("name", '"Neo", reeves, null);

Relationship reevesAsNeo =
reevesAsNeoHits.iterator () .next () ;

reevesAsNeoHits.close() ;

// find relationships filtering on end node (using a query)
IndexHits<Relationship> matrixNeoHits =
roles. ("name", "*eo", null, theMatrix);

Relationship matrixNeo = matrixNeoHits.iterator () .next()

matrixNeoHits.close() ;

Neo4|

Automatic Indexing

m One automatic index for nodes and one for
relationships

Follow property values
By default off

m \We can specify properties of nodes / edges
which are automatically indexed

We do not need to add them explicitly
m The index can be queried as any other index

Neo4|

Automatic Indexing — Setting (Option 1)

GraphDatabaseService graphDb =
new GraphDatabaseFactory() .
newEmbeddedDatabaseBuilder (storeDirectory) .

setConfig (GraphDatabaseSettings.
"nodePropl , nodeProp2") .

setConfig (
GraphDatabaseSettings.
"relPropl,relProp2").

setConfig (GraphDatabaseSettings.
"true") .

setConfig (GraphDatabaseSettings.
"true") .

newGraphDatabase () ;

"
Neo4|

Automatic Indexing — Setting (Option 2)

// start without any configuration
GraphDatabaseService graphDb = new GraphDatabaseFactory ()
.newEmbeddedDatabase (storeDirectory) ;

// get Node AutoIndexer, set nodePropl, nodeProp2 as auto indexed
AutoIndexer<Node> nodeAutoIndexer =

graphDb.index () . ()
nodeAutolIndexer. ("nodePropl") ;
nodeAutolIndexer. ("nodeProp2") ;

// get Relationship AutoIndexer, set relPropl as auto indexed
AutoIndexer<Relationship> relAutoIndexer = graphDb.index ()
()

relAutolIndexer. ("relPropl") ;

// none of the AutolIndexers are enabled so far - do that now
nodeAutoIndexer. (true) ;
relAutoIndexer. (true) ;

Neo4|

Automatic Indexing — Search

// create the primitives

nodel = graphDb.createNode() ;

node2 = graphDb.createNode() ;

rel = nodel.createRelationshipTo (node2,
DynamicRelationshipType.withName ("DYNAMIC")) ;

// add indexable and non-indexable properties

nodel. ("nodePropl", "nodeProplValue")

node?2. ("nodeProp2", "nodeProp2Value") ;

nodel. ("nonIndexed", "nodeProp2NonIndexedValue") ;
rel. ("relPropl", "relProplValue");

rel. ("relPropNonIndexed",

"relPropValueNonIndexed") ;

" J
Neo4|

Automatic Indexing — Search

// Get the Node auto index
ReadableIndex<Node> autoNodelIndex = graphDb.index()

(). ()

// nodel and node2 both had auto indexed properties, get them
assertEquals (nodel,
autoNodeIndex. ("nodePropl", "nodeProplValue")
.getSingle()) ;
assertEquals (node2,
autoNodeIndex. ("nodeProp2", "nodeProp2Value")
.getSingle()) ;

// node2 also had a property that should be ignored.
assertFalse (autoNodeIndex. ("nonIndexed",
"nodeProp2NonIndexedValue") .hasNext()) ;

Neo4|

nodes

2> (~ 34 billion)

relationships

2> (~ 34 billion)

properties

2> t0 2 depending on property types
(maximum ~ 274 billion, always at
least ~ 68 billion)

relationship types

2™ (~ 32 000)

Neo4|

(HA)

m Provides the following features:

Enables a database architecture

= Several Neo4j slave databases can be configured to be exact
replicas of a single Neo4j master database

Enables a
architecture

= Enables the system to handle more read load than a single
Neo4j database instance can handle

m [ransactions are still , and
. but out to other
slaves

" J
Neo4|

High Avallability

m Transition from single machine to multi machine operation
IS simple
No need to change existing applications

Switch from GraphDatabaseFactory (0
HighlyAvailableGraphDatabaseFactory

m Both implement the same interface

m Always one master and zero or more slaves
Write on master: eventually propagated to slaves
m All other ACID properties remain the same
Write on slave: (immediate) synchronization with master
= Slave has to be up-to-date with master
s Operation must be performed on both

" J
Neo4|

High Avallability

m Each database instance contains the logic needed In
order to coordinate with other members

m On startup Neo4] HA database instance will try to
connect to an existing cluster specified by configuration

If the cluster exists, it becomes a slave
Otherwise, it becomes a master

m Failure:
Slave — other nodes recognize it
Master — a slave is elected as a new master

m Recovery:
Slave — synchronizes with the cluster
Old master — becomes a slave

'_
References

Neod| hitp://www.neo4|.org/
Neo4| Manual http://docs.neo4|.org/chunked/stable/
Neo4j Download http://www.neo4|.org/download

Neo4) Gremlin Plugin
http://docs.neo4|.org/chunked/stable/gremlin-plugin.html

m Cypher Query Language
http://docs.neo4j.org/chunked/stable/cypher-query-
lang.html

http://www.neo4j.org/
http://docs.neo4j.org/chunked/stable/
http://www.neo4j.org/download
http://docs.neo4j.org/chunked/stable/gremlin-plugin.html
http://docs.neo4j.org/chunked/stable/gremlin-plugin.html
http://docs.neo4j.org/chunked/stable/gremlin-plugin.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
http://docs.neo4j.org/chunked/stable/cypher-query-lang.html

