
Big Data Management

and NoSQL Databases

Lecture 8. Document stores

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

NDBI040

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

Document Databases
Basic Characteristics

 Documents are the main concept
 Stored and retrieved

 XML, JSON, …

 Documents are
 Self-describing

 Hierarchical tree data structures

 Can consist of maps, collections, scalar values, nested
documents, …

 Documents in a collection are expected to be similar
 Their schema can differ

 Document databases store documents in the value part
of the key-value store
 Key-value stores where the value is examinable

Document Databases
Representatives

Lotus Notes

Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

Document Databases
Suitable Use Cases

Event Logging

 Many different applications want to log events
 Type of data being captured keeps changing

 Events can be sharded by the name of the application or type of event

Content Management Systems, Blogging Platforms

 Managing user comments, user registrations, profiles, web-facing
documents, …

Web Analytics or Real-Time Analytics

 Parts of the document can be updated

 New metrics can be easily added without schema changes

E-Commerce Applications

 Flexible schema for products and orders

 Evolving data models without expensive data migration

Document Databases
When Not to Use

Complex Transactions Spanning Different Operations

 Atomic cross-document operations
 Some document databases do support (e.g., RavenDB)

Queries against Varying Aggregate Structure

 Design of aggregate is constantly changing → we need
to save the aggregates at the lowest level of granularity
 i.e., to normalize the data

MongoDB

 Initial release: 2009

 Written in C++
 Open-source

 Cross-platform

 JSON documents
 Dynamic schemas

 Features:
 High performance – indexes

 High availability – replication + eventual consistency + automatic
failover

 Automatic scaling – automatic sharding across the cluster

 MapReduce support

http://www.mongodb.org/

http://www.mongodb.org/

MongoDB
Terminology

Terminology in Oracle and MongoDB

 Each MongoDB
instance has
multiple
databases

 Each database
can have multiple
collections

 When we store a
document, we
have to choose
database and
collection

MongoDB
Documents

 Use JSON

 Stored as BSON
 Binary representation of JSON

 Have maximum size: 16MB (in BSON)
 Not to use too much RAM

 GridFS tool divides larger files into fragments

 Restrictions on field names:
 _id is reserved for use as a primary key

 Unique in the collection

 Immutable

 Any type other than an array

 The field names cannot start with the $ character
 Reserved for operators

 The field names cannot contain the . character
 Reserved for accessing fields

MongoDB
Data Model

 Documents have flexible schema
 Collections do not enforce structure of data

 In practice the documents are similar

 Challenge: Balancing
 the needs of the application

 the performance characteristics of database engine

 the data retrieval patterns

 Key decision: references vs. embedded documents
 Structure of data

 Relationships between data

MongoDB
Data Model – References

 Including links / references from one document to
another

 Normalized data models

MongoDB
Data Model – References

 References provides more flexibility than embedding

 Use normalized data models:
 When embedding would result in duplication of data not

outweighted by read performance

 To represent more complex many-to-many relationships

 To model large hierarchical data sets

 Disadvantages:
 Can require more roundtrips to the server (follow up queries)

MongoDB
Data Model – Embedded Data

 Related data in a single document structure
 Documents can have subdocuments (in a field of array)

 Applications may need to issue less queries

 Denormalized data models

 Allow applications

 to retrieve and

 manipulate related

 data in a single

 database operation

MongoDB
Data Model – Embedded Data

 Use embedded data models when:
 When we have “contains” relationships between entities

 One-to-one relationships

 In one-to-many relationships, where child documents always appear
with one parent document

 Provides:
 Better performance for read operations

 Ability to retrieve/update related data in a single database operation

 Disadvantages:
 Documents may significantly grow after creation

 Impacts write performance
 The document must be relocated on disk if the size exceeds allocated space

 May lead to data fragmentation

MongoDB
Data Modification

 Operations: create, update, delete

Modify the data of a single collection of

documents

 For update / delete: criteria to select the

documents to update / remove

MongoDB
Data Insertion

db.inventory.insert({ _id: 10, type: "misc", item:
"card", qty: 15 })

 Inserts a document with three fields into collection inventory
 User-specified _id field

db.inventory.update(

 { type: "book", item : "journal" },

 { $set : { qty: 10 } },

 { upsert : true }

)

 Creates a new document if no document in the inventory collection
contains { type: "books", item : "journal" }
 MongoDB adds the _id field and assigns as its value a unique

ObjectId

 The result contains fields type, item, qty with the specified values

MongoDB
Data Insertion and Removal

db.inventory.save({ type: "book", item:
"notebook", qty: 40 })

 Creates a new document in collection inventory if _id
is not specified or does not exist in the collection

db.inventory.remove({ type : "food" })

 Removes all documents that have type equal to food
from the inventory collection

db.inventory.remove({ type : "food" }, 1)

 Removes one document that have type equal to food
from the inventory collection

MongoDB
Data Updates

db.inventory.update(

 { type : "book" },

 { $inc : { qty : -1 } },

 { multi: true }

)

 Finds all documents with type equal to book and modifies their
qty field by -1

db.inventory.save(

 {

 _id: 10,

 type: "misc",

 item: "placard"

 })

 Replaces document with _id equal to 10

MongoDB
Query

 Targets a specific collection of documents

 Specifies criteria that identify the returned documents

 May include a projection that specifies the fields from the
matching

 documents

 to return

 May impose

 limits, sort

 orders, …

MongoDB
Query – Basic Queries, Logical Operators

db.inventory.find({})

db.inventory.find()

 All documents in the collection

db.inventory.find({ type: "snacks" })

 All documents where the type field has the value snacks

db.inventory.find({ type: { $in: ['food', 'snacks'] } }

)

 All documents where value of the type field is either food or snacks

db.inventory.find({ type: 'food', price: { $lt: 9.95 } })

 All documents where the type field has the value food and the value of
the price field is less than 9.95

MongoDB
Query – Logical Operators

db.inventory.find(

 { $or: [

 { qty: { $gt: 100 } },

 { price: { $lt: 9.95 } }

] })

 All documents where the field qty has a value greater than ($gt) 100 or
the value of the price field is less than ($lt) 9.95

db.inventory.find({ type: 'food', $or: [

 { qty: { $gt: 100 } },

 { price: { $lt: 9.95 } }]

 })

 All documents where the value of the type field is food and either the qty
has a value greater than ($gt) 100 or the value of the price field is less
than ($lt) 9.95

MongoDB
Query – Subdocuments

db.inventory.find({

 producer: {

 company: 'ABC123',

 address: '123 Street'

 }

 })

 All documents where the value of the field producer is a subdocument that
contains only the field company with the value ABC123 and the field
address with the value 123 Street, in the exact order

db.inventory.find({ 'producer.company': 'ABC123' })

 All documents where the value of the field producer is a subdocument that
contains a field company with the value ABC123 and may contain other
fields

dot notation

MongoDB
Query – Arrays

db.inventory.find({ tags: ['fruit', 'food',
'citrus'] })

 All documents where the value of the field tags is an array that
holds exactly three elements, fruit, food, and citrus, in this
order

db.inventory.find({ tags: 'fruit' })

 All documents where value of the field tags is an array that
contains fruit as one of its elements

db.inventory.find({ 'tags.0' : 'fruit' })

 All documents where the value of the tags field is an array whose
first element equals fruit

exact match

MongoDB
Query – Arrays of Subdocuments

db.inventory.find({ 'memos.0.by': 'shipping' })

 All documents where the memos field contains an array whose first element
is a subdocument with the field by with the value shipping

db.inventory.find({ 'memos.by': 'shipping' })

 All documents where the memos field contains an array that contains at
least one subdocument with the field by with the value shipping

db.inventory.find({

 'memos.memo': 'on time',

 'memos.by': 'shipping'

 })

 All documents where the value of the memos field is an array that has at
least one subdocument that contains the field memo equal to on time and
the field by equal to shipping

MongoDB
Query – Limit Fields of the Result

db.inventory.find({ type: 'food' }, { item: 1, qty:
1 })

 Only the item and qty fields (and by default the _id field) return in
the matching documents

db.inventory.find({ type: 'food' }, { item: 1, qty:

1, _id: 0 })

 Only the item and qty fields return in the matching documents

db.inventory.find({ type: 'food' }, { type : 0 })

 The type field does not return in the matching documents

 Note: With the exception of the _id field we cannot combine
inclusion and exclusion statements in projection documents.

or true

or false

MongoDB
Query – Sorting

db.collection.find().sort({ age: -1 })

 Returns all documents in collection sorted by the
age field in descending order

db.bios.find().sort({ 'name.last': 1,

'name.first': 1 })

 Specifies the sort order using the fields from a sub-
document name

 Sorts first by the last field and then by the first field
in ascending order

MongoDB
Indexes

 Without indexes:
 MongoDB must scan every document in a collection to select

those documents that match the query statement

 Indexes store a portion of the collection's data set in an
easy to traverse form
 Stores the value of a specific field or set of fields ordered by the

value of the field

 B-tree like structures

 Defined at collection level

 Purpose:
 To speed up common queries

 To optimize the performance of other operations in specific
situations

MongoDB
Indexes – Example

MongoDB
Indexes – Usage for Sorted Results

 The index stores score values in ascending order

 MongoDB can traverse the index in either ascending or descending
order to return sorted results (without sorting)

 MongoDB does not need to inspect data outside of the
index to fulfil the query

MongoDB
Indexes – Usage for Covered Results

MongoDB
Index Types

 Default _id
 Exists by default

 If applications do not specify _id, it is created automatically

 Unique by default

 Single Field
 User-defined indexes on a single field of a document

 Compound
 User-defined indexes on multiple fields

 Multikey index
 To index the content stored in arrays

 Creates separate index entry for every element of the array

Single field index on
the score field

(ascending).

Compound index on
the userid field

(ascending) and the
score field

(descending).

Multikey index on
the addr.zip field

sorts first by userid

and then, within each
userid value, sort

by score

MongoDB
Index Types

 Geospatial Field
 2d indexes = use planar geometry when returning results

 For data representing points on a two-dimensional plane

 2sphere indexes = use spherical (Earth-like) geometry to return
results

 For data representing longitude, latitude

 Text Indexes
 Searching for string content in a collection

 Hash Indexes
 Indexes the hash of the value of a field

 Only support equality matches (not range queries)

MongoDB
Indexes

db.people.ensureIndex({ "phone-number": 1 })

 Creates a single-field index on the phone-number field of the people
collection

db.products.ensureIndex({ item: 1, category: 1, price: 1 }

)

 Creates a compound index on the item, category, and price fields

db.accounts.ensureIndex({ "tax-id": 1 }, { unique: true })

 Creates a unique index
 Prevents applications from inserting documents that have duplicate values for the

inserted fields

db.collection.ensureIndex({ _id: "hashed" })

 Creates a hashed index on _id

More on

Internals

MongoDB
Replication

 Master/slave replication

 Replica set = group of
instances that host the
same data set
 primary (master) –

receives all write
operations

 secondaries (slaves) –
apply operations from the
primary so that they have
the same data set

MongoDB
Replication Steps

 Write:
1. MongoDB applies write operations on the primary

2. MongoDB records the operations to the primary’s oplog

3. Secondary members replicate oplog + apply the operations to
their data sets

 Read: All members of the replica set can accept read
operations

 By default, an application directs its read operations to the
primary member

 Guaranties the latest version of a document

 Decreases read throughput

 Read preference mode can be set

operation log

MongoDB
Replication – Read Preference Mode

Read Preference Mode Description

primary operations read from the current replica set primary

primaryPreferred operations read from the primary, but if unavailable,

operations read from secondary members

secondary operations read from the secondary members

secondaryPreferred operations read from secondary members, but if

none is available, operations read from the primary

nearest operations read from the nearest member (= shortest

ping time) of the replica set, irrespective of the

member’s type

default

minimize the effect of network latency

MongoDB
Replica Set Elections

 Replica set can have at
most one primary

 If the current primary
becomes unavailable,
an election determines
a new primary

 Note:
 Elections need some

time

 No primary  no writes

MongoDB
Replica Set Elections – Influencing Factors

 Heartbeat (ping)
 Every 2s sent to each other

 No response for 10s  node is inaccessible

 Priority comparisons
 Higher priority = preferred to be voted

 Members with priority = 0
 Cannot become primary (not eligible)

 Cannot trigger election, but can vote

 The current primary has the highest priority and is within 10s of
the latest oplog entry  OK

 A higher-priority member catches up to within 10s of the latest
oplog entry of the current primary  elections
 The higher-priority node has a chance to become primary

 Connections
 A node cannot become primary unless it can connect to a

majority of the members

MongoDB
Replica Set Elections – Mechanism

 Replica sets hold an election any time there is no
primary:
 Initiation of a new replica set

 A secondary loses contact with a primary

 A primary steps down

 A primary will step down:
 After receiving the replSetStepDown command

 Forces a primary to become a secondary

 If one of the current secondaries is eligible for election and has a
higher priority

 If it cannot contact a majority of the members of the replica set

MongoDB
Replica Set Elections – Mechanism

 The replica set elects an eligible member with the highest priority
value as primary
 By default, all members have a priority of 1

 Can be adjusted

 The first member to receive the majority of votes becomes primary
 By default, all members have 1 vote

 Can be disabled = non-voting members
 Hold copies of data

 Can become primary

 Not recommended to set more than 1 (better use priority)

 All members of a replica set can veto an election, e.g.,
 If the member seeking an election is not up-to-date with the most recent

operation accessible in the replica set.

 If the member seeking an election has a lower priority than another
member in the set that is also eligible for election.

 …

MongoDB
Replication – Arbiters

 Arbiter
 A special node

 Does not maintain a
data set
 Does not require

dedicated hardware

 Cannot be a primary

 Exists to vote in
elections
 For replicas with even

number of members

MongoDB
Replication – Secondaries

 A secondary can be configured as:
 Priority 0 – to prevent it from becoming a primary in

an election
 e.g., a standby

 Hidden – to prevent applications from reading from it
 Just replicates the data for special usage

 Can vote in elections

 Delayed – to keep a running “historical” snapshot
 For recovery from errors like unintentionally deleted

databases

MongoDB
Replication – a few more notes

 A replica set selects a new primary within cca 1 minute
 No primary = no writes

 Fault tolerance = number of members that can become
unavailable and still leave enough members in the set to
elect a primary
 Primary needs majority

 Otherwise the replica set cannot have a primary = no writes

 In current version of MongoDB: only 12 members in total
 Only 7 members can vote at a time

 If > 12 nodes are necessary, use older master-slave technique
(without automatic failover)

http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http%3A%2F%2Fdocs.mongodb.org%2Fmanual%2Fcore%2Freplica-set-architecture-four-members&ei=hkZzVN7gA4TCObO0gNAD&bvm=bv.80185997,d.ZWU&psig=AFQjCNEMofdQPscbx5DygdONVotuBfsyjg&ust=1416927236279228

MongoDB
Sharding

 Supported through sharded clusters

 Consisting of:
 Shards – store the data

 Each shard is a replica set

 For testing purposes can be a single node

 Query routers – interface with client applications
 Direct operations to the appropriate shard(s) + return the

result to the user

 More than one  to divide the client request load

 Config servers – store the cluster’s metadata
 Mapping of the cluster’s data set to the shards

 Recommended number: 3

MongoDB
Sharded Cluster

Where are the

data?

Get the data

MongoDB
Data Partitioning

 Partitions a collection’s data by the shard key
 Indexed (possibly compound) field that exists in every

document in the collection
 Immutable

 Divided into chunks distributed across shards
 Range-based partitioning

 Hash-based partitioning

 When a chunk grows beyond

 the chunk size, it is split
 Small chunks  more even distribution

 at the expense of more frequent

 migrations

 Large chunks  fewer migrations
default: 64MB

MongoDB
Range-Based Partitioning

 Each value of the shard key falls at some point on line
from negative infinity to positive infinity

 The line is partitioned into non-overlapping chunks

 Documents with “close” shard key values are likely to be
in the same chunk
 More efficient range queries

 Can result in an uneven distribution of data

MongoDB
Hash-Based Partitioning

 Computes a hash of a field’s value
 Hashes form chunks

 Ensures a more random distribution of a collection in the
cluster
 Documents with “close” shard key values are unlikely to be a

part of the same chunk

 A range query may need to target most/all shards

MongoDB
Balancing

 Balancer = background process that manages chunk
migrations
 Responsible for redistributing the chunks of a sharded collection

evenly among the shards for every sharded collection

 When the distribution is uneven

 From shard with the largest to shard with the lowest number of
chunks

 Steps:
1. During migration operations work with the original shard

2. Destination shard captures and applies all changes made to the
data during migration

3. Destination shard updates the metadata regarding the location on
config server

MongoDB
Journaling

 Journaling = MongoDB stores and applies write operations in
memory and in a journal before the changes are done in the data
files
 To bring the database to a consistent state after hard shutdown

 Can be switched on/off

 Journal directory – holds journal files

 Journal file = write-ahead redo logs
 Append only file

 Deleted when all the writes are performed

 When it holds 1GB of data, MongoDB creates a new journal file
 The size can be modified

 Clean shutdown removes all the files in the journal directory

MongoDB
Transactions

 Write operations are atomic at the level of a single
document
 Including nested documents

 Sufficient for many cases, but not all

 When a single write operation modifies multiple
documents, it is not atomic
 Other operations may interleave

 Transactions:
 Isolation of a single write operation that affects multiple documents

 No client sees the changes until the operation completes or errors out
 db.foo.update({ field1 : 1 , $isolated : 1 }, {
$inc : { field2 : 1 } } , { multi: true })

 Two-phase commit
 Multi-document updates

 Transaction-like semantics

MongoDB
Two-phase Commit – Example (part I.)

db.accounts.save({name: "A", balance: 1000,
pendingTransactions: []})

db.accounts.save({name: "B", balance: 1000,
pendingTransactions: []})

 Creating of a collection of (two) accounts (A and B)

db.transactions.save({source: "A", destination: "B",
value: 100, state: "initial"})

 Step 1. Create a transaction (having an initial state) and store it into
collection of transactions
 e.g., transferring money from account A to B

 Other states of a transaction: initial, pending, applied, done, canceling,
and canceled

MongoDB
Two-phase Commit – Example (part II.)

t = db.transactions.findOne({state: "initial"})

db.transactions.update({_id: t._id},

 { $set: {state: "pending"} })

 Step 2. Set transaction state to pending

db.accounts.update({ name: t.source,
pendingTransactions: {$ne: t._id} },

 { $inc: {balance: -t.value},

 $push: {pendingTransactions: t._id}})

db.accounts.update({ name: t.destination,
pendingTransactions: {$ne: t._id} },

 { $inc: {balance: t.value},

 $push: {pendingTransactions: t._id}})

 Step 3. Apply transaction to both accounts + add as pending

Condition

ensuring atomic

operation: If not

in pending, apply

and add to

pending

MongoDB
Two-phase Commit – Example (part III.)

db.transactions.update({_id: t._id},

 { $set: {state: "applied"} })

 Step 4. Set transaction state to applied

db.accounts.update({name: t.source},

 { $pull: {pendingTransactions: t._id} })

db.accounts.update({name: t.destination},

 { $pull: {pendingTransactions: t._id} })

 Step 5. Remove pending transaction for the accounts

db.transactions.update({_id: t._id},

 { $set: {state: "done"} })

 Step 6. Set transaction state to done

MongoDB
Two-phase Commit – Failures

 Between step 1 (initial state) and 3 (application)

 Applications should get a list of transactions in the

pending state and resume from step 2 (switch to

pending)

 Between step 3 (application) and step 6 (setting

as done)

 Application should get a list of transactions in the

applied state and resume from step 5 (remove

pending)

MongoDB
Two-phase Commit – Rollback

 When the application needs to “cancel” the
transaction
 e.g., it can never recover since one of the accounts

does not exist/stops existing during the transaction,
…

 Cases:
 After application of transaction (step 3) – create an

inverse transaction
 e.g., switch the values in source and destination fields

 After creation of transaction (step 1) – execute
rollback (see next slide)

MongoDB
Two-phase Commit – Rollback

db.transactions.update({_id: t._id},

 {$set: {state: "cancelling"}})

 Set the transaction to cancelling

db.accounts.update({name: t.source,
pendingTransactions: t._id}, {$inc: {balance:
t.value}, $pull: {pendingTransactions: t._id}})

db.accounts.update({name: t.destination,
pendingTransactions: t._id}, {$inc: {balance: -
t.value}, $pull: {pendingTransactions: t._id}})

 Undo the transaction

db.transactions.update({_id: t._id}, {$set: {state:

"cancelled"}})

 Set the transaction to cancelled

Atomic

operation: If

in pending,

undo and

remove from

pending

MongoDB
Two-phase Commit – Multiple Applications

 Requirement: only one application can handle a given
transaction at any point in time

 Solution:
1. Create a marker in the transaction document to identify

executing application

2. Use findAndModify method to modify the transaction

t = db.transactions.findAndModify(

 {query: {state: "initial", application: {$exists: 0}},

 update: {$set: {state: "pending", application: "A1"}},

 new: true})

 Atomically modifies and returns the document, if the
application is not specified

MongoDB Enterprise

 Commercial edition of MongoDB

 Includes:
 Advanced Security – Kerberos authentication

 Management Service – a suite of tools for managing MongoDB
deployments

 Monitoring, backup capabilities, helping users optimize clusters, …

 Enterprise Software Integration – SNMP support to integrate
MongoDB with other tools

 Certified OS Support – has been tested and certified on Red
Hat/CentOS, Ubuntu, SuSE and Amazon Linux

 …

https://www.mongodb.com/products/mongodb-enterprise

https://www.mongodb.com/products/mongodb-enterprise
https://www.mongodb.com/products/mongodb-enterprise
https://www.mongodb.com/products/mongodb-enterprise

References

 Eric Redmond – Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

 Tiny MongoDB Browser Shell: http://try.mongodb.org/

 MongoDB Manual: http://docs.mongodb.org/manual/

http://try.mongodb.org/
http://docs.mongodb.org/manual/

