
Big Data Management

and NoSQL Databases

Lecture 7. Column-family stores

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

NDBI040

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

Column-Family Stores
Basic Characteristics

 Also “columnar” or “column-oriented”

 Column families = rows that have many columns
associated with a row key

 Column families are groups of related data that is often
accessed together
 e.g., for a customer we access all profile information at the same

time, but not orders

Note: two different

meanings of

column-oriented!!

Column-Family Stores
Suitable Use Cases

Event Logging

 Ability to store any data structures → good choice to store event information

Content Management Systems, Blogging Platforms

 We can store blog entries with tags, categories, links, and trackbacks in
different columns

 Comments can be either stored in the same row or moved to a different
keyspace

 Blog users and the actual blogs can be put into different column families

Column-Family Stores
When Not to Use

Systems that Require ACID Transactions

 Column-family stores are not just a special kind of RDBMSs with
variable set of columns!

Aggregation of the Data Using Queries

 (such as SUM or AVG)

 Have to be done on the client side

For Early Prototypes

 We are not sure how the query patterns may change

 As the query patterns change, we have to change the column family
design

Column-Family Stores
Representatives

Google’s

BigTable

Apache Cassandra

 Developed at Facebook

 Initial release: 2008

 Stable release: 2013
 Apache Licence

 Written in: Java

 OS: cross-platform

 Operations:
 CQL (Cassandra Query Language)

 MapReduce support

 Can cooperate with Hadoop (data storage instead of HDFS)

http://cassandra.apache.org/

http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://cassandra.apache.org/

Cassandra
Terminology

 Column = basic unit, consists of a name-value pair
 Name serves as a key

 Stored with a timestamp (expired data, resolving conflicts, …)

 Row = a collection of columns attached or linked to a key

 Columns can be added to any row at any time without having to add it to
other rows

 Column family = a collection of similar rows

 Rows do not have to have the same columns

Usually

one per

application

3-tuple

Cassandra
Data Model – Example

 Column key of firstName and the value of Martin

{ name: "firstName",

 value: "Martin",

 timestamp: 12345667890 }

{ "pramod-sadalage" : {

 firstName: "Pramod",

 lastName: "Sadalage",

 lastVisit: "2012/12/12" }

 "martin-fowler" : {

 firstName: "Martin",

 lastName: "Fowler",

 location: "Boston" } }

 pramod-sadalage row and martin-fowler row with different columns;
both rows are a part of a column family

Cassandra
Column-families vs. Relations

 We do not need to model all of the columns up
front
 Each row is not required to have the same set of

columns

 Usually we assume similar sets of columns
 Related data

 Can be extended when needed

 No formal foreign keys
 Joining column families at query time is not supported

 We need to pre-compute the query / use a secondary
index

Other column

families /

secondary indexes

for special queries

Cassandra
Column-families

 Can define metadata about columns
 Actual columns of a row are determined by client application

 Each row can have a different set of columns

 Static – similar to a relational database table
 Rows have the same set of columns

 Not required to have all of the columns defined

 Dynamic – takes advantage of Cassandra's ability to use
arbitrary application-supplied column names
 Pre-computed result sets

 Stored in a single row for efficient data retrieval

 Row = a snapshot of data that satisfy a given query
 Like a materialized view

Cassandra
Column-families

static

dynamic

Users that subscribe to a particular user's blog

Cassandra
Columns

 Column is the smallest increment of data
 Name + value + timestamp

 Value can be empty (e.g., materialized views)

 Can be indexed on their name
 Using a secondary index

 Primary index = row key
 Ensure uniqueness, speeds up access, can influence storage order

 Types:
 Expiring – with optional expiration date called TTL

 Can be queried

 Counter – to store a number that incrementally counts the occurrences
of a particular event or process
 E.g., to count the number of times a page is viewed

 Operation increment/decrement with a specified value

 Internally ensures consistency across all replicas

 Super – add another level of nesting
 To group multiple columns based on a common lookup value

Cassandra
Super columns

 super column – a column consisting of a map of columns
 It has a name and value involving the map of columns

 super column family – a column family consisting of
super columns
 vs. standard column family

{ name: "book:978-0767905923",

 value: { author: "Mitch Albon",

 title: "Tuesdays with Morrie",

 isbn: "978-0767905923" } }

Cassandra
Column Families

 A key must be specified

 Data types for columns can be specified

 Options can be specified

CREATE COLUMNFAMILY Fish (key blob PRIMARY KEY);

CREATE COLUMNFAMILY FastFoodEatings (user text PRIMARY KEY)

 WITH comparator=timestamp AND default_validation=int;

CREATE COLUMNFAMILY MonkeyTypes (

 KEY uuid PRIMARY KEY,

 species text,

 alias text,

 population varint

) WITH comment='Important biological records'

 AND read_repair_chance = 1.0;

Cassandra
Column Families

 Comparator = data type for a column name

 Validator = data type for a column (or row key) value

 Data types do not need to be defined
 Default: BytesType, i.e. arbitrary hexadecimal bytes

 Basic operations: GET, SET, DEL

 From new versions of Cassandra and CQL: new strategy
 But the capabilities remain the same

 i.e., we can still create tables with arbitrary columns

Column-Family Stores
Column Families – Example

CREATE COLUMNFAMILY users

with key_validation_class = 'UTF8Type'

 and comparator = 'UTF8Type'

 and column_metadata = [

 {column_name : 'name', validation_class : UTF8Type},

 {column_name : 'birth_year', validation_class : Int32Type}];

SET users['jbellis']['name'] = 'Jonathan Ellis';

SET users['jbellis']['birth_year'] = 1976;

SET users['jbellis']['home'] = long(1112223333);

SET users['jbellis']['work'] = long(2223334444);

GET users['jbellis'];

GET users['jbellis']['home'];

DEL users['jbellis']['home'];

DEL users['jbellis'];

different syntax (different version)

Column-Family Stores
Column Families – Best Practice

 Validators
 Define a default row key validator using property

key_validation_class

 Static column families:
 Define each column and its associated type

 Dynamic column families
 Column names are not known ahead

 Specify default_validation_class

 Comparators
 Within a row, columns are stored in sorted order by their column name

 Static column families:
 Typically strings

 Order unimportant

 Dynamic column families
 Order is usually important (e.g. timestamps)

http://www.datastax.com/docs/1.0/configuration/storage_configuration#key-validation-class

Cassandra
CQL – New Approach

 Cassandra query language

 SQL-like commands
 CREATE, ALTER, UPDATE, DROP, DELETE, TRUNCATE,

INSERT, …

 Much simpler than SQL
 Does not allow joins or subqueries

 Where clauses are simple

 …

 Different approach than column families (since CQL 3
called tables)
 More general

 Closer to key/value and document databases

Cassandra
CQL Data Types

ascii ASCII character string

bigint 64-bit signed long

blob Arbitrary bytes (no validation)

boolean true or false

counter Counter column (64-bit long)

decimal Variable-precision decimal

double 64-bit IEEE-754 floating point

float 32-bit IEEE-754 floating point

int 32-bit signed int

text UTF8 encoded string

timestamp A timestamp

uuid Type 1 or type 4 UUID

varchar UTF8 encoded string

varint Arbitrary-precision integer

Cassandra
Working with a Key Space

CREATE KEYSPACE Excelsior

WITH replication = {'class': 'SimpleStrategy',

 'replication_factor' : 3};

 Create a key space with a specified replication strategy and parameters

USE Excelsior;

 Set a keyspace as the current working keyspace

ALTER KEYSPACE Excelsior

WITH replication = {'class': 'SimpleStrategy',

 'replication_factor' : 4};

 Alter the properties of an existing keyspace

DROP KEYSPACE Excelsior;

 Drop a keyspace

Cassandra
Working with a Table – Primary Key

CREATE TABLE timeline (

 userid uuid,

 posted_month int,

 posted_time uuid,

 body text,

 posted_by text,

 PRIMARY KEY (userid, posted_month, posted_time))

WITH compaction = { 'class' : 'LeveledCompactionStrategy' };

 Creating a table with name, columns and other options

 Primary key is compulsory
 Partition key = the first column (or a set of columns if parenthesised)

 Records are stored on the same node

 Clustering columns
 Determine per-partition clustering, i.e., the order for physical storing rows

Cassandra
Working with a Table – Column Expiration

CREATE TABLE excelsior.clicks (

 userid uuid,

 url text,

 date timestamp,

 name text,

 PRIMARY KEY (userid, url));

INSERT INTO excelsior.clicks (userid, url, date, name)

VALUES (3715e600-2eb0-11e2-81c1-0800200c9a66,
'http://apache.org', '2013-10-09', 'Mary')

USING TTL 86400;

 When the data will expire

SELECT TTL (name) from excelsior.clicks

 WHERE url = 'http://apache.org' ALLOW FILTERING;

 Determine how much longer the data has to live

Cassandra
Working with a Table – Collections

 Collection types:

 set – unordered unique values

 Returned in alphabetical order, when queried

 list – ordered list of elements

 Can store the same value multiple times

 Returned sorted according to index value in the list

 map – name + value pairs

 Each element is internally stored as one Cassandra column

 Each element can have an individual time-to-live

Cassandra
Working with a Table – Set

CREATE TABLE users (

 user_id text PRIMARY KEY,

 first_name text,

 last_name text,

 emails set<text>);

INSERT INTO users (user_id, first_name, last_name, emails)

VALUES('frodo', 'Frodo', 'Baggins', {'f@baggins.com', 'baggins@gmail.com'});

UPDATE users SET emails = emails + {'fb@friendsofmordor.org'}

WHERE user_id = 'frodo';

SELECT user_id, emails FROM users WHERE user_id = 'frodo';

UPDATE users SET emails = emails – {'fb@friendsofmordor.org'}

WHERE user_id = 'frodo';

UPDATE users SET emails = {} WHERE user_id = 'frodo';

order

Cassandra
Working with a Table – List

ALTER TABLE users ADD top_places list<text>;

UPDATE users SET top_places = ['rivendell', 'rohan']

WHERE user_id = 'frodo';

UPDATE users SET top_places = ['the shire'] + top_places

WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places + ['mordor']

WHERE user_id = 'frodo';

UPDATE users SET top_places[2] = 'riddermark'

WHERE user_id = 'frodo';

DELETE top_places[3] FROM users WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places – ['riddermark']

WHERE user_id = 'frodo';

Cassandra
Working with a Table – Map

ALTER TABLE users ADD todo map<timestamp, text>;

UPDATE users SET todo = { '2012-9-24' : 'enter mordor',

'2012-10-2 12:00' : 'throw ring into mount doom' }

WHERE user_id = 'frodo';

UPDATE users SET todo['2012-10-2 12:00'] =

'throw my precious into mount doom‘

WHERE user_id = 'frodo';

INSERT INTO users (todo) VALUES ({

'2013-9-22 12:01' : 'birthday wishes to Bilbo',

'2013-10-1 18:00' : 'Check into Inn of Prancing Pony' });

DELETE todo['2012-9-24'] FROM users

WHERE user_id = 'frodo';

Cassandra
Working with a Table

DROP TABLE timeline;

 Delete a table including all data

TRUNCATE timeline;

 Remove all data from a table

CREATE INDEX userIndex ON timeline (posted_by);

 Create a (secondary) index

 Allow efficient querying of other columns than key

DROP INDEX userIndex;

 Drop an index

Cassandra
Querying

 Remember: no joins, just simple conditions
 For simple data reads

SELECT * FROM users

WHERE first_name = 'jane' and last_name='smith';

 Filtering (WHERE)

SELECT * FROM emp

WHERE empID IN (130,104)

ORDER BY deptID DESC;

 Ordering (ORDER BY)

Cassandra
Querying

SELECT select_expression

FROM keyspace_name.table_name

WHERE relation AND relation ...

ORDER BY (clustering_key (ASC | DESC)...)

LIMIT n

ALLOW FILTERING

 select_expression:
 List of columns
 DISTINCT

 COUNT

 Aliases (AS)

 TTL(column_name)

 WRITETIME(column_name)

optional

Cassandra
Querying

 relation:

 column_name (= | < | > | <= | >=) key_value

 column_name IN ((key_value,...))

 TOKEN (column_name, ...) (= | < | > | <= | >=)

 (term | TOKEN (term, ...))

 term:

 constant

 set/list/map

hash

Cassandra
Querying – ALLOW FILTERING

 Non-filtering queries
 Queries where we know that all records read will be

returned (maybe partly) in the result set

 Have predictable performance

 Attempt a potentially expensive (i.e., filtering)
query

 ALLOW FILTERING

 “We know what we are doing”

 Usually together with LIMIT n

Cassandra
Querying – ALLOW FILTERING

CREATE TABLE users (

 username text PRIMARY KEY,

 firstname text,

 lastname text,

 birth_year int,

 country text

);

CREATE INDEX ON users(birth_year);

SELECT * FROM users;

SELECT firstname, lastname FROM users

WHERE birth_year = 1981;

queries performance proportional

to the amount of data returned

Cassandra
Querying – ALLOW FILTERING

SELECT firstname, lastname

FROM users

WHERE birth_year = 1981 AND country = 'FR';

No guarantee that Cassandra won’t have to scan

large amount of data even if the result is small

SELECT firstname, lastname

FROM users

WHERE birth_year = 1981 AND country = 'FR'

ALLOW FILTERING;

More on

Internals

Cassandra
Writes

 A write is atomic at the row level

1. When a write occurs:
a. The data are stored in memory (memtable)

b. Writes are appended to commit log on disk
 Durability after HW failure

2. The more a table is used, the larger its memtable
needs to be
 Size > (configurable) threshold  the data is put in a queue to

be flushed to disk

3. The memtable data is flushed to SSTables on disk
 Sorted string table

4. Data in the commit log is purged after its corresponding
data in the memtable is flushed to the SSTable

Cassandra
Writes

 Memtables and SSTables are maintained per table

 SSTables are immutable
 A row is typically stored across multiple SSTable files

 Read must combine row fragments from SSTables and un-
flushed Memtables

 Memory structures for each SSTable:
 Partition index – a list of primary keys and the start position of

rows in the data file

 Partition summary – a subset of the partition index

 By default 1 primary key out of every 128 is sampled

 To speed up searching

Cassandra
Writes

Write example:
write (k1, c1:v1)

write (k2, c1:v1 c2:v2)

write (k1, c1:v4 c3:v3 c2:v2)

Memtable:
k1 c1:v4 c2:v2 c3:v3

k2 c1:v1 c2:v2

Commit log:
k1, c1:v1

k2, c1:v1 c2:v2

k1, c1:v4 c3:v3 c2:v2

SSTable:
k1 c1:v4 c2:v2 c3:v3

k2 c1:v1 c2:v2

• Data is sorted

• Column names are not repeated

After flushing memtable on disk

Cassandra
Write Request

 Goes to any node (coordinator)
 A proxy between the client application and the nodes

 Sends a write request to all replicas that own the row being written
 Write consistency level = how many replicas must respond with success

 Success = the data was written to commit log and memtable

 Example:
 10 node cluster, replication

 factor = 3, write consistency

 level = ONE

 The first node to complete the

 write responds back to coordinator

 Coordinator proxies the success

 message back to the client

Cassandra
Reads

 Types of read requests a coordinator can send to a
replica:
 Direct read request – limited by the read consistency level

 Background read repair request

 Steps:
1. The coordinator contacts replicas specified by the read

consistency level

 Sends requests to those that currently respond fastest

2. Data from replicas are compared to see if they are consistent

 The most recent data (based on timestamp) is used

3. Read repair: The coordinator contacts and compares the data
from all the remaining replicas that own the row in the
background

 If the replicas are inconsistent, the coordinator issues writes

Cassandra
Updates

 Insert and update operations are identical

 Any number of columns can be inserted/updated at the
same time

 Cassandra does not overwrite the rows
 It groups inserts/updates in the memtable

 See the example for writes

 Upsert = insert or update depending on the
(non)existence of the data  inserting a duplicate
primary key
 Columns are overwritten only if the timestamp in the new version

is more recent
 Timestamp is provided by the client  the clients should be

synchronized

 Otherwise the updates are stored into a new SSTable
 Merged periodically on background using compaction process

Cassandra
Updates

Cassandra
Deletes

 Delete of a row = a delete of its columns

 After an SSTable is written, it is immutable
 a deleted column is not removed immediately

 A tombstone is written
 A marker in a row that indicates a column was deleted

 Signals Cassandra to retry sending a delete request to a replica that
was down at the time of delete

 Columns marked with a tombstone exist for a (configurable) grace
period
 Defined per table

 When expires, the compaction process permanently deletes the column
 The same process that merges multiple SSTables

 If a node is down longer, the node can possibly miss the delete 
deleted data comes back up again
 Administrators must run regular node repair

Synchronizes and corrects all replicas

Cassandra
Compaction Process

 Cassandra does not insert/update/delete in place
 Inserts/updates = new timestamped version of the inserted/updated

data in another SSTable

 Delete = tombstone mark for data

 From time to time compaction has to be done

 Compaction steps:
1. Merging the data in each SSTable data by partition key

 Selecting the latest data for storage based on its timestamp
 We need synchronization!

 Remember: SSTables are sorted  random access is not needed

2. Evicting tombstones and removing deleted data

3. Consolidation of SSTables into a single file

4. Deleting old SSTable files
 As soon as any pending reads finish using the files

Cassandra
Compaction Process

Cassandra
Compaction Process

 Different strategies
 Can be specified per table

 Simple: trigger compaction when there are more than min_threshold
SSTables for a column family
 SizeTieredCompactionStrategy (default) – creates similar sized SSTables

 For write-intensive workloads

 DateTieredCompactionStrategy – stores data written within a certain
period of time in the same SSTable
 For time-series and expiring data

 Complex: LeveledCompactionStrategy
 Small fixed-sized (5MB by default) SSTables are organized into levels

 SSTables do not overlap within a level (= immediate compaction)

 When a level is filled up, another level is created
 Each new level is 10x larger

 For read-intensive workloads
 90% of all reads are satisfied from a single SSTable

 Assuming row sizes are nearly uniform

 In the worst case we read from all levels

Cassandra
Architecture

 Peer-to-peer distributed system
 Assumption: System and hardware failures can and do occur

 Coordinator = any node responsible for a particular client
operation

 Key components:
 Virtual nodes – assign data ownership to physical nodes

 Gossip – exchanging information across the cluster

 Partitioner – determines how to distribute the data across the
nodes

 Replica placement strategy – determines which nodes to place
replicas on

 Cluster – stores data partitions of a Cassandra ring

Cassandra

Virtual Nodes

 Allow each node to
own a large number
of small partition
ranges
 Easier for

adding/removing
nodes – the small
partition ranges are
simply transferred

 Still use consistent
hashing to distribute
data

Example: replication factor = 3

Cassandra
Gossip

 Gossip process
 Runs every second

 Exchanges state messages with up to 3 other nodes in the
cluster

 Enables to detect failures

 Gossiped message:
 Information about a gossiping node + other nodes that it knows

about

 Acquired:
 Directly = by direct communication

 Indirectly = second hand, third hand, …

 Has a version
 Older information is overwritten with the most current state

Cassandra
Partitioner

 Determines how data is distributed across the nodes
 Including replicas

 Hash function for computing the token (hash) of a row key

 Types of partitioners:
 Murmur3Partitioner (default) – uniformly distributes data across the

cluster based on MurmurHash hash values
 Non-cryptographic hash function

 Values from -263 to +263

 RandomPartitioner (default for previous versions) – uniformly
distributes data across the cluster based on MD5 hash values
 Values is from 0 to 2127 -1

 ByteOrderedPartitioner – orders rows lexically by key bytes
 “Hash” = hexadecimal representation of the leading character(s) in key

 Allows ordered scans by primary key

 Can have problems with load balancing

Cassandra
Replication

 All replicas are equally important
 There is no primary or master replica

 When replication factor exceeds the number of nodes,
writes are rejected
 Reads are served as long as the desired consistency level can

be met

 Replica placement strategies:
1. SimpleStrategy

 Places the first replica on a node determined by the partitioner

 Additional replicas are placed on the next nodes clockwise in the
ring

 For a single data center only

 We can divide the nodes into (optional racks forming) data centers

 Collection of related nodes, physical or virtual

Cassandra
Replication

2. NetworkTopologyStrategy

 Places replicas within a data center

 We set number of replicas per a data center

1. The first replica is placed according to the partitioner

2. Additional replicas are placed by walking the ring

clockwise until a node in a different rack is found

 Motivation: nodes in the same rack often fail at the same

 e.g., power, cooling, or network issue

3. If no such node exists, additional replicas are placed in

different nodes in the same rack

Cassandra
Replication – Examples

Data centers = 2

Total replication factor = 4

(set per data center)

Replicas assigned to different racks

http://www.datastax.com/docs/_images/network_strategy_replication_ring.png

Cassandra
Replication

 How many replicas to configure in each data

center?

 Compromise between:

1. Need for being able to satisfy reads locally

 Without cross data-center latency

2. Failure scenarios

 Most commonly: 2-3 replicas in each data center

 Can be asymmetric (= different replication factors for

different data centers)

Cassandra
Replication – Snitch

 Informs about the network topology
 Determines which data centers and racks are written to and read

from

 All nodes must have exactly the same snitch
configuration

 Various types:
 SimpleSnitch – does not recognize data centers/racks

 RackInferringSnitch – racks and data centers are assumed to
correspond to the 3rd and 2nd octet of the node's IP address

 PropertyFileSnitch – uses a user-defined description of the
network

 Dynamic snitching – monitors performance of reads, chooses
the best replica based on this history
 Special case: optimization of read requests

 …

References

 Eric Redmond – Jim R. Wilson: Seven Databases in Seven
Weeks: A Guide to Modern Databases and the NoSQL
Movement

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled: A Brief
Guide to the Emerging World of Polyglot Persistence

 Cassandra:
 Getting Started:

http://www.datastax.com/documentation/gettingstarted/index.html?page
name=docs&version=quick_start&file=quickstart

 CQL 3.1:
http://www.datastax.com/documentation/cql/3.1/webhelp/index.html

 Apache Cassandra 1.2
http://www.datastax.com/documentation/cassandra/1.2/webhelp/

 Apache Cassandra 2.0
http://www.datastax.com/documentation/cassandra/2.0/webhelp/

http://www.datastax.com/documentation/gettingstarted/index.html?pagename=docs&version=quick_start&file=quickstart
http://www.datastax.com/documentation/gettingstarted/index.html?pagename=docs&version=quick_start&file=quickstart
http://www.datastax.com/documentation/cql/3.1/webhelp/index.html
http://www.datastax.com/documentation/cassandra/1.2/webhelp/
http://www.datastax.com/documentation/cassandra/2.0/webhelp/

