
Big Data Management

and NoSQL Databases

Lecture 7. Column-family stores

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

NDBI040

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

Column-Family Stores
Basic Characteristics

 Also “columnar” or “column-oriented”

 Column families = rows that have many columns
associated with a row key

 Column families are groups of related data that is often
accessed together
 e.g., for a customer we access all profile information at the same

time, but not orders

Note: two different

meanings of

column-oriented!!

Column-Family Stores
Suitable Use Cases

Event Logging

 Ability to store any data structures → good choice to store event information

Content Management Systems, Blogging Platforms

 We can store blog entries with tags, categories, links, and trackbacks in
different columns

 Comments can be either stored in the same row or moved to a different
keyspace

 Blog users and the actual blogs can be put into different column families

Column-Family Stores
When Not to Use

Systems that Require ACID Transactions

 Column-family stores are not just a special kind of RDBMSs with
variable set of columns!

Aggregation of the Data Using Queries

 (such as SUM or AVG)

 Have to be done on the client side

For Early Prototypes

 We are not sure how the query patterns may change

 As the query patterns change, we have to change the column family
design

Column-Family Stores
Representatives

Google’s

BigTable

Apache Cassandra

 Developed at Facebook

 Initial release: 2008

 Stable release: 2013
 Apache Licence

 Written in: Java

 OS: cross-platform

 Operations:
 CQL (Cassandra Query Language)

 MapReduce support

 Can cooperate with Hadoop (data storage instead of HDFS)

http://cassandra.apache.org/

http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://cassandra.apache.org/

Cassandra
Terminology

 Column = basic unit, consists of a name-value pair
 Name serves as a key

 Stored with a timestamp (expired data, resolving conflicts, …)

 Row = a collection of columns attached or linked to a key

 Columns can be added to any row at any time without having to add it to
other rows

 Column family = a collection of similar rows

 Rows do not have to have the same columns

Usually

one per

application

3-tuple

Cassandra
Data Model – Example

 Column key of firstName and the value of Martin

{ name: "firstName",

 value: "Martin",

 timestamp: 12345667890 }

{ "pramod-sadalage" : {

 firstName: "Pramod",

 lastName: "Sadalage",

 lastVisit: "2012/12/12" }

 "martin-fowler" : {

 firstName: "Martin",

 lastName: "Fowler",

 location: "Boston" } }

 pramod-sadalage row and martin-fowler row with different columns;
both rows are a part of a column family

Cassandra
Column-families vs. Relations

 We do not need to model all of the columns up
front
 Each row is not required to have the same set of

columns

 Usually we assume similar sets of columns
 Related data

 Can be extended when needed

 No formal foreign keys
 Joining column families at query time is not supported

 We need to pre-compute the query / use a secondary
index

Other column

families /

secondary indexes

for special queries

Cassandra
Column-families

 Can define metadata about columns
 Actual columns of a row are determined by client application

 Each row can have a different set of columns

 Static – similar to a relational database table
 Rows have the same set of columns

 Not required to have all of the columns defined

 Dynamic – takes advantage of Cassandra's ability to use
arbitrary application-supplied column names
 Pre-computed result sets

 Stored in a single row for efficient data retrieval

 Row = a snapshot of data that satisfy a given query
 Like a materialized view

Cassandra
Column-families

static

dynamic

Users that subscribe to a particular user's blog

Cassandra
Columns

 Column is the smallest increment of data
 Name + value + timestamp

 Value can be empty (e.g., materialized views)

 Can be indexed on their name
 Using a secondary index

 Primary index = row key
 Ensure uniqueness, speeds up access, can influence storage order

 Types:
 Expiring – with optional expiration date called TTL

 Can be queried

 Counter – to store a number that incrementally counts the occurrences
of a particular event or process
 E.g., to count the number of times a page is viewed

 Operation increment/decrement with a specified value

 Internally ensures consistency across all replicas

 Super – add another level of nesting
 To group multiple columns based on a common lookup value

Cassandra
Super columns

 super column – a column consisting of a map of columns
 It has a name and value involving the map of columns

 super column family – a column family consisting of
super columns
 vs. standard column family

{ name: "book:978-0767905923",

 value: { author: "Mitch Albon",

 title: "Tuesdays with Morrie",

 isbn: "978-0767905923" } }

Cassandra
Column Families

 A key must be specified

 Data types for columns can be specified

 Options can be specified

CREATE COLUMNFAMILY Fish (key blob PRIMARY KEY);

CREATE COLUMNFAMILY FastFoodEatings (user text PRIMARY KEY)

 WITH comparator=timestamp AND default_validation=int;

CREATE COLUMNFAMILY MonkeyTypes (

 KEY uuid PRIMARY KEY,

 species text,

 alias text,

 population varint

) WITH comment='Important biological records'

 AND read_repair_chance = 1.0;

Cassandra
Column Families

 Comparator = data type for a column name

 Validator = data type for a column (or row key) value

 Data types do not need to be defined
 Default: BytesType, i.e. arbitrary hexadecimal bytes

 Basic operations: GET, SET, DEL

 From new versions of Cassandra and CQL: new strategy
 But the capabilities remain the same

 i.e., we can still create tables with arbitrary columns

Column-Family Stores
Column Families – Example

CREATE COLUMNFAMILY users

with key_validation_class = 'UTF8Type'

 and comparator = 'UTF8Type'

 and column_metadata = [

 {column_name : 'name', validation_class : UTF8Type},

 {column_name : 'birth_year', validation_class : Int32Type}];

SET users['jbellis']['name'] = 'Jonathan Ellis';

SET users['jbellis']['birth_year'] = 1976;

SET users['jbellis']['home'] = long(1112223333);

SET users['jbellis']['work'] = long(2223334444);

GET users['jbellis'];

GET users['jbellis']['home'];

DEL users['jbellis']['home'];

DEL users['jbellis'];

different syntax (different version)

Column-Family Stores
Column Families – Best Practice

 Validators
 Define a default row key validator using property

key_validation_class

 Static column families:
 Define each column and its associated type

 Dynamic column families
 Column names are not known ahead

 Specify default_validation_class

 Comparators
 Within a row, columns are stored in sorted order by their column name

 Static column families:
 Typically strings

 Order unimportant

 Dynamic column families
 Order is usually important (e.g. timestamps)

http://www.datastax.com/docs/1.0/configuration/storage_configuration#key-validation-class

Cassandra
CQL – New Approach

 Cassandra query language

 SQL-like commands
 CREATE, ALTER, UPDATE, DROP, DELETE, TRUNCATE,

INSERT, …

 Much simpler than SQL
 Does not allow joins or subqueries

 Where clauses are simple

 …

 Different approach than column families (since CQL 3
called tables)
 More general

 Closer to key/value and document databases

Cassandra
CQL Data Types

ascii ASCII character string

bigint 64-bit signed long

blob Arbitrary bytes (no validation)

boolean true or false

counter Counter column (64-bit long)

decimal Variable-precision decimal

double 64-bit IEEE-754 floating point

float 32-bit IEEE-754 floating point

int 32-bit signed int

text UTF8 encoded string

timestamp A timestamp

uuid Type 1 or type 4 UUID

varchar UTF8 encoded string

varint Arbitrary-precision integer

Cassandra
Working with a Key Space

CREATE KEYSPACE Excelsior

WITH replication = {'class': 'SimpleStrategy',

 'replication_factor' : 3};

 Create a key space with a specified replication strategy and parameters

USE Excelsior;

 Set a keyspace as the current working keyspace

ALTER KEYSPACE Excelsior

WITH replication = {'class': 'SimpleStrategy',

 'replication_factor' : 4};

 Alter the properties of an existing keyspace

DROP KEYSPACE Excelsior;

 Drop a keyspace

Cassandra
Working with a Table – Primary Key

CREATE TABLE timeline (

 userid uuid,

 posted_month int,

 posted_time uuid,

 body text,

 posted_by text,

 PRIMARY KEY (userid, posted_month, posted_time))

WITH compaction = { 'class' : 'LeveledCompactionStrategy' };

 Creating a table with name, columns and other options

 Primary key is compulsory
 Partition key = the first column (or a set of columns if parenthesised)

 Records are stored on the same node

 Clustering columns
 Determine per-partition clustering, i.e., the order for physical storing rows

Cassandra
Working with a Table – Column Expiration

CREATE TABLE excelsior.clicks (

 userid uuid,

 url text,

 date timestamp,

 name text,

 PRIMARY KEY (userid, url));

INSERT INTO excelsior.clicks (userid, url, date, name)

VALUES (3715e600-2eb0-11e2-81c1-0800200c9a66,
'http://apache.org', '2013-10-09', 'Mary')

USING TTL 86400;

 When the data will expire

SELECT TTL (name) from excelsior.clicks

 WHERE url = 'http://apache.org' ALLOW FILTERING;

 Determine how much longer the data has to live

Cassandra
Working with a Table – Collections

 Collection types:

 set – unordered unique values

 Returned in alphabetical order, when queried

 list – ordered list of elements

 Can store the same value multiple times

 Returned sorted according to index value in the list

 map – name + value pairs

 Each element is internally stored as one Cassandra column

 Each element can have an individual time-to-live

Cassandra
Working with a Table – Set

CREATE TABLE users (

 user_id text PRIMARY KEY,

 first_name text,

 last_name text,

 emails set<text>);

INSERT INTO users (user_id, first_name, last_name, emails)

VALUES('frodo', 'Frodo', 'Baggins', {'f@baggins.com', 'baggins@gmail.com'});

UPDATE users SET emails = emails + {'fb@friendsofmordor.org'}

WHERE user_id = 'frodo';

SELECT user_id, emails FROM users WHERE user_id = 'frodo';

UPDATE users SET emails = emails – {'fb@friendsofmordor.org'}

WHERE user_id = 'frodo';

UPDATE users SET emails = {} WHERE user_id = 'frodo';

order

Cassandra
Working with a Table – List

ALTER TABLE users ADD top_places list<text>;

UPDATE users SET top_places = ['rivendell', 'rohan']

WHERE user_id = 'frodo';

UPDATE users SET top_places = ['the shire'] + top_places

WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places + ['mordor']

WHERE user_id = 'frodo';

UPDATE users SET top_places[2] = 'riddermark'

WHERE user_id = 'frodo';

DELETE top_places[3] FROM users WHERE user_id = 'frodo';

UPDATE users SET top_places = top_places – ['riddermark']

WHERE user_id = 'frodo';

Cassandra
Working with a Table – Map

ALTER TABLE users ADD todo map<timestamp, text>;

UPDATE users SET todo = { '2012-9-24' : 'enter mordor',

'2012-10-2 12:00' : 'throw ring into mount doom' }

WHERE user_id = 'frodo';

UPDATE users SET todo['2012-10-2 12:00'] =

'throw my precious into mount doom‘

WHERE user_id = 'frodo';

INSERT INTO users (todo) VALUES ({

'2013-9-22 12:01' : 'birthday wishes to Bilbo',

'2013-10-1 18:00' : 'Check into Inn of Prancing Pony' });

DELETE todo['2012-9-24'] FROM users

WHERE user_id = 'frodo';

Cassandra
Working with a Table

DROP TABLE timeline;

 Delete a table including all data

TRUNCATE timeline;

 Remove all data from a table

CREATE INDEX userIndex ON timeline (posted_by);

 Create a (secondary) index

 Allow efficient querying of other columns than key

DROP INDEX userIndex;

 Drop an index

Cassandra
Querying

 Remember: no joins, just simple conditions
 For simple data reads

SELECT * FROM users

WHERE first_name = 'jane' and last_name='smith';

 Filtering (WHERE)

SELECT * FROM emp

WHERE empID IN (130,104)

ORDER BY deptID DESC;

 Ordering (ORDER BY)

Cassandra
Querying

SELECT select_expression

FROM keyspace_name.table_name

WHERE relation AND relation ...

ORDER BY (clustering_key (ASC | DESC)...)

LIMIT n

ALLOW FILTERING

 select_expression:
 List of columns
 DISTINCT

 COUNT

 Aliases (AS)

 TTL(column_name)

 WRITETIME(column_name)

optional

Cassandra
Querying

 relation:

 column_name (= | < | > | <= | >=) key_value

 column_name IN ((key_value,...))

 TOKEN (column_name, ...) (= | < | > | <= | >=)

 (term | TOKEN (term, ...))

 term:

 constant

 set/list/map

hash

Cassandra
Querying – ALLOW FILTERING

 Non-filtering queries
 Queries where we know that all records read will be

returned (maybe partly) in the result set

 Have predictable performance

 Attempt a potentially expensive (i.e., filtering)
query

 ALLOW FILTERING

 “We know what we are doing”

 Usually together with LIMIT n

Cassandra
Querying – ALLOW FILTERING

CREATE TABLE users (

 username text PRIMARY KEY,

 firstname text,

 lastname text,

 birth_year int,

 country text

);

CREATE INDEX ON users(birth_year);

SELECT * FROM users;

SELECT firstname, lastname FROM users

WHERE birth_year = 1981;

queries performance proportional

to the amount of data returned

Cassandra
Querying – ALLOW FILTERING

SELECT firstname, lastname

FROM users

WHERE birth_year = 1981 AND country = 'FR';

No guarantee that Cassandra won’t have to scan

large amount of data even if the result is small

SELECT firstname, lastname

FROM users

WHERE birth_year = 1981 AND country = 'FR'

ALLOW FILTERING;

More on

Internals

Cassandra
Writes

 A write is atomic at the row level

1. When a write occurs:
a. The data are stored in memory (memtable)

b. Writes are appended to commit log on disk
 Durability after HW failure

2. The more a table is used, the larger its memtable
needs to be
 Size > (configurable) threshold the data is put in a queue to

be flushed to disk

3. The memtable data is flushed to SSTables on disk
 Sorted string table

4. Data in the commit log is purged after its corresponding
data in the memtable is flushed to the SSTable

Cassandra
Writes

 Memtables and SSTables are maintained per table

 SSTables are immutable
 A row is typically stored across multiple SSTable files

 Read must combine row fragments from SSTables and un-
flushed Memtables

 Memory structures for each SSTable:
 Partition index – a list of primary keys and the start position of

rows in the data file

 Partition summary – a subset of the partition index

 By default 1 primary key out of every 128 is sampled

 To speed up searching

Cassandra
Writes

Write example:
write (k1, c1:v1)

write (k2, c1:v1 c2:v2)

write (k1, c1:v4 c3:v3 c2:v2)

Memtable:
k1 c1:v4 c2:v2 c3:v3

k2 c1:v1 c2:v2

Commit log:
k1, c1:v1

k2, c1:v1 c2:v2

k1, c1:v4 c3:v3 c2:v2

SSTable:
k1 c1:v4 c2:v2 c3:v3

k2 c1:v1 c2:v2

• Data is sorted

• Column names are not repeated

After flushing memtable on disk

Cassandra
Write Request

 Goes to any node (coordinator)
 A proxy between the client application and the nodes

 Sends a write request to all replicas that own the row being written
 Write consistency level = how many replicas must respond with success

 Success = the data was written to commit log and memtable

 Example:
 10 node cluster, replication

 factor = 3, write consistency

 level = ONE

 The first node to complete the

 write responds back to coordinator

 Coordinator proxies the success

 message back to the client

Cassandra
Reads

 Types of read requests a coordinator can send to a
replica:
 Direct read request – limited by the read consistency level

 Background read repair request

 Steps:
1. The coordinator contacts replicas specified by the read

consistency level

 Sends requests to those that currently respond fastest

2. Data from replicas are compared to see if they are consistent

 The most recent data (based on timestamp) is used

3. Read repair: The coordinator contacts and compares the data
from all the remaining replicas that own the row in the
background

 If the replicas are inconsistent, the coordinator issues writes

Cassandra
Updates

 Insert and update operations are identical

 Any number of columns can be inserted/updated at the
same time

 Cassandra does not overwrite the rows
 It groups inserts/updates in the memtable

 See the example for writes

 Upsert = insert or update depending on the
(non)existence of the data inserting a duplicate
primary key
 Columns are overwritten only if the timestamp in the new version

is more recent
 Timestamp is provided by the client the clients should be

synchronized

 Otherwise the updates are stored into a new SSTable
 Merged periodically on background using compaction process

Cassandra
Updates

Cassandra
Deletes

 Delete of a row = a delete of its columns

 After an SSTable is written, it is immutable
 a deleted column is not removed immediately

 A tombstone is written
 A marker in a row that indicates a column was deleted

 Signals Cassandra to retry sending a delete request to a replica that
was down at the time of delete

 Columns marked with a tombstone exist for a (configurable) grace
period
 Defined per table

 When expires, the compaction process permanently deletes the column
 The same process that merges multiple SSTables

 If a node is down longer, the node can possibly miss the delete
deleted data comes back up again
 Administrators must run regular node repair

Synchronizes and corrects all replicas

Cassandra
Compaction Process

 Cassandra does not insert/update/delete in place
 Inserts/updates = new timestamped version of the inserted/updated

data in another SSTable

 Delete = tombstone mark for data

 From time to time compaction has to be done

 Compaction steps:
1. Merging the data in each SSTable data by partition key

 Selecting the latest data for storage based on its timestamp
 We need synchronization!

 Remember: SSTables are sorted random access is not needed

2. Evicting tombstones and removing deleted data

3. Consolidation of SSTables into a single file

4. Deleting old SSTable files
 As soon as any pending reads finish using the files

Cassandra
Compaction Process

Cassandra
Compaction Process

 Different strategies
 Can be specified per table

 Simple: trigger compaction when there are more than min_threshold
SSTables for a column family
 SizeTieredCompactionStrategy (default) – creates similar sized SSTables

 For write-intensive workloads

 DateTieredCompactionStrategy – stores data written within a certain
period of time in the same SSTable
 For time-series and expiring data

 Complex: LeveledCompactionStrategy
 Small fixed-sized (5MB by default) SSTables are organized into levels

 SSTables do not overlap within a level (= immediate compaction)

 When a level is filled up, another level is created
 Each new level is 10x larger

 For read-intensive workloads
 90% of all reads are satisfied from a single SSTable

 Assuming row sizes are nearly uniform

 In the worst case we read from all levels

Cassandra
Architecture

 Peer-to-peer distributed system
 Assumption: System and hardware failures can and do occur

 Coordinator = any node responsible for a particular client
operation

 Key components:
 Virtual nodes – assign data ownership to physical nodes

 Gossip – exchanging information across the cluster

 Partitioner – determines how to distribute the data across the
nodes

 Replica placement strategy – determines which nodes to place
replicas on

 Cluster – stores data partitions of a Cassandra ring

Cassandra

Virtual Nodes

 Allow each node to
own a large number
of small partition
ranges
 Easier for

adding/removing
nodes – the small
partition ranges are
simply transferred

 Still use consistent
hashing to distribute
data

Example: replication factor = 3

Cassandra
Gossip

 Gossip process
 Runs every second

 Exchanges state messages with up to 3 other nodes in the
cluster

 Enables to detect failures

 Gossiped message:
 Information about a gossiping node + other nodes that it knows

about

 Acquired:
 Directly = by direct communication

 Indirectly = second hand, third hand, …

 Has a version
 Older information is overwritten with the most current state

Cassandra
Partitioner

 Determines how data is distributed across the nodes
 Including replicas

 Hash function for computing the token (hash) of a row key

 Types of partitioners:
 Murmur3Partitioner (default) – uniformly distributes data across the

cluster based on MurmurHash hash values
 Non-cryptographic hash function

 Values from -263 to +263

 RandomPartitioner (default for previous versions) – uniformly
distributes data across the cluster based on MD5 hash values
 Values is from 0 to 2127 -1

 ByteOrderedPartitioner – orders rows lexically by key bytes
 “Hash” = hexadecimal representation of the leading character(s) in key

 Allows ordered scans by primary key

 Can have problems with load balancing

Cassandra
Replication

 All replicas are equally important
 There is no primary or master replica

 When replication factor exceeds the number of nodes,
writes are rejected
 Reads are served as long as the desired consistency level can

be met

 Replica placement strategies:
1. SimpleStrategy

 Places the first replica on a node determined by the partitioner

 Additional replicas are placed on the next nodes clockwise in the
ring

 For a single data center only

 We can divide the nodes into (optional racks forming) data centers

 Collection of related nodes, physical or virtual

Cassandra
Replication

2. NetworkTopologyStrategy

 Places replicas within a data center

 We set number of replicas per a data center

1. The first replica is placed according to the partitioner

2. Additional replicas are placed by walking the ring

clockwise until a node in a different rack is found

 Motivation: nodes in the same rack often fail at the same

 e.g., power, cooling, or network issue

3. If no such node exists, additional replicas are placed in

different nodes in the same rack

Cassandra
Replication – Examples

Data centers = 2

Total replication factor = 4

(set per data center)

Replicas assigned to different racks

http://www.datastax.com/docs/_images/network_strategy_replication_ring.png

Cassandra
Replication

 How many replicas to configure in each data

center?

 Compromise between:

1. Need for being able to satisfy reads locally

 Without cross data-center latency

2. Failure scenarios

 Most commonly: 2-3 replicas in each data center

 Can be asymmetric (= different replication factors for

different data centers)

Cassandra
Replication – Snitch

 Informs about the network topology
 Determines which data centers and racks are written to and read

from

 All nodes must have exactly the same snitch
configuration

 Various types:
 SimpleSnitch – does not recognize data centers/racks

 RackInferringSnitch – racks and data centers are assumed to
correspond to the 3rd and 2nd octet of the node's IP address

 PropertyFileSnitch – uses a user-defined description of the
network

 Dynamic snitching – monitors performance of reads, chooses
the best replica based on this history
 Special case: optimization of read requests

 …

References

 Eric Redmond – Jim R. Wilson: Seven Databases in Seven
Weeks: A Guide to Modern Databases and the NoSQL
Movement

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled: A Brief
Guide to the Emerging World of Polyglot Persistence

 Cassandra:
 Getting Started:

http://www.datastax.com/documentation/gettingstarted/index.html?page
name=docs&version=quick_start&file=quickstart

 CQL 3.1:
http://www.datastax.com/documentation/cql/3.1/webhelp/index.html

 Apache Cassandra 1.2
http://www.datastax.com/documentation/cassandra/1.2/webhelp/

 Apache Cassandra 2.0
http://www.datastax.com/documentation/cassandra/2.0/webhelp/

http://www.datastax.com/documentation/gettingstarted/index.html?pagename=docs&version=quick_start&file=quickstart
http://www.datastax.com/documentation/gettingstarted/index.html?pagename=docs&version=quick_start&file=quickstart
http://www.datastax.com/documentation/cql/3.1/webhelp/index.html
http://www.datastax.com/documentation/cassandra/1.2/webhelp/
http://www.datastax.com/documentation/cassandra/2.0/webhelp/

