Big Data Management

and NoSQL Databases

Lecture 7. Column-family stores

Doc. RNDr. Irena Holubova, Ph.D.

holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

" J
Column-Family Stores

Basic Characteristics

| Note: two different
meanings of
column-oriented!!

m Also “columnar’” or “column-oriented”

] | = rows that have many columns
associlated with a

m Column families are groups of related data that is often
accessed together

e.g., for a customer we access all profile information at the same
time, but not orders

Column fam11y

,/

[’/ Row Columnl Column2 ColumnN

\‘. Keyx namel valuel valueZ) (nameN valueN)
/

/

’, Row Columnl ColumnN

“\ KeyY (namel:valuel) \(name9: value9 nameN: valueN

" J
Column-Family Stores

Suitable Use Cases

appName: Atlas eventName: Login appUser:wspirk

Event Logging
m Ability to store any data structures — good choice to store event information
Content Management Systems, Blogging Platforms

m We can store blog entries with tags, categories, links, and trackbacks in
different columns

m Comments can be either stored in the same row or moved to a different
keyspace
m Blog users and the actual blogs can be put into different column families

Column-Family Stores
When Not to Use

Systems that Require ACID Transactions

m Column-family stores are not just a special kind of RDBMSs with
variable set of columns!

Aggregation of the Data Using Queries

m (such as SUM or AVG)

m Have to be done on the client side

For Early Prototypes

m We are not sure how the query patterns may change

L Q\s the query patterns change, we have to change the column family
esign

" J
Column-Family Stores

Representatives
Google’s /1 !2»5 ?
BigTable

HBASE Cassahdrv

5 &
Bl HYPERTABLE "% Simples

Apache Cassandra CH&

cassandra
m Developed at Facebook

m |nitial release: 2008

m Stable release: 2013
Apache Licence

m Written in: Java
m OS: cross-platform

m Operations:
CQL (Cassandra Query Language)
MapReduce support
m Can cooperate with Hadoop (data storage instead of HDFS)

http://cassandra.apache.orq/

http://en.wikipedia.org/wiki/File:Cassandra_logo.svg
http://cassandra.apache.org/

=
Cassandra

Terminology

RDBMS Cassandra

database instance cluster Usua”y
one per

database keyspace application

table column family

row row

column (same for all rows) column (can be different per row)

O = basic unit, consists of a name-value pairz 3-tuple

Name serves as a key
Stored with a timestamp (expired data, resolving conflicts, ...)

N = a collection of columns attached or linked to a key
Columns can be added to any row at any time without having to add it to
other rows
_ o of i " coumn _came |
0 = a collection of similar rows TR

value

Rows do not have to have the same columns

timestamp

" A
Cassandra
Data Model — Example

ame: "firstName",
value: "Martin",

imestamp: 12345667890
m Column key of and the value of
{ "pramod-sadalage" : {

firstName: "Pramod",

lastName: "Sadalage",

lastVisit: "2012/12/12" }
"martin—-fow
firstName:

"Martin"

location: "Boston" } }

m pramod-sadalage row and row with different columns;
both rows are a part of a column family

Cassandra
Column-families vs. Relations

m We do not need to model all of the columns up
front

Each row is not required to have the same set of
columns

Usually we assume similar sets of columns

m Related data
m Can be extended when needed

m No formal foreign keys
Joining column families at query time is not supported

We need to pre-compute the query / use a secondary
Index

jbellis

Teday | ...

dhutch

egilmore

lam ..

This i ...

sports

fashion

technology

blog keyspace

body user

category

6alb483 et
| Thisis.. | egimore | sports |

jbeellis dhutch egilmore jellis dhutch egilmore

dhutch jbellis dhiutch egilmore dhutch

egilmaore jbellis egilmore jbellis

Other column
1289847840615 fam I I €S /

jbellis secondary indexes

1289847840615 for special queries

dhutch
dd18ab6

1289847844275

&g Imore
GalbdB3

" A
Cassandra

Column-families

m Can define metadata about columns
Actual columns of a row are determined by client application
Each row can have a different set of columns

] — similar to a relational database table

Rows have the same set of columns
Not required to have all of the columns defined

O — takes advantage of Cassandra's ability to use
arbitrary application-supplied column names
Pre-computed result sets
Stored in a single row for efficient data retrieval

Row = a snapshot of data that satisfy a given query
m Like a materialized view

"

Cassandra

Column-families

row key columns ...

marme

jonathan

Mdme

Mmame
egilmore

address

jpEds.com 123 main

static

email

dhuteh
daria dhi@ds.com

email

address state

45 20 5.

Ca

columns ...

dhutch egilmore

row key

datastax MICassie
joellis

egilmore

dhutch

dr:ltl_'|5rll:|:q| MEICasse
egilmore

Users that subscribe to a particular user's blog

" A
Cassandra

Columns Hmestame

m Column is the smallest increment of data
Name + value + timestamp
Value can be empty (e.g., materialized views)

m Can be indexed on their name
Using a secondary index

Primary index = row key
m Ensure uniqueness, speeds up access, can influence storage order

m Types:
— with optional expiration date called TTL
m Can be queried
— to store a number that incrementally counts the occurrences
of a particular event or process

s E.g., to count the number of times a page is viewed
m Operation increment/decrement with a specified value value

m Internally ensures consistency across all replicas
— add another level of nesting
m To group multiple columns based on a common lookup value

" JEE
Cassandra
Super columns

{

name: "book:978-0767905923",
value: { author: "Mitch Albon",
title: "Tuesdays with Morrie",

value value value

timestamp timestamp timestamp

super column —a column consisting of a map of columns
1 It has a name and value involving the map of columns
super column family — a column family consisting of
super columns
1 vs. standard column family

12898478 12898478 [12838478

2dbehs dd18a66 Galbag3 dd1Babb

" A
Cassandra

Column Families

m A key must be specified
m Data types for columns can be specified
m Options can be specified

CREATE COLUMNFAMILY Fish () 5
CREATE COLUMNFAMILY FastFoodEatings (
WITH comparator=timestamp AND default validation=int;

CREATE COLUMNFAMILY MonkeyTypes (

) WITH comment='Important biological records'
AND read repair chance = 1.0;

" A
Cassandra

Column Families

= data type for a column name
= data type for a column (or row key) value

m Data types do not need to be defined
Default: BytesType, I.e. arbitrary hexadecimal bytes

m Basic operations: GET, SET, DEL

m From new versions of Cassandra and CQL: new strategy

But the capabilities remain the same
m i.e., we can still create tables with arbitrary columns

" J
Column-Family Stores

Column Families — Example

different syntax (different version)

CREATE COLUMNFAMILY use;;_:zi//////,

with key validation class = 'UTF8Type'
and comparator = 'UTF8Type'
and column metadata = |
{column name : ' ', validation class : UTF8Type},
{column name : 'birth year', validation class : Int32Type}];
SET users|['jbellis'][' '] = '"Jonathan Ellis'
SET users|['jbellis']['birth year'] = 1976;
SET users|['jbellis']['home'] = long(1112223333);
SET users|['jbellis']['work'] = long(2223334444);
GET users|['jbellis'];
GET users|['jbellis']['home'];
DEL users|['jbellis']['home'];

DEL users|['jbellis'];

" J
Column-Family Stores

Column Families — Best Practice

m Validators

Define a default row key validator using property
key validation class

Static column families:

m Define each column and its associated type
Dynamic column families

s Column names are not known ahead

m Specify default validation class

m Comparators
Within a row, columns are stored in sorted order by their column name

Static column families:
m Typically strings
m Order unimportant
Dynamic column families
m Order is usually important (e.g. timestamps)

http://www.datastax.com/docs/1.0/configuration/storage_configuration#key-validation-class

Cassandra
— New Approach

m Cassandra gquery language

m SQL-like commands

CREATE, ALTER, UPDATE, DROP, DELETE, TRUNCATE,
INSERT, ...

m Much simpler than SQL
Does not allow joins or subqueries
Where clauses are simple

m Different approach than column families (since CQL 3
called)
More general
Closer to key/value and document databases

Cassandra
CQL Data Types

ascii ASCII character string
bigint 64-bit signed long

blob Arbitrary bytes (no validation)
boolean true or false

counter Counter column (64-bit long)
decimal Variable-precision decimal
double 64-bit IEEE-754 floating point
float 32-bit IEEE-754 floating point
int 32-bit signed int

text UTF8 encoded string
timestamp A timestamp

uuid Type 1 or type 4 UUID
varchar UTF8 encoded string
varint Arbitrary-precision integer

Cassandra
Working with a Key Space

CREATE KEYSPACE Excelsior

WITH replication = {'class': 'SimpleStrategy',
'replication factor' : 3};

m Create a key space with a specified replication strategy and parameters

USE Excelsior;
m Set a keyspace as the current working keyspace

ALTER KEYSPACE Excelsior

WITH replication = {'class': 'SimpleStrategy',
'replication factor' : 4};

m Alter the properties of an existing keyspace

DROP KEYSPACE Excelsior;
m Drop a keyspace

Cassandra
Working with a Table —

CREATE TABLE timeline (
userid uuid,
posted month int,
posted time uuid,
body text,
posted by text,
(userid, posted month, posted time))
WITH compaction = { 'class' : 'LeveledCompactionStrategy' };

m Creating a table with name, columns and other options

m Primary key is compulsory

= the first column (or a set of columns if parenthesised)
m Records are stored on the same node

m Determine per-partition clustering, i.e., the order for physical storing rows

Cassandra
Working with a Table —

CREATE TABLE excelsior.clicks (
userid uuid,
url text,
date timestamp,
name text,
PRIMARY KEY (userid, url));

INSERT INTO excelsior.clicks (userid, url, date, name)
VALUES (3715e600-2eb0-11e2-81c1-0800200c9%a060,
'http://apache.org', '2013-10-09', 'Mary')

m When the data will expire

SELECT (name) from excelsior.clicks
WHERE url = 'http://apache.org' ALLOW FILTERING;
m Determine how much longer the data has to live

ttl (nam=)

d G

4 20

Cassandra
Working with a Table —

m Collection types:

set — unordered unigue values
m Returned in alphabetical order, when queried

list — ordered list of elements

m Can store the same value multiple times

m Returned sorted according to index value in the list
map — name + value pairs

m Each element is internally stored as one Cassandra column
m Each element can have an individual time-to-live

Cassandra
Working with a Table —

CREATE TABLE users (
user id text PRIMARY KEY,
first name text,
last name text,

) ;

INSERT INTO users (user id, first name, last name, emails)
VALUES ('frodo', 'Frodo', 'Baggins', 'f@baggins.com', 'baggins@gmail.com'});

UPDATE users SET emailils = emails 'fb@friendsofmordor.org'
WHERE user 1d = 'frodo';

SELECT user id, emails FROM users WHERE user id = 'frodo'; ‘4114 g
ordaer

user id | emails
_________ +___

frodo | {"pagginsfcaramail.com”, "flbaggins.com™, "fo@friendsofmordor.org™}
UPDATE users SET emails = emails - {'fb@friendsofmordor.org'
WHERE user id = 'frodo';

UPDATE users SET emails = WHERE user_id = 'frodo';

Cassandra
Working with a Table —

ALTER TABLE users ADD top places ;

UPDATE users SET top places = 'rivendell', 'rohan'

WHERE user 1d = 'frodo';

UPDATE users SET top places = 'the shire' top places
WHERE user 1d = 'frodo';

UPDATE users SET top places = top places 'mordor’
WHERE user 1d = 'frodo';

UPDATE users SET top places = 'riddermark'

WHERE user 1d = 'frodo';

DELETE top places FROM users WHERE user id = 'frodo';
UPDATE users SET top places = top places - ['riddermark'

WHERE user id = 'frodo';

Cassandra
Working with a Table —

ALTER TABLE users ADD

UPDATE users SET todo = '2012-9-24" : 'enter mordor',
'2012-10-2 12:00'" : '"throw ring into mount doom'
WHERE user i1d = 'frodo';

UPDATE users SET todo['2012-10-2 12:00'] =
'"throw my precious into mount doom®
WHERE user id = 'frodo';

INSERT INTO users (todo) VALUES (
'2013-9-22 12:01"'" : 'birthday wishes to Bilbo',
'2013-10-1 18:00" : 'Check into Inn of Prancing Pony' 1});

DELETE todo['2012-9-24"] FROM users
WHERE user id = 'frodo';

" A
Cassandra
Working with a Table

DROP TABLE timeline;
m Delete a table including all data

TRUNCATE timeline;
m Remove all data from a table

CREATE INDEX userIndex ON timeline (posted by);
m Create a (secondary) index
m Allow efficient querying of other columns than key

DROP INDEX userIndex;
m Drop an index

" A
Cassandra
Querying

m Remember: no joins, just simple conditions
For simple data reads

SELECT * FROM users
WHERE first name = 'jane' last name='smith';
m Filtering (WHERE)

SELECT * FROM emp

WHERE empID (130,104)
ORDER BY deptID DESC;

m Ordering (ORDER BY)

" A
Cassandra
Querying

optional
SELECT select expreseson

FROM keyspace name.table name
WHERE relation AND relation

ORDER BY (clustering key (ASC | DESC)...

LIMIT n
ALLOW FILTERING

B select expression:
List of columns
DISTINCT
COUNT
Aliases (AS)
TTL (column name)
WRITETIME (column name)

" A
Cassandra
Querying

mrelation:
column_name (=|<|>]|<=|>=) key _value

hash | 1 column_name IN ((key value,...))
TOKEN (column_name, ...) (= <|>|<=]|>=)
(term | TOKEN (term, ...))
B term:

constant
set/list/map

Cassandra
Querying — ALLOW FILTERING

m gueries

Queries where we know that all records read will be
returned (maybe partly) in the result set

Have predictable performance
m Attempt a potentially expensive (i.e.,)
guery
B ALLOW FILTERING

“We know what we are doing”
Usually together with LIMIT n

Cassandra
Querying — ALLOW FILTERING

CREATE TABLE users (
username text PRIMARY KEY,
firstname text,
lastname text,
birth year int,
country text
) ;
CREATE INDEX ON users (birth year);

queries performance proportional
to the amount of data returned

SELECT * FROM users; —

SELECT firstname, lastname FROM users
WHERE birth year = 1981;

Cassandra
Querying — ALLOW FILTERING

SELECT firstname, lastname

FROM users
WHERE birth year = 1981 AND country = 'FR';

N

No guarantee that Cassandra won'’t have to scan
large amount of data even if the result is small

SELECT firstname, lastname

FROM users

WHERE birth year = 1981 AND country = 'FR'
ALLOW FILTERING;

/@?% More on

Cassandra Internals

L _
WWrite
data

Cassandra sl

Drisk :
o = = :
|E"‘ = "™

L . Commit log 5§ Table
m A write Is atomic at the row level

1. When a write occurs:
The data are stored in memory ()
Writes are appended to on disk
m Durability after HW failure
2. The more a table is used, the larger its memtable
needs to be

Size > (configurable) threshold = the data is put in a queue to
be flushed to disk

3. The memtable data is flushed to on disk
Sorted string table

4. Data in the commit log is purged after its corresponding
data in the memtable is flushed to the SSTable

Cassandra
Writes

m Memtables and SSTables are maintained per table

m SSTables are immutable

A row is typically stored across multiple SSTable files
Read must combine row fragments from SSTables and un-
flushed Memtables

m Memory structures for each SSTable:

— a list of primary keys and the start position of
rows in the data file

— a subset of the partition index
m By default 1 primary key out of every 128 is sampled
m To speed up searching

" J
Cassandra Write example(::lzvn

write (k1,

Writes write (k2, cl:vl c2:v2)

write (kl, cl:v4 c3:v3 c2:v2)

Memtable: _
kl cl:v4 c2:v2 c3:v3 » Data is sorted
k2 cl:vl c2:v2 « Column names are not repeated

Commit log:

kl, cl:vl

k2, cl:vl c2:v2

kl, cl:v4d c3:v3 c2:v2

SSTable: Aftelr flushing memtable on disk
kl cl:v4d c2:v2 c3:v3 “Z:ﬁ J

k2 cl:vl c2:v2

Cassandra
Write Request

m Goes to any node (coordinator)
A proxy between the client application and the nodes

m Sends a write request to all replicas that own the row being written

= how many replicas must respond with success

m Success = the data was written to commit log and memtable

m Example:
10 node cluster, replication
factor = 3, write consistency 12
level = ONE
The first node to complete the
write responds back to coordinator
Coordinator proxies the success : 9
message back to the client

RI

R2

R3

" A
Cassandra

m Types of read requests a coordinator can send to a
replica:
Direct read request — limited by the read consistency level
Background read repair request

m Steps:
The coordinator contacts replicas specified by the

s Sends requests to those that currently respond fastest
Data from replicas are compared to see if they are consistent
s The most recent data (based on timestamp) is used

: The coordinator contacts and compares the data
from all the remaining replicas that own the row in the
background

m If the replicas are inconsistent, the coordinator issues writes

" A
Cassandra

m Insert and update operations are identical

= Any number of columns can be inserted/updated at the
same time

m Cassandra does not overwrite the rows
It groups inserts/updates in the memtable
See the example for writes

O = Insert or update depending on the
(non)existence of the data — Iinserting a duplicate
primary key

Columns are overwritten only if the timestamp in the new version
IS more recent

m Timestamp is provided by the client = the clients should be
synchronized

Otherwise the updates are stored into a new SSTable
s Merged periodically on background using

"

Cassandra
Updates

- kl clwh cifowd
k2 ol o33

Commit log 55Tahle
Memory memtable
Disk
INDEX | ki cl:vé c2v2 c3v3| | IN kI cl:vS cdvd
k2clvl c2v2 K2clvd c3v3 Flush
Comit log SSTable SSTable

" A
Cassandra

m Delete of a row = a delete of its columns
m After an SSTable is written, it is immutable
= a deleted column is not removed immediately
m A IS written
A marker in a row that indicates a column was deleted

Signals Cassandra to retry sending a delete request to a replica that
was down at the time of delete

m Columns marked with a tombstone exist for a (configurable)

Defined per table
When expires, the permanently deletes the column
m The same process that merges multiple SSTables

m If a node is down longer, the node can possibly miss the delete =
deleted data comes back up again

Administrators must run regular

Synchronizes and corrects all replicas

" A
Cassandra

m Cassandra does not insert/update/delete in place

Inserts/updates = new timestamped version of the inserted/updated
data in another SSTable

Delete = tombstone mark for data
m From time to time compaction has to be done

m Compaction steps:

Merging the data in each SSTable data by partition key

o Selecting the latest data for storage based on its
We need synchronization!
o Remember: SSTables are sorted —» random access is not needed

Evicting tombstones and removing deleted data
Consolidation of SSTables into a single file

Deleting old SSTable files
o As soon as any pending reads finish using the files

'_
Cassandra
Compaction Process

Start compaction

Merge data
| e 1391184 136869000 45
7 et 1391184136875000 s >

Evict tombstones
s Remnove deletions

Available disk space

Cassandra
Compaction Process

Different strategies
Can be specified per table
Simple: trigger compaction when there are more than
SSTables for a column family
(default) — creates similar sized SSTables
m For write-intensive workloads

_ — stores data written within a certain
period of time in the same SSTable

m For time-series and expiring data
Complex:
Small fixed-sized (5MB by default) SSTables are organized into levels
SSTables do not overlap within a level (= immediate compaction)
When a level is filled up, another level is created
m Each new level is 10x larger

For read-intensive workloads

m 90% of all reads are satisfied from a single SSTable
Assuming row sizes are nearly uniform

m In the worst case we read from all levels

Cassandra
Architecture

m Peer-to-peer distributed system
Assumption: System and hardware failures can and do occur

Coordinator = any node responsible for a particular client
operation

m Key components:
— assign data ownership to physical nodes
— exchanging information across the cluster

— determines how to distribute the data across the
nodes

— determines which nodes to place
replicas on

m Cluster — stores data partitions of a Cassandra ring

= B
Cassandra

Example: replication factor = 3

| A”OW eaCh nOde to mgwwhou

Ring withou R R g
own a large number \ l D®C ED
of small partition | " |

ranges

Easier for
adding/removing
nodes — the small
partition ranges are
simply transferred Ring with

m Still use consistent
hashing to distribute
data

virtual nodes

" A
Cassandra

m (GOssip process
Runs every second

Exchanges state messages with up to 3 other nodes in the
cluster

Enables to detect failures

m Gossiped message:

Information about a gossiping node + other nodes that it knows
about

Acquired:
m Directly = by direct communication
m Indirectly = second hand, third hand, ...

Has a version
m Older information is overwritten with the most current state

" A
Cassandra

m Determines how data is distributed across the nodes
Including replicas
m Hash function for computing the token (hash) of a row key

m Types of partitioners:
(default) — uniformly distributes data across the
cluster based on MurmurHash hash values
= Non-cryptographic hash function
= Values from -263 to +263

anc (default for previous versions) — uniformly
distributes data across the cluster based on MD5 hash values

= Values is from 0 to 2127 -1
— orders rows lexically by key bytes
m “Hash” = hexadecimal representation of the leading character(s) in key
= Allows ordered scans by primary key
s Can have problems with load balancing

" A
Cassandra

m Allreplicas are equally important
There is no primary or master replica

m When replication factor exceeds the number of nodes,
writes are rejected

Reads are served as long as the desired consistency level can
be met

m Replica placement strategies:

m Places the first replica on a node determined by the partitioner
= Additional replicas are placed on the next nodes clockwise in the
rng
m For a single data center only
We can divide the nodes into (optional forming)
= Collection of related nodes, physical or virtual

Cassandra
Replication

Places replicas within a data center
We set number of replicas per a data center
The first replica is placed according to the partitioner
Additional replicas are placed by walking the ring
clockwise until a node in a different rack is found
Motivation: nodes in the same rack often fail at the same
= e.g., power, cooling, or network issue

If no such node exists, additional replicas are placed in
different nodes in the same rack

" JEE
Cassandra
Replication — Examples

. Data Center 1 . Data Center 2 Data Center 1 Data Center 2
Rack1

. . N . .:h-l 1

Mode 5

Rack2

=
ot

Rt | Replica for a particular row key

r# | Replica for a particular row key

Data centers = 2 Replicas assigned to different racks
Total replication factor = 4

(set per data center)

http://www.datastax.com/docs/_images/network_strategy_replication_ring.png

Cassandra
Replication

m How many replicas to configure in each data
center?

Compromise between:

1. Need for being able to satisfy reads locally
Without cross data-center latency

2. Failure scenarios
Most commonly: 2-3 replicas in each data center

Can be asymmetric (= different replication factors for
different data centers)

Cassandra f?“’ e

ReplicatiOn — | |0'|00_200-

m Informs about the network topology
1I:Z)etermines which data centers and racks are written to and read
rom
m All nodes must have exactly the same snitch
configuration

m \Various types:
— does not recognize data centers/racks

— racks and data centers are assumed to
correspond to the 3rd and 2nd octet of the node's IP address

— uses a user-defined description of the
network

- — monitors performance of reads, chooses
the best replica based on this history

m Special case: optimization of read requests

'_
References

m Eric Redmond — Jim R. Wilson: Seven Databases in Seven
Weeks: A Guide to Modern Databases and the NoSQL
Movement

m Pramod J. Sadalage — Martin Fowler: NoSQL Distilled: A Brief
Guide to the Emerging World of Polyglot Persistence

m Cassandra:
0 Getting Started: _
http://www.datastax.com/documentation/gettingstarted/index.html?page
name=docs&version=quick_start&file=quickstart

1 CQL 3.1:
http://www.datastax.com/documentation/cql/3.1/webhelp/index.html

1 Apache Cassandra 1.2
http://www.datastax.com/documentation/cassandra/l.2/webhelp/

1 Apache Cassandra 2.0
http://www.datastax.com/documentation/cassandra/2.0/webhelp/

http://www.datastax.com/documentation/gettingstarted/index.html?pagename=docs&version=quick_start&file=quickstart
http://www.datastax.com/documentation/gettingstarted/index.html?pagename=docs&version=quick_start&file=quickstart
http://www.datastax.com/documentation/cql/3.1/webhelp/index.html
http://www.datastax.com/documentation/cassandra/1.2/webhelp/
http://www.datastax.com/documentation/cassandra/2.0/webhelp/

