
Big Data Management

and NoSQL Databases

Lecture 4. Basic Principles

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

NDBI040

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

NoSQL Overview

 Main objective: implement distributed state
 Different objects stored on different servers

 Same object replicated on different servers

 Main idea: give up some of the ACID
 To improve performance

 Simple interface:
 Write (=Put): needs to write all replicas

 Read (=Get): may get only one

 Strong consistency → eventual consistency

Basic Principles

 Scalability

How to handle growing amounts of data

without losing performance

 CAP theorem

 Distribution models

Sharding, replication, consistency, …

How to handle data in a distributed manner

Scalability
Vertical Scaling (scaling up)

 Traditional choice has been in favour of strong
consistency
 System architects have in the past gone in favour of scaling up

(vertical scaling)

 Involves larger and more powerful machines

 Works in many cases but…

 Vendor lock-in
 Not everyone makes large and powerful machines

 Who do, often use proprietary formats

 Makes a customer dependent on a vendor for products and
services

 Unable to use another vendor

Scalability
Vertical Scaling (scaling up)

 Higher costs
 Powerful machines usually cost a lot more than commodity

hardware

 Data growth perimeter
 Powerful and large machines work well until the data grows to fill

it

 Even the largest of machines has a limit

 Proactive provisioning
 Applications have no idea of the final large scale when they start

out

 Scaling vertically = you need to budget for large scale upfront

Scalability
Horizontal Scaling (scaling out)

 Systems are distributed across multiple machines or
nodes (horizontal scaling)
 Commodity machines, cost effective

 Often surpasses scalability of vertical approach

 Fallacies of distributed computing:
 The network is reliable

 Latency is zero

 Bandwidth is infinite

 The network is secure

 Topology does not change

 There is one administrator

 Transport cost is zero

 The network is homogeneous

https://blogs.oracle.com/jag/resource/Fallacies.html

https://blogs.oracle.com/jag/resource/Fallacies.html

CAP Theorem

Consistency

 After an update, all readers in a distributed system see
the same data

 All nodes are supposed to contain the same data at all
times

 Example:
 A single database instance is always consistent

 If multiple instances exist, all writes must be duplicated before
write operation is completed

CAP Theorem

Availability

 All requests (reads, writes) are always answered,
regardless crashes

 Example:
 A single instance has an availability of 100% or 0%

 Two servers may be available 100%, 50%, or 0%

Partition Tolerance

 System continues to operate, even if two sets of servers
get isolated

 Example:
 Failed connection will not cause troubles if the system is tolerant

CAP Theorem
ACID vs. BASE

 Theorem: Only 2 of the 3
guarantees can be given in a
“shared-data” system.
 Proven in 2000, the idea is

older

 (Positive) consequence: we can
concentrate on two challenges

 ACID properties guarantee
consistency and availability
 pessimistic

 e.g., database on a single
machine

 BASE properties guarantee
availability and partition
tolerance
 optimistic

 e.g., distributed databases

CAP Theorem
Criticism

 Not really a “theorem”, since definitions are
imprecise
 The real proven theorem has more limiting

assumptions

 CP makes no “sense”, because it suggest never
available

 No A vs. no C is asymmetric
 No C = all the time

 No A = only when the network is partitioned

CAP Theorem
Consistency

 A single-server system is a CA system

 Clusters have to be tolerant of network partitions

 CAP theorem: you can only get two out of three

 Reality: you can trade off a little Consistency to get

some Availability

 It is not a binary decision

BASE

 In contrast to ACID

 Leads to levels of scalability that cannot be obtained with ACID
 At the cost of (strong) consistency

Basically Available

 The system works basically all the time

 Partial failures can occur, but without total system failure

Soft State

 The system is in flux and non-deterministic

 Changes occur all the time

Eventual Consistency

 The system will be in some consistent state

 At some time in future

Strong Consistency

John

George

Paul

read(a) = 1

read(a) = 1

read(a) = 1

write(a) = 2 read(a) = 2

read(a) = 2

read(a) = 2

Eventual Consistency

John

Peter

Paul

read(a) = 1

read(a) = 1

read(a) = 1

write(a) = 2 read(a) = 1

read(a) = 1

read(a) = 2

inconsistent window

read(a) = 2

read(a) = 2

Distribution Models

 Scaling out = running the database on a cluster

of servers

 Two orthogonal techniques to data distribution:

 Replication – takes the same data and copies it over

multiple nodes

 Master-slave or peer-to-peer

 Sharding – puts different data on different nodes

 We can use either or combine them

Distribution Models
Single Server

 No distribution at all

 Run the database on a single machine

 It can make sense to use NoSQL with a single-

server distribution model

 Graph databases

 The graph is “almost” complete → it is difficult to distribute it

Distribution Models
Sharding

 Horizontal
scalability →
putting different
parts of the data
onto different
servers

 Different people
are accessing
different parts of
the dataset

Distribution Models
Sharding

 The ideal case is rare

 To get close to it we have to ensure that data that is
accessed together is clumped together

 How to arrange the nodes:
a. One user mostly gets data from a single server

b. Based on a physical location

c. Distributed across the nodes with equal amounts of the load

 Many NoSQL databases offer auto-sharding

 A node failure makes shard’s data unavailable
 Sharding is often combined with replication

Distribution Models
Master-slave Replication

 We replicate data
across multiple
nodes

 One node is
designed as
primary (master),
others as
secondary
(slaves)

 Master is
responsible for
processing any
updates to that
data

Distribution Models
Master-slave Replication

 For scaling a read-intensive dataset
 More read requests → more slave nodes

 The master fails → the slaves can still handle read
requests
 A slave can be appointed a new master quickly (it is a

replica)

 Limited by the ability of the master to process
updates

 Masters are appointed manually or automatically
 User-defined vs. cluster-elected

Distribution Models
Peer-to-peer Replication

 Problems of master-
slave replication:
 Does not help with

scalability of writes

 Provides resilience
against failure of a
slave, but not of a
master

 The master is still a
bottleneck

 Peer-to-peer
replication: no
master
 All the replicas have

equal weight

Distribution Models
Peer-to-peer Replication

 Problem: consistency

 We can write at two different places: a write-write

conflict

 Solutions:

 Whenever we write data, the replicas coordinate to

ensure we avoid a conflict

 At the cost of network traffic

 But we do not need all the replicas to agree on the

write, just a majority

Distribution Models
Combining Sharding and Replication

 Master-slave replication and sharding:
 We have multiple masters, but each data item only

has a single master

 A node can be a master for some data and a slave for
others

 Peer-to-peer replication and sharding:
 A common strategy for column-family databases

 A good starting point for peer-to-peer replication is to
have a replication factor of 3, so each shard is
present on three nodes

Consistency
Write (update) Consistency

 Problem: two users want to update the same

record (write-write conflict)

 Issue: lost update

 Pessimistic (preventing conflicts from occurring)

vs. optimistic solutions (lets conflicts occur, but

detects them and takes actions to sort them out)

 Write locks, conditional update, save both updates

and record that they are in conflict, …

Consistency
Read Consistency

 Problem: one user reads, other writes (read-write
conflict)
 Issue: inconsistent read

 Relational databases support the notion of transactions

 NoSQL databases support atomic updates within a
single aggregate
 But not all data can be put in the same aggregate

 Update that affects multiple aggregates leaves open a
time when clients could perform an inconsistent read
 Inconsistency window

 Another issue: replication consistency
 A special type of inconsistency in case of replication

 Ensuring that the same data item has the same value when read
from different replicas

Consistency
Quorums

 How many nodes need to be involved to get strong
consistency?

 Write quorum: W > N/2
 N = the number of nodes involved in replication (replication

factor)

 W = the number of nodes participating in the write

 The number of nodes confirming successful write

 “If you have conflicting writes, only one can get a majority.”

 How many nodes you need to contact to be sure you
have the most up-to-date change?

 Read quorum: R + W > N
 R = the number of nodes we need to contact for a read

 „Concurrent read and write cannot happen.“

References

 http://nosql-database.org/

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

 Eric Redmond – Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

 Sherif Sakr – Eric Pardede: Graph Data Management:
Techniques and Applications

 Shashank Tiwari: Professional NoSQL

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

