Big Data Management

and NoSQL Databases

Lecture 4. Basic Principles

Doc. RNDr. Irena Holubova, Ph.D.

holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

" I
NoSQL Overview

m Main objective: implement distributed state
Different objects stored on different servers
Same object replicated on different servers

m Main idea: give up some of the ACID
To improve performance

m Simple interface:

Write (=Put): needs to write all replicas
Read (=Get): may get only one
m Strong consistency — eventual consistency

Basic Principles

m Scalabllity

How to handle growing amounts of data
without losing performance

m CAP theorem

m Distribution models
Sharding, replication, consistency, ...
How to handle data in a distributed manner

Scalability
Vertical Scaling ()

m Traditional choice has been in favour of strong
consistency

System architects have in the past gone in favour of scaling up

()

= Involves larger and more powerful machines
m \Works in many cases but...
O

Not everyone makes large and powerful machines
= Who do, often use proprietary formats

Makes a customer dependent on a vendor for products and
services

m Unable to use another vendor

"
Scalability

Vertical Scaling (scaling up)

L
Powerful machines usually cost a lot more than commodity
hardware

L
Powerful and large machines work well until the data grows to fill
it
Even the largest of machines has a limit

L

Applications have no idea of the final large scale when they start
out

Scaling vertically = you need to budget for large scale upfront

" J
Scalability

Horizontal Scaling ()

m Systems are distributed across multiple machines or
nodes ()
Commodity machines, cost effective
Often surpasses scalability of vertical approach

m Fallacies of distributed computing:
The network is reliable
Latency is zero
Bandwidth is infinite
The network is secure
Topology does not change
There is one administrator
Transport cost is zero
The network is homogeneous

https://blogs.oracle.com/jag/resource/Fallacies.html

https://blogs.oracle.com/jag/resource/Fallacies.html

" A
CAP Theorem

Consistency

m After an update, all readers in a distributed system see
the same data

m All nodes are supposed to contain the same data at all
times

m Example:
A single database instance is always consistent

If multiple instances exist, all writes must be duplicated before
write operation is completed

" A
CAP Theorem

Availability

m All requests (reads, writes) are always answered,
regardless crashes

m Example:
A single instance has an availability of 100% or 0%
Two servers may be available 100%, 50%, or 0%

Partition Tolerance

m System continues to operate, even if two sets of servers
get isolated

m Example:
Failed connection will not cause troubles if the system is tolerant

" A
CAP Theorem

ACID vs. BASE

m Theorem: Only 2 of the 3
guarantees can be givenin a
“shared-data” system.

Proven in 2000, the idea is
older

m (Positive) conseguence: we can
concentrate on two challenges

O properties guarantee
consistency and availability
pessimistic
e.g., database on a single
machine

N properties guarantee
availability and partition
tolerance

optimistic
e.g., distributed databases

Consistency
RDBMS

Partition

Availability tolerance

\

Key-value stores

Consistency

»
CAP Theorem T

Criticism Availabilty Sarion

\

Key-value stores

m Not really a "theorem”, since definitions are

Imprecise
The real proven theorem has more limiting
assumptions
m CP makes no “sense”, because it suggest never
available

m No A vs. no C is asymmetric
No C = all the time
No A = only when the network is partitioned

" I
CAP Theorem

Consistency

m A single-server system is a CA system

m Clusters have to be tolerant of network partitions

CAP theorem: you can only get two out of three

Reality: you can trade off a little Consistency to get
some Availability
m It IS not a binary decision

SE

m [n contrastto ACID

m Leads to levels of scalability that cannot be obtained with ACID
At the cost of (strong) consistency

asically Available
m The system works basically all the time
m Partial failures can occur, but without total system failure
Soft State
m The system is in flux and non-deterministic
m Changes occur all the time
Eventual Consistency
m The system will be in some consistent state
m At some time in future

Strong Consistency

read(a) = 1 write(a) = 2 read(a) = 2
John

read(a) = 1 read(a) = 2
George

Paul read(a) = 1 read(a) = 2

Eventual Consistency

read(a) = 1 write(a) = 2 read(@ =1 read(a) =2
John .
read(a) = 1 read(a) = 2
Peter >
Paul read(a) = 1 read(a) = 1 read(a) = 2

L

" A
Distribution Models

m Scaling out = running the database on a cluster
of servers

m Two orthogonal techniques to data distribution:

— takes the same data and copies it over

multiple nodes
m Master-slave or peer-to-peer

— puts different data on different nodes
m \We can use either or combine them

" A
Distribution Models

m No distribution at all
Run the database on a single machine
m It can make sense to use NoSQL with a single-
server distribution model

Graph databases
m The graph is “almost” complete — it is difficult to distribute it

'_
Distribution Models

Sharding

m Horizontal
scalability — »
putting different p =
parts of the data /\'L/
onto different
servers iy g

m Different people

are accessing
different parts of .
the dataset o o

Distribution Models
Sharding

The ideal case Is rare

To get close to it we have to ensure that data that Is
accessed together is clumped together
m How to arrange the nodes:

One user mostly gets data from a single server
Based on a physical location
Distributed across the nodes with equal amounts of the load

Many NoSQL databases offer

A node failure makes shard’s data unavailable
Sharding is often combined with

" JEE
Distribution Models
Master-slave Replication

m \We replicate data Master

across multiple
nodes

| One nOde |S ﬁlleoggg::ammadefo

master or slave

designed as \ Reads can be done from
Changes propogateto —

primary (master),
Oth ers as slaves
secondary
(slaves)

m Masteris
responsible for ' = K
processing any KB
updates to that
data

oo

Slaves

Distribution Models
Master-slave Replication

m For scaling a
More read requests — more slave nodes

The master fails — the slaves can still handle read
requests

m A slave can be appointed a new master quickly (it is a
replica)

m Limited by the abllity of the master to process
updates

m Masters are appointed manually or automatically
User-defined vs. cluster-elected

" JEE
Distribution Models
Peer-to-peer Replication

m Problems of master
slave replication:

1 Does not help with
scalability of writes

1 Provides resilience

against failure of a \ /

Slave, but not of a Nodes comwunicate
master ek

1 The master is still a
bottleneck

m Peer-to-peer b
replication: no
master

—1 All the replicas have
equal weight

D

3
o

All nodes read and
write all data

bl

Distribution Models
Peer-to-peer Replication

m Problem: consistency
We can write at two different places: a

m Solutions:

Whenever we write data, the replicas coordinate to
ensure we avoid a conflict

m At the cost of network traffic

But we do not need all the replicas to agree on the
write, just a majority

Distribution Models
Sharding and Replication

m Master-slave replication and sharding:

We have multiple masters, but each data item only
has a single master

A node can be a master for some data and a slave for
others

m Peer-to-peer replication and sharding:
A common strategy for column-family databases

A good starting point for peer-to-peer replication is to
have a replication factor of 3, so each shard is
present on three nodes

" A
Consistency

m Problem: two users want to update the same

record ()
Issue: lost update
O (preventing conflicts from occurring)
VS. solutions (lets conflicts occur, but

detects them and takes actions to sort them out)

Write locks, conditional update, save both updates
and record that they are in conflict, ...

" J
Consistency

m Problem: one user reads, other writes (

)

Issue: inconsistent read
m Relational databases support the notion of transactions

= NoSQL databases support atomic updates within a
single aggregate
But not all data can be put in the same aggregate

m Update that affects multiple aggregates leaves open a
time when clients could perform an inconsistent read

m Another issue:
A special type of inconsistency in case of replication

Ensuring that the same data item has the same value when read
from different replicas

" J
Consistency

m How many nodes need to be involved to get strong
consistency?

O W > N/2
N = the number of nodes involved in replication (

)

W = the number of nodes participating in the write
= The number of nodes confirming successful write

“If you have conflicting writes, only one can get a majority.”

m How many nodes you need to contact to be sure you
have the most up-to-date change?
O R+W>N
R = the number of nodes we need to contact for a read
,2concurrent read and write cannot happen.”

" A
References

m http://nosqgl-database.orq/

m Pramod J. Sadalage — Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

m Eric Redmond — Jim R. Wilson: Seven Databases Iin
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

m Sherif Sakr — Eric Pardede: Graph Data Management:
Techniques and Applications

m Shashank Tiwari: Professional NoSQL

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

