Big Data Management

and NoSQL Databases

Lecture 3. Apache Hadoop

Doc. RNDr. Irena Holubova, Ph.D.

holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

Apache Hadoop ThEdbED

m Open-source software framework

m Running of applications on large clusters of
commodity hardware
Multi-terabyte data-sets
Thousands of nodes

m Implements MapReduce

m Derived from Google's MapReduce and Google
~1le System (GFS)

Not open-source

http://hadoop.apache.orqg/

http://hadoop.apache.org/
http://hadoop.apache.org/

Apache Hadoop

Modules

m Hadoop Common
Common utilities
Support for other Hadoop modules

- (HDFS) {mm

Distributed file system
High-throughput access to application data

m Hadoop YARN

Framework for job scheduling and cluster resource management
m Hadoop

YARN-based system for parallel processing of large data sets

" J
Apache Hadoop

Hadoop-related Projects

Avro — a data serialization system

Cassandra — a scalable multi-master with no single points
of failure

Chukwa — a data collection system for managing large distributed
systems

HBase — a scalable, distributed that supports structured
data storage for large tables
Hive — data that provides data

summarization and ad hoc querying
Mahout — scalable
Pig — high-level data-flow language and execution

ZooKeeper — high-performance for distributed
applications

" J
H D FS (Hadoop Distributed File System)
Y ES)

Basic Features

m Free and open source
m High quality
m Crossplatform

Pure Java
Has bindings for non-Java programming languages

m Fault-tolerant
m Highly scalable

http://hadoop.apache.org/hdfs/

" S
HDFS

Fault Tolerance

m |dea: “failure is the norm rather than exception”

A HDFS instance may consist of thousands of

machines
m Each storing a part of the file system’s data

Each component has non-trivial probability of failure
— Assumption: “There is always some component
that Is non-functional.”
Detection of faults
Quick, automatic recovery

" S
HDFS

Data Characteristics

m Assumes:

Streaming data access
Batch processing rather than interactive user access

m Large data sets and files

m \Write-once / read-many
A file once created, written and closed does not need to be

changed
= Or not often
This assumption simplifies coherency

m Optimal applications for this model: MapReduce, web-
crawlers, ...

" S
HDFS

NameNode, DataNodes

m Master/slave architecture
m HDFS exposes file system namespace

m File is internally split into one or more blocks
Typical block size is 64MB (or 128 MB)
L = master server that manages the file
system namespace + regulates access to files by clients
Opening/closing/renaming files and directories
Determines mapping of blocks to DataNodes

O = serves read/write requests from clients +
performs block creation/deletion and replication upon
Instructions from NameNode

Usually one per node in a cluster
Manages storage attached to the node that it runs on

HDFS Architecture
Metadata (Name, replicas, ...):
Metadatg,gps’"{ Namenode /homeffoo/data, 3, ...
Block ops
Read Datanodes Datanodes
! | |
Replication L
.\ Blocks
S~ \ / \ y

Rack 1 Write Rack 2

" S
HDFS

Namespace

m Hierarchical file system
Directories and files

m Create, remove, move, rename, ...

m NameNode maintains the file system

Any meta information changes to the file system are
recorded by the NameNode

m An application can specify the number of replicas
of the file needed

Replication factor of the file
The information is stored in the NameNode

" S
HDFS

Data Replication

m HDFS is designed to store very large files across
machines in a large cluster
Each file is a sequence of blocks

All blocks in the file are of the same size
m Except the last one
m Block size is configurable per file

m Blocks are replicated for fault tolerance
Number of replicas is configurable per file
m NameNode receives and from

each DataNode
BlockReport contains a list of all blocks on a DataNode

Block Replication

Namenode (Filename, numReplicas, block-ids, ...

/users/sameerp/data/part-0, r:2, {1,3}, ...
/users/sameerp/data/part-1, ;?,4,5},
AN

Datanodes

" S
HDFS

Replica Placement

Placement of the replicas is critical to reliability and
performance

replica placement = to take a node's
physical location into account while scheduling tasks and
allocating storage
Needs lots of tuning and experience

dea:
Nodes are divided into racks
Communication between racks through switches
Network bandwidth between machines on the same rack is
greater than those in different racks

NameNode determines the rack id for each DataNode

" S
HDFS

Replica Placement

m First idea: replicas should be placed on different racks

Prevents losing data when an entire rack fails

Allows use of bandwidth from multiple racks when reading data
= Multiple readers

Writes are expensive (transfer to different racks)
s We need to write to all replicas

m Common case: replication factor is 3

Replicas are placed:
m One on a node in a local rack
m One on a different node in the local rack
s One on a node in a different rack

Decreases the inter-rack write traffic

HDFS

m Stores HDFS namespace

m Uses a transaction log called to record every
change that occurs to the file system’s meta data
E.g., creating a new file, change in replication factor of a file, ..
EditLog is stored in the NameNode’s local file system

O — entire file system namespace + mapping of
blocks to files + file system properties
Stored in a file in NameNode’s local file system

Designed to be compact

m Loaded in NameNode’s memory
= 4 GB of RAM is sufficient

" S
HDFS

How NameNode Works?

m \When the filesystem starts up:
It reads the FsImage and EditLog from disk

It applies all the transactions from the EditLog to the
IN-memory representation of the Fsimage

It flushes out this new version into a new Fsimage
on disk =

It truncates the edit log
m Checkpoints are then built periodically
m Recovery = last checkpointed state

" S
HDFS

m Stores data In files in its local file system
Has no knowledge about HDFS file system

Stores each block of HDFS data in a separate file

Does not create all files in the same directory
Local file system might not be support it
Uses heuristics to determine optimal number of files per
directory
m When the file system starts up:
It generates a list of all HDFS blocks = BlockReport
It sends the report to NameNode

" S
HDFS

Failures

m Primary objective: to store data reliably in
the presence of failures

m Three common failures:
NameNode failure

DataNode failure
Network partition

" S
HDFS

Failures

m Network partition can cause a subset of DataNodes to
lose connectivity with NameNode

NameNode detects this condition by the absence of a Heartbeat
message

NameNode marks DataNodes without HearBeat and does not
send any IO requests to them

Data registered to the failed DataNode is not available to the
HDFS
m The death of a DataNode may cause replication factor of
some of the blocks to fall below their specified value —

Also happens when replica is corrupted, hard disk fails,
replication factor is increased, ...

HDFS

API

m Java API for application to use
Python access can be used
C language wrapper for Java API is available

m HTTP browser can be used to browse the files of a
HDFS instance

m Command line interface called the
Lets the user interact with data in the HDFS
The syntax of the commands is similar to bash
e.g., to create a directory /foodir

/bin/hadoop fs - /foodir
m Browser int/e%ce Is available to view the namespace

Hadoop file system

http://hadoop.apache.orqg/docs/r0.19.2/hdfs shell.html

http://hadoop.apache.org/docs/r0.19.2/hdfs_shell.html

" J
Hadoop MapReduce

m MapReduce requires:
Distributed file system

Engine that can distribute, coordinate, monitor and
gather the results

m Hadoop: HDFS + JobTracker + TaskTracker

(master) = scheduler

(slave per node) — is assigned a Map or
Reduce (or other operations)
s Map or Reduce run on a node — so does the TaskTracker
m Each task is run on its own JVM

" S
Preparing for 'grep' Example In
Hadoop

m Hadoop's jobs operate within the HDFS
Read input from HDFS, write output to HDFS

m [0 prepare:
Download, e.g., a free electronic book
Load the file into HDFS

bin/hadoop fs - book. txt
/book.txt

"
Using 'grep’ within Hadoop
bin/hadoop jar \

hadoop-0.18-2-examples.jar \
/book.txt /grep-result

input output

bin/hadoop fs -1ls /grep-result

" J
How 'grep' In Hadoop Works

Bigger Example

m The program runs two Map/Reduce jobs in sequence
First job: counts how many times a matching string occurred
Second job: sorts matching strings by their frequency and stores
the output in a single output file

m The first job:

Each mapper:
m Takes a line as input and matches the given regular expression
m Extracts all matching strings and emits pairs

Each reducer:
= Sums the frequencies of each matching string

The output is a sequence of files containing the matching string

and frequency
s Combiner: sums the frequency of strings from a local map output

How 'grep’ In Hadoop Works

m The second job:

Takes the output of the first job as input

= Mapper is an inverse map

m Reducer is an identity reducer
The number of reducers is one — the output is stored
In one file

m Sorted by the frequency in a descending order

" J
MapReduce

(Master)

m Like a scheduler:
A client application is sent to the JobTracker
It “talks” to the NameNode (= HDFS master) and
locates the TaskTracker (Hadoop client) near the

data
It moves the work to the chosen TaskTracker node

" J
MapReduce

(Client)

m Accepts tasks from JobTracker
Map, Reduce, Combine, ...
Input, output paths

m Has a number of slots for the tasks

Execution slots available on the machine (or machines on the
same rack)

m Spawns a separate JVM for execution of a task

m Indicates the number of available slots through the
message to the JobTracker

A failed task is re-executed by the JobTracker

Submit Job

M1

)

(

InputFormat

RAM

splitl

split2

split3

Input splita
file P

splits

Task
Tracker

partition()
combine{}

_ Task
Tracker

_ Task
Tracker

M2

M3

Job
Tracker

Assign Tasktrackers

Co-ordinate map and reduce phases

Provide Job progress info

R1

Task
Tracker

DFS

Output
filel

/Task

Tracker sort

S

reduce{)

(&

v

~

OutputFormat

DFS

Output
file2

N

|

Map Phase

|

Reduce Phase

Job Launching

JobConf

m For launching program:
Create a to define a job
s Configuration
Submit JobConf to JobTracker and wait for completion

Il Involves:

Classes implementing Mapper and Reducer interfaces

m JobConf.setMapperClass ()

m JobConf.setReducerClass ()

Input and output formats

m JobConf.setInputFormat (TextInputFormat.class)

m JobConf.setOutputFormat (TextOutputFormat.class)
Other options:

m JobConf .setNumReduceTasks ()
[|

Job Launching

InputFormat, OutputFormat

m Define how the persistent data is read and written

L
Splits the input to determine the partial input to each map task
Defines a that reads key, value pairs that are
passed to the map task

L

Given the key, value pairs and a filename, it writes the reduce
task output to a persistent store

Job Launching

JobClient

m JobConfis passed to JobClient.rundJob () Or
JobClient.submitJob ()
runJob () blocks — waits until the job finishes

submitJob () does not block
m Poll for status to make running decisions

= Avoid polling with JobConf . setJobEndNotificationURI ()
Provide a URI to be invoked when the job finishes

Determines proper division of input into
Sends job data to master JobTracker server

" J
Mapper

m The user provides an instance of Mapper
Should extend MapReduceBase

Should implement interface Mapper
m Override function map
Emits (k,,v,) with output.collect (k2, v2)

m EXxists in separate process from all other instances of
Mapper
No data sharing

input key

void (WritableComparable key,J _
Writable value, — Input value

OutputCollector output,
facility to report — Reporter reporter) collects output
progress keys and values

public static class Map
extends
implements <LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1l)
private Text word = new Text();

public void (LongWritable ,
Text ’
OutputCollector<Text, IntWritable> ,
Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer (line) ;

while (tokenizer.hasMoreTokens()) {
word.set (tokenizer.nextToken()) ;
(word, one);

" J
What Is Writable and Reporter?

m Hadoop defines its own “box” classes for strings
(Text), Integers (IntWritable), ...

All values are instances of Writable
All keys are instances of WritableComparable

m Reporter allows simple asynchronous
feedback

incrCounter (Enum key, long amount)
setStatus (String msqg)

» I
Partitioner

m Controls which of the R reduce tasks the intermediate
key is sent for reduction

int getPartition (K2 key,
V2 value,
int numPartitions)

Outputs the partition number for a given key
One partition = one Reduce task

B HashPartitioner used by default
Uses key.hashCode () to return partition number

m JobConf sets Partitioner implementation

" A
Reducer

reduce (WritableComparable key,
Iterator wvalues,
OutputCollector output,
Reporter reporter)

m Keys & values sent to one partition all go to the
same reduce task

m Calls are sorted by key

public static class
extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {

public void (Text ,
Iterator<IntWritable> ,
OutputCollector<Text, IntWritable> ,
Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next () .get();

(key, new IntWritable(sum)) ;

" J
Design Questions to Ask

m From where will my input come?
InputFileFormat
m How is my input structured?

RecordReader
m LineRecordReader, KeyValueRecordReader

(Do not reinvent the wheel.)

m Mapper and Reducer classes
Do Key (WritableComparator) and Value (Writable) classes exist?

m Do | need to count anything while job is in progress?
m Where is my output going?
m EXxecutor class

What information do my map/reduce classes need?
Must | block, waiting for job completion?

" A
References

m Apache Hadoop: hitp://hadoop.apache.org/
m http://wiki.apache.org/hadoop/

m Hadoop: The Definitive Guide, by Tom White,
2nd edition, Oreilly’s, 2010

m Dean, J. and Ghemawat, S. 2008. MapReduce:
Simplified Data Processing on Large Clusters.
Communication of ACM 51, 1 (Jan. 2008), 107-
113.

http://hadoop.apache.org/
http://wiki.apache.org/hadoop/

