NDBI040

Big Data Management and NoSQL Databases

Lecture 3. Apache Hadoop

Doc. RNDr. Irena Holubova, Ph.D. holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

Apache Hadoop

- Open-source software framework
- Running of applications on large clusters of commodity hardware
 - □ Multi-terabyte data-sets
 - □ Thousands of nodes
- Implements MapReduce
- Derived from Google's MapReduce and Google File System (GFS)
 - □ Not open-source

Apache Hadoop Modules

Hadoop Common

- Common utilities
- Support for other Hadoop modules
- Hadoop Distributed File System (HDFS)
 - Distributed file system
 - High-throughput access to application data

Hadoop YARN

- □ Framework for job scheduling and cluster resource management
- Hadoop MapReduce
 - □ YARN-based system for parallel processing of large data sets

Apache Hadoop Hadoop-related Projects

- Avro a data serialization system
- Cassandra a scalable multi-master database with no single points of failure
- Chukwa a data collection system for managing large distributed systems
- HBase a scalable, distributed database that supports structured data storage for large tables
- Hive data warehouse infrastructure that provides data summarization and ad hoc querying
- Mahout scalable machine learning and data mining library
- Pig high-level data-flow language and execution framework for parallel computation
- ZooKeeper high-performance coordination service for distributed applications

HDFS (Hadoop Distributed File System) Basic Features

- Free and open source
- High quality
- Crossplatform
 - Pure Java

□ Has bindings for non-Java programming languages

- Fault-tolerant
- Highly scalable

HDFS Fault Tolerance

- Idea: "failure is the norm rather than exception"
 A HDFS instance may consist of thousands of machines
 - Each storing a part of the file system's data
 - Each component has non-trivial probability of failure
- → Assumption: "There is always some component that is non-functional."
 - Detection of faults
 - □ Quick, automatic recovery

HDFS Data Characteristics

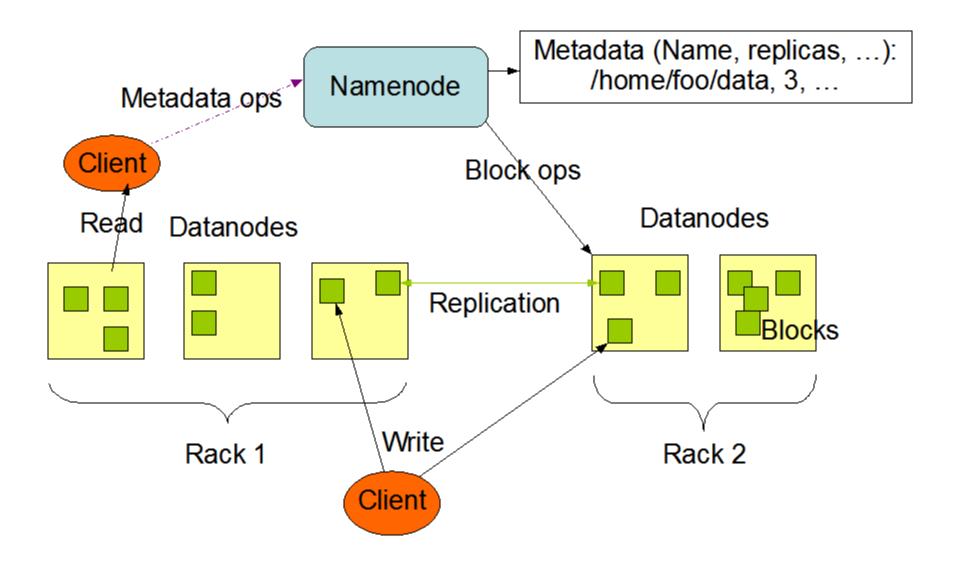
Assumes:

- Streaming data access
- Batch processing rather than interactive user access
- Large data sets and files
- Write-once / read-many
 - A file once created, written and closed does not need to be changed
 - Or not often
 - □ This assumption simplifies coherency
- Optimal applications for this model: MapReduce, webcrawlers, ...

HDFS NameNode, DataNodes

- Master/slave architecture
- HDFS exposes file system <u>namespace</u>
- <u>File</u> is internally split into one or more <u>blocks</u>
 Typical block size is 64MB (or 128 MB)
- NameNode = master server that manages the file system namespace + regulates access to files by clients
 - Opening/closing/renaming files and directories
 - Determines mapping of blocks to DataNodes
- DataNode = serves read/write requests from clients + performs block creation/deletion and replication upon instructions from NameNode
 - □ Usually one per node in a cluster
 - □ Manages storage attached to the node that it runs on

HDFS Architecture



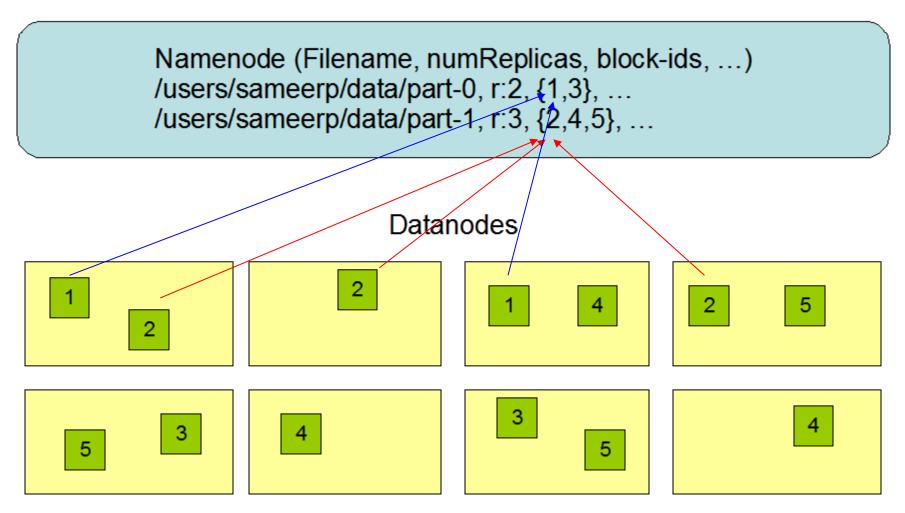
HDFS Namespace

- Hierarchical file system
 Directories and files
- Create, remove, move, rename, ...
- NameNode maintains the file system
 - Any meta information changes to the file system are recorded by the NameNode
- An application can specify the number of replicas of the file needed
 - Replication factor of the file
 - The information is stored in the NameNode

HDFS Data Replication

- HDFS is designed to store very large files across machines in a large cluster
 - □ Each file is a sequence of blocks
 - □ All blocks in the file are of the same size
 - Except the last one
 - Block size is configurable per file
- Blocks are replicated for fault tolerance
 - Number of replicas is configurable per file
- NameNode receives HeartBeat and BlockReport from each DataNode
 - □ BlockReport contains a list of all blocks on a DataNode

Block Replication



HDFS Replica Placement

- Placement of the replicas is critical to reliability and performance
- Rack-aware replica placement = to take a node's physical location into account while scheduling tasks and allocating storage
 - Needs lots of tuning and experience
- Idea:
 - Nodes are divided into racks
 - Communication between racks through switches
 - Network bandwidth between machines on the same rack is greater than those in different racks
- NameNode determines the rack id for each DataNode

HDFS

Replica Placement

- First idea: replicas should be placed on different racks
 - Prevents losing data when an entire rack fails
 - □ Allows use of bandwidth from multiple racks when reading data
 - Multiple readers
 - □ Writes are expensive (transfer to different racks)
 - We need to write to all replicas
- Common case: replication factor is 3
 - □ Replicas are placed:
 - One on a node in a local rack
 - One on a different node in the local rack
 - One on a node in a different rack
 - Decreases the inter-rack write traffic

HDFS How NameNode Works?

- Stores HDFS namespace
- Uses a transaction log called EditLog to record every change that occurs to the file system's meta data
 E.g., creating a new file, change in replication factor of a file, ..
 EditLog is stored in the NameNode's local file system
- FsImage entire file system namespace + mapping of blocks to files + file system properties
 - Stored in a file in NameNode's local file system
 - Designed to be compact
 - Loaded in NameNode's memory
 - 4 GB of RAM is sufficient

HDFS

How NameNode Works?

- When the filesystem starts up:
 - 1. It reads the FsImage and EditLog from disk
 - 2. It applies all the transactions from the EditLog to the in-memory representation of the FsImage
 - It flushes out this new version into a new FsImage on disk = checkpoint
 - 4. It truncates the edit log
- Checkpoints are then built periodically
- Recovery = last checkpointed state

HDFS How DataNode Works?

- Stores data in files in its local file system
 Has no knowledge about HDFS file system
- Stores each block of HDFS data in a separate file
- Does not create all files in the same directory
 - Local file system might not be support it
 - Uses heuristics to determine optimal number of files per directory
 - When the file system starts up:
 - 1. It generates a list of all HDFS blocks = BlockReport
 - 2. It sends the report to NameNode

HDFS Failures

- Primary objective: to store data reliably in the presence of failures
- Three common failures:
 NameNode failure
 DataNode failure
 Network partition

HDFS Failures

- Network partition can cause a subset of DataNodes to lose connectivity with NameNode
 - NameNode detects this condition by the absence of a Heartbeat message
 - NameNode marks DataNodes without HearBeat and does not send any IO requests to them
 - Data registered to the failed DataNode is not available to the HDFS
- The death of a DataNode may cause replication factor of some of the blocks to fall below their specified value → re-replication
 - Also happens when replica is corrupted, hard disk fails, replication factor is increased, …

HDFS API

- Java API for application to use
 - Python access can be used
 - □ C language wrapper for Java API is available
- HTTP browser can be used to browse the files of a HDFS instance
- Command line interface called the FS shell
 - Lets the user interact with data in the HDFS
 - The syntax of the commands is similar to bash
 - □ e.g., to create a directory /foodir
 - /bin/hadoop fs -mkdir /foodir
- Browser interface is available to view the namespace

Hadoop file system

http://hadoop.apache.org/docs/r0.19.2/hdfs_shell.html

Hadoop MapReduce

MapReduce requires:

- Distributed file system
- Engine that can distribute, coordinate, monitor and gather the results

Hadoop: HDFS + JobTracker + TaskTracker

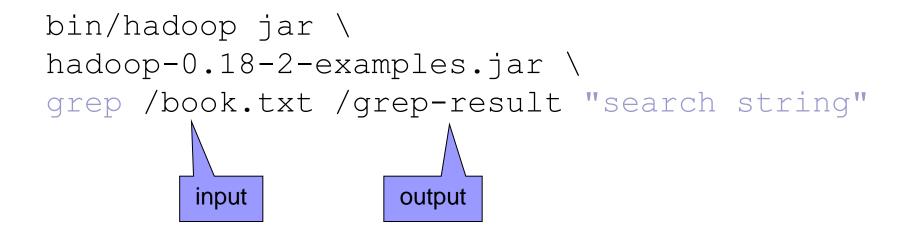
- □ JobTracker (master) = scheduler
- TaskTracker (slave per node) is assigned a Map or Reduce (or other operations)
 - Map or Reduce run on a node \rightarrow so does the TaskTracker
 - Each task is run on its own JVM

Preparing for 'grep' Example in Hadoop

- Hadoop's jobs operate within the HDFS
 Read input from HDFS, write output to HDFS
- To prepare:
 - Download, e.g., a free electronic book
 - □ Load the file into HDFS

bin/hadoop fs -copyFromLocal book.txt
/book.txt

Using 'grep' within Hadoop



bin/hadoop fs -ls /grep-result

How 'grep' in Hadoop Works Bigger Example

- The program runs two Map/Reduce jobs in sequence
 - □ First job: counts how many times a matching string occurred
 - Second job: sorts matching strings by their frequency and stores the output in a single output file
- The first job:
 - Each <u>mapper</u>:
 - Takes a line as input and matches the given regular expression
 - Extracts all matching strings and emits (matching string, 1) pairs
 - □ Each <u>reducer</u>:
 - Sums the frequencies of each matching string
 - The output is a sequence of files containing the matching string and frequency
 - <u>Combiner</u>: sums the frequency of strings from a local map output

How 'grep' in Hadoop Works

The second job:

Takes the output of the first job as input

- Mapper is an inverse map
- Reducer is an identity reducer
- \Box The number of reducers is one \rightarrow the output is stored in one file
 - Sorted by the frequency in a descending order

MapReduce

JobTracker (Master)

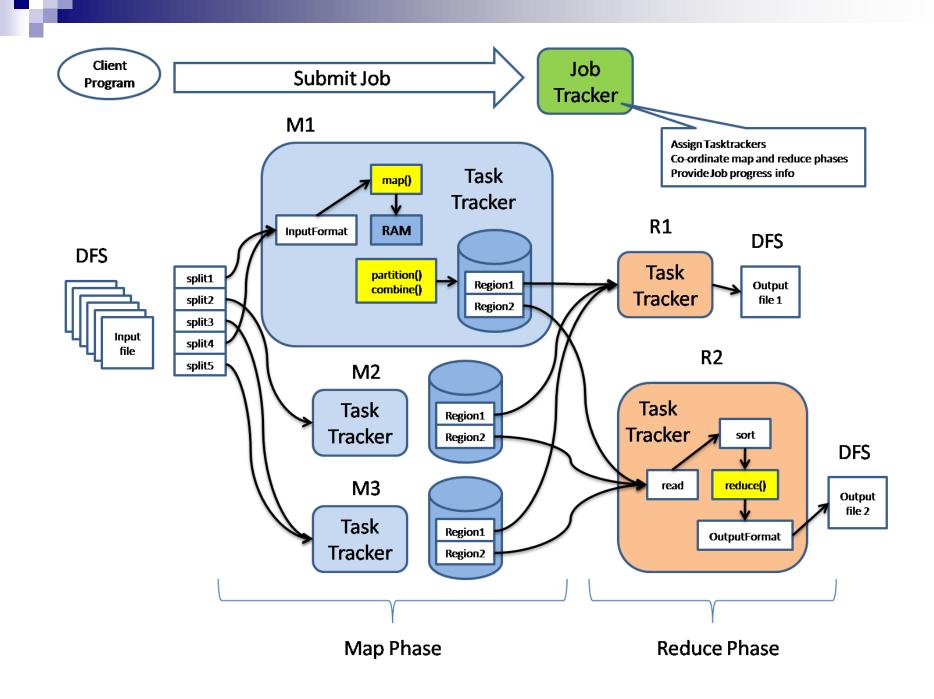
- Like a scheduler:
 - 1. A client application is sent to the JobTracker
 - It "talks" to the NameNode (= HDFS master) and locates the TaskTracker (Hadoop client) <u>near</u> the data
 - 3. It moves the work to the chosen TaskTracker node

MapReduce

TaskTracker (Client)

Accepts tasks from JobTracker

- Map, Reduce, Combine, ...
- Input, output paths
- Has a number of slots for the tasks
 - Execution slots available on the machine (or machines on the same rack)
- Spawns a separate JVM for execution of a task
- Indicates the number of available slots through the hearbeat message to the JobTracker
 - □ A failed task is re-executed by the JobTracker



Job Launching

- For launching program:
 - 1. Create a JobConf to define a job
 - Configuration
 - 2. Submit JobConf to JobTracker and wait for completion
 - JobConf involves:
 - Classes implementing Mapper and Reducer interfaces
 - JobConf.setMapperClass()
 - JobConf.setReducerClass()
 - Input and output formats
 - JobConf.setInputFormat(TextInputFormat.class)
 - JobConf.setOutputFormat(TextOutputFormat.class)
 - □ Other options:
 - JobConf.setNumReduceTasks()
 - ...

Job Launching

InputFormat, OutputFormat

Define how the persistent data is read and written

InputFormat

- □ Splits the input to determine the partial input to each map task
- Defines a RecordReader that reads key, value pairs that are passed to the map task

OutputFormat

Given the key, value pairs and a filename, it writes the reduce task output to a persistent store

Job Launching JobClient

- JobConf is passed to JobClient.runJob() or JobClient.submitJob()
 - □ runJob() blocks waits until the job finishes
 - □ submitJob() **does not block**
 - Poll for status to make running decisions
 - Avoid polling with JobConf.setJobEndNotificationURI()
 Provide a URI to be invoked when the job finishes

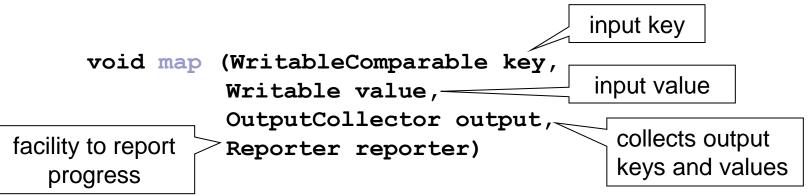
JobClient

- Determines proper division of input into InputSplits
- Sends job data to master JobTracker server

Mapper

The <u>user</u> provides an instance of Mapper

- Should extend MapReduceBase
- Should implement interface Mapper
 - Override function map
- □ Emits (k₂,v₂) with output.collect(k2, v2)
- Exists in separate process from all other instances of Mapper
 - □ No data sharing



public static class Map

}

}

extends MapReduceBase

```
implements Mapper<LongWritable, Text, Text, IntWritable> {
```

```
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
```

What is Writable and Reporter?

- Hadoop defines its own "box" classes for strings (Text), integers (IntWritable), ...
 - □ All values are instances of Writable
 - □ All keys are instances of WritableComparable
- Reporter allows simple asynchronous feedback
 - □ incrCounter(Enum key, long amount)
 - □ setStatus (String msg)

Partitioner

Controls which of the *R* reduce tasks the intermediate key is sent for reduction

- Outputs the partition number for a given key
- One partition = one Reduce task
- HashPartitioner used by default
 Uses key.hashCode() to return partition number
 JobConf sets Partitioner implementation

Reducer

reduce(WritableComparable key, Iterator values, OutputCollector output, Reporter reporter)

- Keys & values sent to one partition all go to the same reduce task
- Calls are sorted by key

```
public static class Reduce
   extends MapReduceBase
   implements Reducer<Text, IntWritable, Text, IntWritable> {
    public void reduce (Text key,
                   Iterator<IntWritable> values,
                   OutputCollector<Text, IntWritable> output,
                  Reporter reporter) throws IOException {
         int sum = 0;
         while (values.hasNext()) {
              sum += values.next().get();
         }
         output.collect(key, new IntWritable(sum));
     }
```

Design Questions to Ask

- From where will my input come?
 - InputFileFormat
- How is my input structured?
 - RecordReader
 - LineRecordReader, KeyValueRecordReader
 - □ (Do not reinvent the wheel.)
- Mapper and Reducer classes
 - Do Key (WritableComparator) and Value (Writable) classes exist?
- Do I need to count anything while job is in progress?
- Where is my output going?
- Executor class
 - □ What information do my map/reduce classes need?
 - □ Must I block, waiting for job completion?

References

- Apache Hadoop: <u>http://hadoop.apache.org/</u>
- http://wiki.apache.org/hadoop/
- Hadoop: The Definitive Guide, by Tom White, 2nd edition, Oreilly's, 2010
- Dean, J. and Ghemawat, S. 2008. MapReduce: Simplified Data Processing on Large Clusters. Communication of ACM 51, 1 (Jan. 2008), 107-113.