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Apache Hadoop 

 Open-source software framework 

 Running of applications on large clusters of 
commodity hardware  
 Multi-terabyte data-sets  

 Thousands of nodes  

 Implements MapReduce  

 Derived from Google's MapReduce and Google 
File System (GFS) 
 Not open-source 

http://hadoop.apache.org/ 
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Apache Hadoop 
Modules 

 Hadoop Common 
 Common utilities  

 Support for other Hadoop modules 

 Hadoop Distributed File System (HDFS) 
 Distributed file system  

 High-throughput access to application data 

 Hadoop YARN 
 Framework for job scheduling and cluster resource management 

 Hadoop MapReduce 
 YARN-based system for parallel processing of large data sets 



Apache Hadoop 
Hadoop-related Projects 

 Avro – a data serialization system 

 Cassandra – a scalable multi-master database with no single points 
of failure 

 Chukwa – a data collection system for managing large distributed 
systems 

 HBase – a scalable, distributed database that supports structured 
data storage for large tables 

 Hive – data warehouse infrastructure that provides data 
summarization and ad hoc querying 

 Mahout – scalable machine learning and data mining library 

 Pig – high-level data-flow language and execution framework for 
parallel computation 

 ZooKeeper – high-performance coordination service for distributed 
applications 



HDFS (Hadoop Distributed File System) 

Basic Features 

 Free and open source 

 High quality 

 Crossplatform  

 Pure Java 

 Has bindings for non-Java programming languages 

 Fault-tolerant 

 Highly scalable 

 

http://hadoop.apache.org/hdfs/


HDFS 
Fault Tolerance 

 Idea: “failure is the norm rather than exception” 
 A HDFS instance may consist of thousands of 

machines 
 Each storing a part of the file system’s data 

 Each component has non-trivial probability of failure 

→ Assumption: “There is always some component 
that is non-functional.” 
 Detection of faults 

 Quick, automatic recovery 



HDFS 
Data Characteristics 

 Assumes: 
 Streaming data access 

 Batch processing rather than interactive user access 

 Large data sets and files 

 Write-once / read-many 
 A file once created, written and closed does not need to be 

changed  

 Or not often 

 This assumption simplifies coherency 

 Optimal applications for this model: MapReduce, web-
crawlers, … 



HDFS 
NameNode, DataNodes 

 Master/slave architecture 

 HDFS exposes file system namespace 

 File is internally split into one or more blocks 
 Typical block size is 64MB (or 128 MB) 

 NameNode = master server that manages the file 
system namespace + regulates access to files by clients 
 Opening/closing/renaming files and directories  

 Determines mapping of blocks to DataNodes  

 DataNode = serves read/write requests from clients + 
performs block creation/deletion and replication upon 
instructions from NameNode 
 Usually one per node in a cluster 

 Manages storage attached to the node that it runs on 





HDFS 
Namespace 

 Hierarchical file system  
 Directories and files 

 Create, remove, move, rename, ... 

 NameNode maintains the file system 
 Any meta information changes to the file system are 

recorded by the NameNode 

 An application can specify the number of replicas 
of the file needed 
 Replication factor of the file 

 The information is stored in the NameNode 
 



HDFS 
Data Replication 

 HDFS is designed to store very large files across 
machines in a large cluster 
 Each file is a sequence of blocks 

 All blocks in the file are of the same size 

 Except the last one 

 Block size is configurable per file 

 Blocks are replicated for fault tolerance 
 Number of replicas is configurable per file 

 NameNode receives HeartBeat and BlockReport from 
each DataNode 
 BlockReport contains a list of all blocks on a DataNode 





HDFS 
Replica Placement 

 Placement of the replicas is critical to reliability and 
performance 

 Rack-aware replica placement = to take a node's 
physical location into account while scheduling tasks and 
allocating storage 
 Needs lots of tuning and experience 

 Idea: 
 Nodes are divided into racks 

 Communication between racks through switches 

 Network bandwidth between machines on the same rack is 
greater than those in different racks 

 NameNode determines the rack id for each DataNode 



HDFS 
Replica Placement 

 First idea: replicas should be placed on different racks  
 Prevents losing data when an entire rack fails  

 Allows use of bandwidth from multiple racks when reading data  

 Multiple readers 

 Writes are expensive (transfer to different racks) 

 We need to write to all replicas 

 Common case: replication factor is 3 
 Replicas are placed:  

 One on a node in a local rack 

 One on a different node in the local rack  

 One on a node in a different rack 

 Decreases the inter-rack write traffic 



HDFS 
How NameNode Works? 

 Stores HDFS namespace 

 Uses a transaction log called EditLog to record every 
change that occurs to the file system’s meta data 
 E.g., creating a new file, change in replication factor of a file, .. 

 EditLog is stored in the NameNode’s local file system 

 FsImage – entire file system namespace + mapping of 
blocks to files + file system properties 

 Stored in a file in NameNode’s local file system 

 Designed to be compact  

 Loaded in NameNode’s memory 

 4 GB of RAM is sufficient 



HDFS 
How NameNode Works? 

 When the filesystem starts up: 
1. It reads the FsImage and EditLog from disk 

2. It applies all the transactions from the EditLog to the 
in-memory representation of the FsImage 

3. It flushes out this new version into a new FsImage 
on disk = checkpoint 

4. It truncates the edit log 

 Checkpoints are then built periodically 

 Recovery = last checkpointed state 



HDFS 
How DataNode Works? 

 Stores data in files in its local file system 
 Has no knowledge about HDFS file system 

 Stores each block of HDFS data in a separate file 

 Does not create all files in the same directory 
 Local file system might not be support it 

 Uses heuristics to determine optimal number of files per 
directory  

 When the file system starts up: 
1. It generates a list of all HDFS blocks = BlockReport 

2. It sends the report to NameNode 



HDFS 
Failures 

 Primary objective: to store data reliably in 

the presence of failures 

 Three common failures:  

NameNode failure 

DataNode failure  

Network partition 



HDFS 
Failures 

 Network partition can cause a subset of DataNodes to 
lose connectivity with NameNode 
 NameNode detects this condition by the absence of a Heartbeat 

message 

 NameNode marks DataNodes without HearBeat and does not 
send any IO requests to them 

 Data registered to the failed DataNode is not available to the 
HDFS 

 The death of a DataNode may cause replication factor of 
some of the blocks to fall below their specified value → 
re-replication 
 Also happens when replica is corrupted, hard disk fails, 

replication factor is increased, … 



Hadoop file system 

HDFS 
API 

 Java API for application to use 
 Python access can be used 

 C language wrapper for Java API is available 

 HTTP browser can be used to browse the files of a 
HDFS instance 

 Command line interface called the FS shell  
 Lets the user interact with data in the HDFS 

 The syntax of the commands is similar to bash 

 e.g., to create a directory /foodir 

  /bin/hadoop fs –mkdir /foodir 

 Browser interface is available to view the namespace 

http://hadoop.apache.org/docs/r0.19.2/hdfs_shell.html 
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Hadoop MapReduce 

 MapReduce requires:  
 Distributed file system  

 Engine that can distribute, coordinate, monitor and 
gather the results 

 Hadoop: HDFS + JobTracker + TaskTracker  
 JobTracker (master) = scheduler 

 TaskTracker (slave per node) – is assigned a Map or 
Reduce (or other operations) 
 Map or Reduce run on a node → so does the TaskTracker 

 Each task is run on its own JVM 



Preparing for 'grep' Example in 

Hadoop 

 Hadoop's jobs operate within the HDFS 

 Read input from HDFS, write output to HDFS 

 To prepare: 

 Download, e.g., a free electronic book 

 Load the file into HDFS 

  

bin/hadoop fs -copyFromLocal book.txt 

/book.txt 



Using 'grep' within Hadoop 

bin/hadoop jar \ 

hadoop-0.18-2-examples.jar \ 

grep /book.txt /grep-result "search string" 

 

 

 

 

bin/hadoop fs -ls /grep-result 

input output 



How 'grep' in Hadoop Works 
Bigger Example 

 The program runs two Map/Reduce jobs in sequence 
 First job: counts how many times a matching string occurred 

 Second job: sorts matching strings by their frequency and stores 
the output in a single output file 

 The first job: 
 Each mapper: 

 Takes a line as input and matches the given regular expression 

 Extracts all matching strings and emits (matching string, 1) pairs 

 Each reducer: 

 Sums the frequencies of each matching string 

 The output is a sequence of files containing the matching string 
and frequency 

 Combiner: sums the frequency of strings from a local map output 



How 'grep' in Hadoop Works 

 The second job: 

 Takes the output of the first job as input 

 Mapper is an inverse map 

 Reducer is an identity reducer 

 The number of reducers is one → the output is stored 

in one file 

 Sorted by the frequency in a descending order 



MapReduce  
JobTracker (Master) 

 Like a scheduler: 

1. A client application is sent to the JobTracker 

2. It “talks” to the NameNode (= HDFS master) and 

locates the TaskTracker (Hadoop client) near the 

data 

3. It moves the work to the chosen TaskTracker node 



MapReduce  
TaskTracker (Client) 

 Accepts tasks from JobTracker 
 Map, Reduce, Combine, … 

 Input, output paths 

 Has a number of slots for the tasks 
 Execution slots available on the machine (or machines on the 

same rack) 

 Spawns a separate JVM for execution of a task 

 Indicates the number of available slots through the 
hearbeat message to the JobTracker 
 A failed task is re-executed by the JobTracker 





Job Launching 
JobConf 

 For launching program: 
1. Create a JobConf to define a job 

 Configuration 

2. Submit JobConf to JobTracker and wait for completion 

 JobConf involves: 
 Classes implementing Mapper and Reducer interfaces  

 JobConf.setMapperClass()   

 JobConf.setReducerClass() 

 Input and output formats 
 JobConf.setInputFormat(TextInputFormat.class) 

 JobConf.setOutputFormat(TextOutputFormat.class) 

 Other options: 
 JobConf.setNumReduceTasks() 

 … 



Job Launching  
InputFormat, OutputFormat 

 Define how the persistent data is read and written 

 InputFormat 
 Splits the input to determine the partial input to each map task 

 Defines a RecordReader that reads key, value pairs that are 
passed to the map task 

 OutputFormat 
 Given the key, value pairs and a filename, it writes the reduce 

task output to a persistent store 



Job Launching 
JobClient 

 JobConf is passed to JobClient.runJob() or 
JobClient.submitJob()  

 runJob() blocks – waits until the job finishes 

 submitJob() does not block 

 Poll for status to make running decisions 

 Avoid polling with JobConf.setJobEndNotificationURI()  

 Provide a URI to be invoked when the job finishes 

 JobClient 

 Determines proper division of input into InputSplits 

 Sends job data to master JobTracker server 



Mapper 

 The user provides an instance of Mapper 
 Should extend MapReduceBase 

 Should implement interface Mapper 

 Override function map 

 Emits (k2,v2) with output.collect(k2, v2) 

 Exists in separate process from all other instances of 
Mapper 
 No data sharing 

void map (WritableComparable key, 

    Writable value,  

    OutputCollector output,  

    Reporter reporter) 

input key 

input value 

collects output 

keys and values 
facility to report 

progress  



public static class Map  

   extends MapReduceBase  

   implements Mapper<LongWritable, Text, Text, IntWritable> { 

 

 private final static IntWritable one = new IntWritable(1); 

 private Text word = new Text(); 

 

 public void map(LongWritable key,  

                 Text value,  

                 OutputCollector<Text, IntWritable> output,  

                 Reporter reporter) throws IOException { 

  String line = value.toString(); 

  StringTokenizer tokenizer = new StringTokenizer(line);

  

  while (tokenizer.hasMoreTokens()) { 

    word.set(tokenizer.nextToken()); 

    output.collect(word, one); 

    } 

  } 

} 



What is Writable and Reporter? 

 Hadoop defines its own “box” classes for strings 
(Text), integers (IntWritable), …  

 All values are instances of Writable 

 All keys are instances of WritableComparable 

 Reporter allows simple asynchronous 

feedback 

 incrCounter(Enum key, long amount)  

 setStatus(String msg) 



Partitioner 

 Controls which of the R reduce tasks the intermediate 
key is sent for reduction  

 

int getPartition(K2 key, 

                 V2 value, 

                 int numPartitions) 

 Outputs the partition number for a given key 

 One partition = one Reduce task 

 

 HashPartitioner used by default 
 Uses key.hashCode() to return partition number 

 JobConf sets Partitioner implementation 



Reducer 

reduce(WritableComparable key,  

       Iterator values, 

       OutputCollector output, 

       Reporter reporter) 

 

 Keys & values sent to one partition all go to the 
same reduce task 

 Calls are sorted by key 



public static class Reduce  

   extends MapReduceBase  

   implements Reducer<Text, IntWritable, Text, IntWritable> { 

 

 public void reduce(Text key,  

               Iterator<IntWritable> values, 

               OutputCollector<Text, IntWritable> output,  

               Reporter reporter) throws IOException { 

  int sum = 0; 

  while (values.hasNext()) { 

    sum += values.next().get(); 

  } 

  output.collect(key, new IntWritable(sum)); 

  } 

} 



Design Questions to Ask 

 From where will my input come? 
 InputFileFormat 

 How is my input structured? 
 RecordReader 

 LineRecordReader, KeyValueRecordReader  

 (Do not reinvent the wheel.)  

 Mapper and Reducer classes 
 Do Key (WritableComparator) and Value (Writable) classes exist? 

 Do I need to count anything while job is in progress? 

 Where is my output going? 

 Executor class 
 What information do my map/reduce classes need?   

 Must I block, waiting for job completion? 
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