
Big Data Management

and NoSQL Databases

Lecture 3. Apache Hadoop

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

NDBI040

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

Apache Hadoop

 Open-source software framework

 Running of applications on large clusters of
commodity hardware
 Multi-terabyte data-sets

 Thousands of nodes

 Implements MapReduce

 Derived from Google's MapReduce and Google
File System (GFS)
 Not open-source

http://hadoop.apache.org/

http://hadoop.apache.org/
http://hadoop.apache.org/

Apache Hadoop
Modules

 Hadoop Common
 Common utilities

 Support for other Hadoop modules

 Hadoop Distributed File System (HDFS)
 Distributed file system

 High-throughput access to application data

 Hadoop YARN
 Framework for job scheduling and cluster resource management

 Hadoop MapReduce
 YARN-based system for parallel processing of large data sets

Apache Hadoop
Hadoop-related Projects

 Avro – a data serialization system

 Cassandra – a scalable multi-master database with no single points
of failure

 Chukwa – a data collection system for managing large distributed
systems

 HBase – a scalable, distributed database that supports structured
data storage for large tables

 Hive – data warehouse infrastructure that provides data
summarization and ad hoc querying

 Mahout – scalable machine learning and data mining library

 Pig – high-level data-flow language and execution framework for
parallel computation

 ZooKeeper – high-performance coordination service for distributed
applications

HDFS (Hadoop Distributed File System)

Basic Features

 Free and open source

 High quality

 Crossplatform

 Pure Java

 Has bindings for non-Java programming languages

 Fault-tolerant

 Highly scalable

http://hadoop.apache.org/hdfs/

HDFS
Fault Tolerance

 Idea: “failure is the norm rather than exception”
 A HDFS instance may consist of thousands of

machines
 Each storing a part of the file system’s data

 Each component has non-trivial probability of failure

→ Assumption: “There is always some component
that is non-functional.”
 Detection of faults

 Quick, automatic recovery

HDFS
Data Characteristics

 Assumes:
 Streaming data access

 Batch processing rather than interactive user access

 Large data sets and files

 Write-once / read-many
 A file once created, written and closed does not need to be

changed

 Or not often

 This assumption simplifies coherency

 Optimal applications for this model: MapReduce, web-
crawlers, …

HDFS
NameNode, DataNodes

 Master/slave architecture

 HDFS exposes file system namespace

 File is internally split into one or more blocks
 Typical block size is 64MB (or 128 MB)

 NameNode = master server that manages the file
system namespace + regulates access to files by clients
 Opening/closing/renaming files and directories

 Determines mapping of blocks to DataNodes

 DataNode = serves read/write requests from clients +
performs block creation/deletion and replication upon
instructions from NameNode
 Usually one per node in a cluster

 Manages storage attached to the node that it runs on

HDFS
Namespace

 Hierarchical file system
 Directories and files

 Create, remove, move, rename, ...

 NameNode maintains the file system
 Any meta information changes to the file system are

recorded by the NameNode

 An application can specify the number of replicas
of the file needed
 Replication factor of the file

 The information is stored in the NameNode

HDFS
Data Replication

 HDFS is designed to store very large files across
machines in a large cluster
 Each file is a sequence of blocks

 All blocks in the file are of the same size

 Except the last one

 Block size is configurable per file

 Blocks are replicated for fault tolerance
 Number of replicas is configurable per file

 NameNode receives HeartBeat and BlockReport from
each DataNode
 BlockReport contains a list of all blocks on a DataNode

HDFS
Replica Placement

 Placement of the replicas is critical to reliability and
performance

 Rack-aware replica placement = to take a node's
physical location into account while scheduling tasks and
allocating storage
 Needs lots of tuning and experience

 Idea:
 Nodes are divided into racks

 Communication between racks through switches

 Network bandwidth between machines on the same rack is
greater than those in different racks

 NameNode determines the rack id for each DataNode

HDFS
Replica Placement

 First idea: replicas should be placed on different racks
 Prevents losing data when an entire rack fails

 Allows use of bandwidth from multiple racks when reading data

 Multiple readers

 Writes are expensive (transfer to different racks)

 We need to write to all replicas

 Common case: replication factor is 3
 Replicas are placed:

 One on a node in a local rack

 One on a different node in the local rack

 One on a node in a different rack

 Decreases the inter-rack write traffic

HDFS
How NameNode Works?

 Stores HDFS namespace

 Uses a transaction log called EditLog to record every
change that occurs to the file system’s meta data
 E.g., creating a new file, change in replication factor of a file, ..

 EditLog is stored in the NameNode’s local file system

 FsImage – entire file system namespace + mapping of
blocks to files + file system properties

 Stored in a file in NameNode’s local file system

 Designed to be compact

 Loaded in NameNode’s memory

 4 GB of RAM is sufficient

HDFS
How NameNode Works?

 When the filesystem starts up:
1. It reads the FsImage and EditLog from disk

2. It applies all the transactions from the EditLog to the
in-memory representation of the FsImage

3. It flushes out this new version into a new FsImage
on disk = checkpoint

4. It truncates the edit log

 Checkpoints are then built periodically

 Recovery = last checkpointed state

HDFS
How DataNode Works?

 Stores data in files in its local file system
 Has no knowledge about HDFS file system

 Stores each block of HDFS data in a separate file

 Does not create all files in the same directory
 Local file system might not be support it

 Uses heuristics to determine optimal number of files per
directory

 When the file system starts up:
1. It generates a list of all HDFS blocks = BlockReport

2. It sends the report to NameNode

HDFS
Failures

 Primary objective: to store data reliably in

the presence of failures

 Three common failures:

NameNode failure

DataNode failure

Network partition

HDFS
Failures

 Network partition can cause a subset of DataNodes to
lose connectivity with NameNode
 NameNode detects this condition by the absence of a Heartbeat

message

 NameNode marks DataNodes without HearBeat and does not
send any IO requests to them

 Data registered to the failed DataNode is not available to the
HDFS

 The death of a DataNode may cause replication factor of
some of the blocks to fall below their specified value →
re-replication
 Also happens when replica is corrupted, hard disk fails,

replication factor is increased, …

Hadoop file system

HDFS
API

 Java API for application to use
 Python access can be used

 C language wrapper for Java API is available

 HTTP browser can be used to browse the files of a
HDFS instance

 Command line interface called the FS shell
 Lets the user interact with data in the HDFS

 The syntax of the commands is similar to bash

 e.g., to create a directory /foodir

 /bin/hadoop fs –mkdir /foodir

 Browser interface is available to view the namespace

http://hadoop.apache.org/docs/r0.19.2/hdfs_shell.html

http://hadoop.apache.org/docs/r0.19.2/hdfs_shell.html

Hadoop MapReduce

 MapReduce requires:
 Distributed file system

 Engine that can distribute, coordinate, monitor and
gather the results

 Hadoop: HDFS + JobTracker + TaskTracker
 JobTracker (master) = scheduler

 TaskTracker (slave per node) – is assigned a Map or
Reduce (or other operations)
 Map or Reduce run on a node → so does the TaskTracker

 Each task is run on its own JVM

Preparing for 'grep' Example in

Hadoop

 Hadoop's jobs operate within the HDFS

 Read input from HDFS, write output to HDFS

 To prepare:

 Download, e.g., a free electronic book

 Load the file into HDFS

bin/hadoop fs -copyFromLocal book.txt

/book.txt

Using 'grep' within Hadoop

bin/hadoop jar \

hadoop-0.18-2-examples.jar \

grep /book.txt /grep-result "search string"

bin/hadoop fs -ls /grep-result

input output

How 'grep' in Hadoop Works
Bigger Example

 The program runs two Map/Reduce jobs in sequence
 First job: counts how many times a matching string occurred

 Second job: sorts matching strings by their frequency and stores
the output in a single output file

 The first job:
 Each mapper:

 Takes a line as input and matches the given regular expression

 Extracts all matching strings and emits (matching string, 1) pairs

 Each reducer:

 Sums the frequencies of each matching string

 The output is a sequence of files containing the matching string
and frequency

 Combiner: sums the frequency of strings from a local map output

How 'grep' in Hadoop Works

 The second job:

 Takes the output of the first job as input

 Mapper is an inverse map

 Reducer is an identity reducer

 The number of reducers is one → the output is stored

in one file

 Sorted by the frequency in a descending order

MapReduce
JobTracker (Master)

 Like a scheduler:

1. A client application is sent to the JobTracker

2. It “talks” to the NameNode (= HDFS master) and

locates the TaskTracker (Hadoop client) near the

data

3. It moves the work to the chosen TaskTracker node

MapReduce
TaskTracker (Client)

 Accepts tasks from JobTracker
 Map, Reduce, Combine, …

 Input, output paths

 Has a number of slots for the tasks
 Execution slots available on the machine (or machines on the

same rack)

 Spawns a separate JVM for execution of a task

 Indicates the number of available slots through the
hearbeat message to the JobTracker
 A failed task is re-executed by the JobTracker

Job Launching
JobConf

 For launching program:
1. Create a JobConf to define a job

 Configuration

2. Submit JobConf to JobTracker and wait for completion

 JobConf involves:
 Classes implementing Mapper and Reducer interfaces

 JobConf.setMapperClass()

 JobConf.setReducerClass()

 Input and output formats
 JobConf.setInputFormat(TextInputFormat.class)

 JobConf.setOutputFormat(TextOutputFormat.class)

 Other options:
 JobConf.setNumReduceTasks()

 …

Job Launching
InputFormat, OutputFormat

 Define how the persistent data is read and written

 InputFormat
 Splits the input to determine the partial input to each map task

 Defines a RecordReader that reads key, value pairs that are
passed to the map task

 OutputFormat
 Given the key, value pairs and a filename, it writes the reduce

task output to a persistent store

Job Launching
JobClient

 JobConf is passed to JobClient.runJob() or
JobClient.submitJob()

 runJob() blocks – waits until the job finishes

 submitJob() does not block

 Poll for status to make running decisions

 Avoid polling with JobConf.setJobEndNotificationURI()

 Provide a URI to be invoked when the job finishes

 JobClient

 Determines proper division of input into InputSplits

 Sends job data to master JobTracker server

Mapper

 The user provides an instance of Mapper
 Should extend MapReduceBase

 Should implement interface Mapper

 Override function map

 Emits (k2,v2) with output.collect(k2, v2)

 Exists in separate process from all other instances of
Mapper
 No data sharing

void map (WritableComparable key,

 Writable value,

 OutputCollector output,

 Reporter reporter)

input key

input value

collects output

keys and values
facility to report

progress

public static class Map

 extends MapReduceBase

 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key,

 Text value,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 String line = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 output.collect(word, one);

 }

 }

}

What is Writable and Reporter?

 Hadoop defines its own “box” classes for strings
(Text), integers (IntWritable), …

 All values are instances of Writable

 All keys are instances of WritableComparable

 Reporter allows simple asynchronous

feedback

 incrCounter(Enum key, long amount)

 setStatus(String msg)

Partitioner

 Controls which of the R reduce tasks the intermediate
key is sent for reduction

int getPartition(K2 key,

 V2 value,

 int numPartitions)

 Outputs the partition number for a given key

 One partition = one Reduce task

 HashPartitioner used by default
 Uses key.hashCode() to return partition number

 JobConf sets Partitioner implementation

Reducer

reduce(WritableComparable key,

 Iterator values,

 OutputCollector output,

 Reporter reporter)

 Keys & values sent to one partition all go to the
same reduce task

 Calls are sorted by key

public static class Reduce

 extends MapReduceBase

 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key,

 Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

}

Design Questions to Ask

 From where will my input come?
 InputFileFormat

 How is my input structured?
 RecordReader

 LineRecordReader, KeyValueRecordReader

 (Do not reinvent the wheel.)

 Mapper and Reducer classes
 Do Key (WritableComparator) and Value (Writable) classes exist?

 Do I need to count anything while job is in progress?

 Where is my output going?

 Executor class
 What information do my map/reduce classes need?

 Must I block, waiting for job completion?

References

 Apache Hadoop: http://hadoop.apache.org/

 http://wiki.apache.org/hadoop/

 Hadoop: The Definitive Guide, by Tom White,
2nd edition, Oreilly’s, 2010

 Dean, J. and Ghemawat, S. 2008. MapReduce:
Simplified Data Processing on Large Clusters.
Communication of ACM 51, 1 (Jan. 2008), 107-
113.

http://hadoop.apache.org/
http://wiki.apache.org/hadoop/

