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Apache Hadoop 

 Open-source software framework 

 Running of applications on large clusters of 
commodity hardware  
 Multi-terabyte data-sets  

 Thousands of nodes  

 Implements MapReduce  

 Derived from Google's MapReduce and Google 
File System (GFS) 
 Not open-source 

http://hadoop.apache.org/ 
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Apache Hadoop 
Modules 

 Hadoop Common 
 Common utilities  

 Support for other Hadoop modules 

 Hadoop Distributed File System (HDFS) 
 Distributed file system  

 High-throughput access to application data 

 Hadoop YARN 
 Framework for job scheduling and cluster resource management 

 Hadoop MapReduce 
 YARN-based system for parallel processing of large data sets 



Apache Hadoop 
Hadoop-related Projects 

 Avro – a data serialization system 

 Cassandra – a scalable multi-master database with no single points 
of failure 

 Chukwa – a data collection system for managing large distributed 
systems 

 HBase – a scalable, distributed database that supports structured 
data storage for large tables 

 Hive – data warehouse infrastructure that provides data 
summarization and ad hoc querying 

 Mahout – scalable machine learning and data mining library 

 Pig – high-level data-flow language and execution framework for 
parallel computation 

 ZooKeeper – high-performance coordination service for distributed 
applications 



HDFS (Hadoop Distributed File System) 

Basic Features 

 Free and open source 

 High quality 

 Crossplatform  

 Pure Java 

 Has bindings for non-Java programming languages 

 Fault-tolerant 

 Highly scalable 

 

http://hadoop.apache.org/hdfs/


HDFS 
Fault Tolerance 

 Idea: “failure is the norm rather than exception” 
 A HDFS instance may consist of thousands of 

machines 
 Each storing a part of the file system’s data 

 Each component has non-trivial probability of failure 

→ Assumption: “There is always some component 
that is non-functional.” 
 Detection of faults 

 Quick, automatic recovery 



HDFS 
Data Characteristics 

 Assumes: 
 Streaming data access 

 Batch processing rather than interactive user access 

 Large data sets and files 

 Write-once / read-many 
 A file once created, written and closed does not need to be 

changed  

 Or not often 

 This assumption simplifies coherency 

 Optimal applications for this model: MapReduce, web-
crawlers, … 



HDFS 
NameNode, DataNodes 

 Master/slave architecture 

 HDFS exposes file system namespace 

 File is internally split into one or more blocks 
 Typical block size is 64MB (or 128 MB) 

 NameNode = master server that manages the file 
system namespace + regulates access to files by clients 
 Opening/closing/renaming files and directories  

 Determines mapping of blocks to DataNodes  

 DataNode = serves read/write requests from clients + 
performs block creation/deletion and replication upon 
instructions from NameNode 
 Usually one per node in a cluster 

 Manages storage attached to the node that it runs on 





HDFS 
Namespace 

 Hierarchical file system  
 Directories and files 

 Create, remove, move, rename, ... 

 NameNode maintains the file system 
 Any meta information changes to the file system are 

recorded by the NameNode 

 An application can specify the number of replicas 
of the file needed 
 Replication factor of the file 

 The information is stored in the NameNode 
 



HDFS 
Data Replication 

 HDFS is designed to store very large files across 
machines in a large cluster 
 Each file is a sequence of blocks 

 All blocks in the file are of the same size 

 Except the last one 

 Block size is configurable per file 

 Blocks are replicated for fault tolerance 
 Number of replicas is configurable per file 

 NameNode receives HeartBeat and BlockReport from 
each DataNode 
 BlockReport contains a list of all blocks on a DataNode 





HDFS 
Replica Placement 

 Placement of the replicas is critical to reliability and 
performance 

 Rack-aware replica placement = to take a node's 
physical location into account while scheduling tasks and 
allocating storage 
 Needs lots of tuning and experience 

 Idea: 
 Nodes are divided into racks 

 Communication between racks through switches 

 Network bandwidth between machines on the same rack is 
greater than those in different racks 

 NameNode determines the rack id for each DataNode 



HDFS 
Replica Placement 

 First idea: replicas should be placed on different racks  
 Prevents losing data when an entire rack fails  

 Allows use of bandwidth from multiple racks when reading data  

 Multiple readers 

 Writes are expensive (transfer to different racks) 

 We need to write to all replicas 

 Common case: replication factor is 3 
 Replicas are placed:  

 One on a node in a local rack 

 One on a different node in the local rack  

 One on a node in a different rack 

 Decreases the inter-rack write traffic 



HDFS 
How NameNode Works? 

 Stores HDFS namespace 

 Uses a transaction log called EditLog to record every 
change that occurs to the file system’s meta data 
 E.g., creating a new file, change in replication factor of a file, .. 

 EditLog is stored in the NameNode’s local file system 

 FsImage – entire file system namespace + mapping of 
blocks to files + file system properties 

 Stored in a file in NameNode’s local file system 

 Designed to be compact  

 Loaded in NameNode’s memory 

 4 GB of RAM is sufficient 



HDFS 
How NameNode Works? 

 When the filesystem starts up: 
1. It reads the FsImage and EditLog from disk 

2. It applies all the transactions from the EditLog to the 
in-memory representation of the FsImage 

3. It flushes out this new version into a new FsImage 
on disk = checkpoint 

4. It truncates the edit log 

 Checkpoints are then built periodically 

 Recovery = last checkpointed state 



HDFS 
How DataNode Works? 

 Stores data in files in its local file system 
 Has no knowledge about HDFS file system 

 Stores each block of HDFS data in a separate file 

 Does not create all files in the same directory 
 Local file system might not be support it 

 Uses heuristics to determine optimal number of files per 
directory  

 When the file system starts up: 
1. It generates a list of all HDFS blocks = BlockReport 

2. It sends the report to NameNode 



HDFS 
Failures 

 Primary objective: to store data reliably in 

the presence of failures 

 Three common failures:  

NameNode failure 

DataNode failure  

Network partition 



HDFS 
Failures 

 Network partition can cause a subset of DataNodes to 
lose connectivity with NameNode 
 NameNode detects this condition by the absence of a Heartbeat 

message 

 NameNode marks DataNodes without HearBeat and does not 
send any IO requests to them 

 Data registered to the failed DataNode is not available to the 
HDFS 

 The death of a DataNode may cause replication factor of 
some of the blocks to fall below their specified value → 
re-replication 
 Also happens when replica is corrupted, hard disk fails, 

replication factor is increased, … 



Hadoop file system 

HDFS 
API 

 Java API for application to use 
 Python access can be used 

 C language wrapper for Java API is available 

 HTTP browser can be used to browse the files of a 
HDFS instance 

 Command line interface called the FS shell  
 Lets the user interact with data in the HDFS 

 The syntax of the commands is similar to bash 

 e.g., to create a directory /foodir 

  /bin/hadoop fs –mkdir /foodir 

 Browser interface is available to view the namespace 

http://hadoop.apache.org/docs/r0.19.2/hdfs_shell.html 
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Hadoop MapReduce 

 MapReduce requires:  
 Distributed file system  

 Engine that can distribute, coordinate, monitor and 
gather the results 

 Hadoop: HDFS + JobTracker + TaskTracker  
 JobTracker (master) = scheduler 

 TaskTracker (slave per node) – is assigned a Map or 
Reduce (or other operations) 
 Map or Reduce run on a node → so does the TaskTracker 

 Each task is run on its own JVM 



Preparing for 'grep' Example in 

Hadoop 

 Hadoop's jobs operate within the HDFS 

 Read input from HDFS, write output to HDFS 

 To prepare: 

 Download, e.g., a free electronic book 

 Load the file into HDFS 

  

bin/hadoop fs -copyFromLocal book.txt 

/book.txt 



Using 'grep' within Hadoop 

bin/hadoop jar \ 

hadoop-0.18-2-examples.jar \ 

grep /book.txt /grep-result "search string" 

 

 

 

 

bin/hadoop fs -ls /grep-result 

input output 



How 'grep' in Hadoop Works 
Bigger Example 

 The program runs two Map/Reduce jobs in sequence 
 First job: counts how many times a matching string occurred 

 Second job: sorts matching strings by their frequency and stores 
the output in a single output file 

 The first job: 
 Each mapper: 

 Takes a line as input and matches the given regular expression 

 Extracts all matching strings and emits (matching string, 1) pairs 

 Each reducer: 

 Sums the frequencies of each matching string 

 The output is a sequence of files containing the matching string 
and frequency 

 Combiner: sums the frequency of strings from a local map output 



How 'grep' in Hadoop Works 

 The second job: 

 Takes the output of the first job as input 

 Mapper is an inverse map 

 Reducer is an identity reducer 

 The number of reducers is one → the output is stored 

in one file 

 Sorted by the frequency in a descending order 



MapReduce  
JobTracker (Master) 

 Like a scheduler: 

1. A client application is sent to the JobTracker 

2. It “talks” to the NameNode (= HDFS master) and 

locates the TaskTracker (Hadoop client) near the 

data 

3. It moves the work to the chosen TaskTracker node 



MapReduce  
TaskTracker (Client) 

 Accepts tasks from JobTracker 
 Map, Reduce, Combine, … 

 Input, output paths 

 Has a number of slots for the tasks 
 Execution slots available on the machine (or machines on the 

same rack) 

 Spawns a separate JVM for execution of a task 

 Indicates the number of available slots through the 
hearbeat message to the JobTracker 
 A failed task is re-executed by the JobTracker 





Job Launching 
JobConf 

 For launching program: 
1. Create a JobConf to define a job 

 Configuration 

2. Submit JobConf to JobTracker and wait for completion 

 JobConf involves: 
 Classes implementing Mapper and Reducer interfaces  

 JobConf.setMapperClass()‏   

 JobConf.setReducerClass()‏ 

 Input and output formats 
 JobConf.setInputFormat(TextInputFormat.class) 

 JobConf.setOutputFormat(TextOutputFormat.class) 

 Other options: 
 JobConf.setNumReduceTasks()‏ 

 … 



Job Launching  
InputFormat, OutputFormat 

 Define how the persistent data is read and written 

 InputFormat 
 Splits the input to determine the partial input to each map task 

 Defines a RecordReader that reads key, value pairs that are 
passed to the map task 

 OutputFormat 
 Given the key, value pairs and a filename, it writes the reduce 

task output to a persistent store 



Job Launching 
JobClient 

 JobConf is passed to JobClient.runJob() or 
JobClient.submitJob()  

 runJob() blocks – waits until the job finishes 

 submitJob() does not block 

 Poll for status to make running decisions 

 Avoid polling with JobConf.setJobEndNotificationURI()  

 Provide a URI to be invoked when the job finishes 

 JobClient 

 Determines proper division of input into InputSplits 

 Sends job data to master JobTracker server 



Mapper 

 The user provides an instance of Mapper 
 Should extend MapReduceBase 

 Should implement interface Mapper 

 Override function map 

 Emits (k2,v2) with output.collect(k2, v2)‏ 

 Exists in separate process from all other instances of 
Mapper 
 No data sharing 

void map (WritableComparable key, 

    Writable value,  

    OutputCollector output,  

    Reporter reporter)‏ 

input key 

input value 

collects output 

keys and values 
facility to report 

progress  



public static class Map  

   extends MapReduceBase  

   implements Mapper<LongWritable, Text, Text, IntWritable> { 

 

 private final static IntWritable one = new IntWritable(1); 

 private Text word = new Text(); 

 

 public void map(LongWritable key,  

                 Text value,  

                 OutputCollector<Text, IntWritable> output,  

                 Reporter reporter) throws IOException { 

  String line = value.toString(); 

  StringTokenizer tokenizer = new StringTokenizer(line);

  

  while (tokenizer.hasMoreTokens()) { 

    word.set(tokenizer.nextToken()); 

    output.collect(word, one); 

    } 

  } 

} 



What is Writable and Reporter? 

 Hadoop defines its own “box” classes for strings 
(Text), integers (IntWritable), …  

 All values are instances of Writable 

 All keys are instances of WritableComparable 

 Reporter allows simple asynchronous 

feedback 

 incrCounter(Enum key, long amount)  

 setStatus(String msg)‏ 



Partitioner 

 Controls which of the R reduce tasks the intermediate 
key is sent for reduction  

 

int getPartition(K2 key, 

                 V2 value, 

                 int numPartitions)‏ 

 Outputs the partition number for a given key 

 One partition = one Reduce task 

 

 HashPartitioner used by default 
 Uses key.hashCode() to return partition number 

 JobConf sets Partitioner implementation 



Reducer 

reduce(WritableComparable key,  

       Iterator values, 

       OutputCollector output, 

       Reporter reporter)‏ 

 

 Keys & values sent to one partition all go to the 
same reduce task 

 Calls are sorted by key 



public static class Reduce  

   extends MapReduceBase  

   implements Reducer<Text, IntWritable, Text, IntWritable> { 

 

 public void reduce(Text key,  

               Iterator<IntWritable> values, 

               OutputCollector<Text, IntWritable> output,  

               Reporter reporter) throws IOException { 

  int sum = 0; 

  while (values.hasNext()) { 

    sum += values.next().get(); 

  } 

  output.collect(key, new IntWritable(sum)); 

  } 

} 



Design Questions to Ask 

 From where will my input come? 
 InputFileFormat 

 How is my input structured? 
 RecordReader 

 LineRecordReader, KeyValueRecordReader  

 (Do not reinvent the wheel.)  

 Mapper and Reducer classes 
 Do Key (WritableComparator) and Value (Writable) classes exist? 

 Do I need to count anything while job is in progress? 

 Where is my output going? 

 Executor class 
 What information do my map/reduce classes need?   

 Must I block, waiting for job completion? 
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