
Big Data Management

and NoSQL Databases

Lecture 3. Apache Hadoop

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

NDBI040

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

Apache Hadoop

 Open-source software framework

 Running of applications on large clusters of
commodity hardware
 Multi-terabyte data-sets

 Thousands of nodes

 Implements MapReduce

 Derived from Google's MapReduce and Google
File System (GFS)
 Not open-source

http://hadoop.apache.org/

http://hadoop.apache.org/
http://hadoop.apache.org/

Apache Hadoop
Modules

 Hadoop Common
 Common utilities

 Support for other Hadoop modules

 Hadoop Distributed File System (HDFS)
 Distributed file system

 High-throughput access to application data

 Hadoop YARN
 Framework for job scheduling and cluster resource management

 Hadoop MapReduce
 YARN-based system for parallel processing of large data sets

Apache Hadoop
Hadoop-related Projects

 Avro – a data serialization system

 Cassandra – a scalable multi-master database with no single points
of failure

 Chukwa – a data collection system for managing large distributed
systems

 HBase – a scalable, distributed database that supports structured
data storage for large tables

 Hive – data warehouse infrastructure that provides data
summarization and ad hoc querying

 Mahout – scalable machine learning and data mining library

 Pig – high-level data-flow language and execution framework for
parallel computation

 ZooKeeper – high-performance coordination service for distributed
applications

HDFS (Hadoop Distributed File System)

Basic Features

 Free and open source

 High quality

 Crossplatform

 Pure Java

 Has bindings for non-Java programming languages

 Fault-tolerant

 Highly scalable

http://hadoop.apache.org/hdfs/

HDFS
Fault Tolerance

 Idea: “failure is the norm rather than exception”
 A HDFS instance may consist of thousands of

machines
 Each storing a part of the file system’s data

 Each component has non-trivial probability of failure

→ Assumption: “There is always some component
that is non-functional.”
 Detection of faults

 Quick, automatic recovery

HDFS
Data Characteristics

 Assumes:
 Streaming data access

 Batch processing rather than interactive user access

 Large data sets and files

 Write-once / read-many
 A file once created, written and closed does not need to be

changed

 Or not often

 This assumption simplifies coherency

 Optimal applications for this model: MapReduce, web-
crawlers, …

HDFS
NameNode, DataNodes

 Master/slave architecture

 HDFS exposes file system namespace

 File is internally split into one or more blocks
 Typical block size is 64MB (or 128 MB)

 NameNode = master server that manages the file
system namespace + regulates access to files by clients
 Opening/closing/renaming files and directories

 Determines mapping of blocks to DataNodes

 DataNode = serves read/write requests from clients +
performs block creation/deletion and replication upon
instructions from NameNode
 Usually one per node in a cluster

 Manages storage attached to the node that it runs on

HDFS
Namespace

 Hierarchical file system
 Directories and files

 Create, remove, move, rename, ...

 NameNode maintains the file system
 Any meta information changes to the file system are

recorded by the NameNode

 An application can specify the number of replicas
of the file needed
 Replication factor of the file

 The information is stored in the NameNode

HDFS
Data Replication

 HDFS is designed to store very large files across
machines in a large cluster
 Each file is a sequence of blocks

 All blocks in the file are of the same size

 Except the last one

 Block size is configurable per file

 Blocks are replicated for fault tolerance
 Number of replicas is configurable per file

 NameNode receives HeartBeat and BlockReport from
each DataNode
 BlockReport contains a list of all blocks on a DataNode

HDFS
Replica Placement

 Placement of the replicas is critical to reliability and
performance

 Rack-aware replica placement = to take a node's
physical location into account while scheduling tasks and
allocating storage
 Needs lots of tuning and experience

 Idea:
 Nodes are divided into racks

 Communication between racks through switches

 Network bandwidth between machines on the same rack is
greater than those in different racks

 NameNode determines the rack id for each DataNode

HDFS
Replica Placement

 First idea: replicas should be placed on different racks
 Prevents losing data when an entire rack fails

 Allows use of bandwidth from multiple racks when reading data

 Multiple readers

 Writes are expensive (transfer to different racks)

 We need to write to all replicas

 Common case: replication factor is 3
 Replicas are placed:

 One on a node in a local rack

 One on a different node in the local rack

 One on a node in a different rack

 Decreases the inter-rack write traffic

HDFS
How NameNode Works?

 Stores HDFS namespace

 Uses a transaction log called EditLog to record every
change that occurs to the file system’s meta data
 E.g., creating a new file, change in replication factor of a file, ..

 EditLog is stored in the NameNode’s local file system

 FsImage – entire file system namespace + mapping of
blocks to files + file system properties

 Stored in a file in NameNode’s local file system

 Designed to be compact

 Loaded in NameNode’s memory

 4 GB of RAM is sufficient

HDFS
How NameNode Works?

 When the filesystem starts up:
1. It reads the FsImage and EditLog from disk

2. It applies all the transactions from the EditLog to the
in-memory representation of the FsImage

3. It flushes out this new version into a new FsImage
on disk = checkpoint

4. It truncates the edit log

 Checkpoints are then built periodically

 Recovery = last checkpointed state

HDFS
How DataNode Works?

 Stores data in files in its local file system
 Has no knowledge about HDFS file system

 Stores each block of HDFS data in a separate file

 Does not create all files in the same directory
 Local file system might not be support it

 Uses heuristics to determine optimal number of files per
directory

 When the file system starts up:
1. It generates a list of all HDFS blocks = BlockReport

2. It sends the report to NameNode

HDFS
Failures

 Primary objective: to store data reliably in

the presence of failures

 Three common failures:

NameNode failure

DataNode failure

Network partition

HDFS
Failures

 Network partition can cause a subset of DataNodes to
lose connectivity with NameNode
 NameNode detects this condition by the absence of a Heartbeat

message

 NameNode marks DataNodes without HearBeat and does not
send any IO requests to them

 Data registered to the failed DataNode is not available to the
HDFS

 The death of a DataNode may cause replication factor of
some of the blocks to fall below their specified value →
re-replication
 Also happens when replica is corrupted, hard disk fails,

replication factor is increased, …

Hadoop file system

HDFS
API

 Java API for application to use
 Python access can be used

 C language wrapper for Java API is available

 HTTP browser can be used to browse the files of a
HDFS instance

 Command line interface called the FS shell
 Lets the user interact with data in the HDFS

 The syntax of the commands is similar to bash

 e.g., to create a directory /foodir

 /bin/hadoop fs –mkdir /foodir

 Browser interface is available to view the namespace

http://hadoop.apache.org/docs/r0.19.2/hdfs_shell.html

http://hadoop.apache.org/docs/r0.19.2/hdfs_shell.html

Hadoop MapReduce

 MapReduce requires:
 Distributed file system

 Engine that can distribute, coordinate, monitor and
gather the results

 Hadoop: HDFS + JobTracker + TaskTracker
 JobTracker (master) = scheduler

 TaskTracker (slave per node) – is assigned a Map or
Reduce (or other operations)
 Map or Reduce run on a node → so does the TaskTracker

 Each task is run on its own JVM

Preparing for 'grep' Example in

Hadoop

 Hadoop's jobs operate within the HDFS

 Read input from HDFS, write output to HDFS

 To prepare:

 Download, e.g., a free electronic book

 Load the file into HDFS

bin/hadoop fs -copyFromLocal book.txt

/book.txt

Using 'grep' within Hadoop

bin/hadoop jar \

hadoop-0.18-2-examples.jar \

grep /book.txt /grep-result "search string"

bin/hadoop fs -ls /grep-result

input output

How 'grep' in Hadoop Works
Bigger Example

 The program runs two Map/Reduce jobs in sequence
 First job: counts how many times a matching string occurred

 Second job: sorts matching strings by their frequency and stores
the output in a single output file

 The first job:
 Each mapper:

 Takes a line as input and matches the given regular expression

 Extracts all matching strings and emits (matching string, 1) pairs

 Each reducer:

 Sums the frequencies of each matching string

 The output is a sequence of files containing the matching string
and frequency

 Combiner: sums the frequency of strings from a local map output

How 'grep' in Hadoop Works

 The second job:

 Takes the output of the first job as input

 Mapper is an inverse map

 Reducer is an identity reducer

 The number of reducers is one → the output is stored

in one file

 Sorted by the frequency in a descending order

MapReduce
JobTracker (Master)

 Like a scheduler:

1. A client application is sent to the JobTracker

2. It “talks” to the NameNode (= HDFS master) and

locates the TaskTracker (Hadoop client) near the

data

3. It moves the work to the chosen TaskTracker node

MapReduce
TaskTracker (Client)

 Accepts tasks from JobTracker
 Map, Reduce, Combine, …

 Input, output paths

 Has a number of slots for the tasks
 Execution slots available on the machine (or machines on the

same rack)

 Spawns a separate JVM for execution of a task

 Indicates the number of available slots through the
hearbeat message to the JobTracker
 A failed task is re-executed by the JobTracker

Job Launching
JobConf

 For launching program:
1. Create a JobConf to define a job

 Configuration

2. Submit JobConf to JobTracker and wait for completion

 JobConf involves:
 Classes implementing Mapper and Reducer interfaces

 JobConf.setMapperClass()‏

 JobConf.setReducerClass()‏

 Input and output formats
 JobConf.setInputFormat(TextInputFormat.class)

 JobConf.setOutputFormat(TextOutputFormat.class)

 Other options:
 JobConf.setNumReduceTasks()‏

 …

Job Launching
InputFormat, OutputFormat

 Define how the persistent data is read and written

 InputFormat
 Splits the input to determine the partial input to each map task

 Defines a RecordReader that reads key, value pairs that are
passed to the map task

 OutputFormat
 Given the key, value pairs and a filename, it writes the reduce

task output to a persistent store

Job Launching
JobClient

 JobConf is passed to JobClient.runJob() or
JobClient.submitJob()

 runJob() blocks – waits until the job finishes

 submitJob() does not block

 Poll for status to make running decisions

 Avoid polling with JobConf.setJobEndNotificationURI()

 Provide a URI to be invoked when the job finishes

 JobClient

 Determines proper division of input into InputSplits

 Sends job data to master JobTracker server

Mapper

 The user provides an instance of Mapper
 Should extend MapReduceBase

 Should implement interface Mapper

 Override function map

 Emits (k2,v2) with output.collect(k2, v2)‏

 Exists in separate process from all other instances of
Mapper
 No data sharing

void map (WritableComparable key,

 Writable value,

 OutputCollector output,

 Reporter reporter)‏

input key

input value

collects output

keys and values
facility to report

progress

public static class Map

 extends MapReduceBase

 implements Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key,

 Text value,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 String line = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 output.collect(word, one);

 }

 }

}

What is Writable and Reporter?

 Hadoop defines its own “box” classes for strings
(Text), integers (IntWritable), …

 All values are instances of Writable

 All keys are instances of WritableComparable

 Reporter allows simple asynchronous

feedback

 incrCounter(Enum key, long amount)

 setStatus(String msg)‏

Partitioner

 Controls which of the R reduce tasks the intermediate
key is sent for reduction

int getPartition(K2 key,

 V2 value,

 int numPartitions)‏

 Outputs the partition number for a given key

 One partition = one Reduce task

 HashPartitioner used by default
 Uses key.hashCode() to return partition number

 JobConf sets Partitioner implementation

Reducer

reduce(WritableComparable key,

 Iterator values,

 OutputCollector output,

 Reporter reporter)‏

 Keys & values sent to one partition all go to the
same reduce task

 Calls are sorted by key

public static class Reduce

 extends MapReduceBase

 implements Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key,

 Iterator<IntWritable> values,

 OutputCollector<Text, IntWritable> output,

 Reporter reporter) throws IOException {

 int sum = 0;

 while (values.hasNext()) {

 sum += values.next().get();

 }

 output.collect(key, new IntWritable(sum));

 }

}

Design Questions to Ask

 From where will my input come?
 InputFileFormat

 How is my input structured?
 RecordReader

 LineRecordReader, KeyValueRecordReader

 (Do not reinvent the wheel.)

 Mapper and Reducer classes
 Do Key (WritableComparator) and Value (Writable) classes exist?

 Do I need to count anything while job is in progress?

 Where is my output going?

 Executor class
 What information do my map/reduce classes need?

 Must I block, waiting for job completion?

References

 Apache Hadoop: http://hadoop.apache.org/

 http://wiki.apache.org/hadoop/

 Hadoop: The Definitive Guide, by Tom White,
2nd edition, Oreilly’s, 2010

 Dean, J. and Ghemawat, S. 2008. MapReduce:
Simplified Data Processing on Large Clusters.
Communication of ACM 51, 1 (Jan. 2008), 107-
113.

http://hadoop.apache.org/
http://wiki.apache.org/hadoop/

