
Big Data Management

and NoSQL Databases

Lecture 2. MapReduce

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

NDBI040

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

MapReduce Framework

 A programming model + implementation

 Developed by Google in 2008
 To replace old, centralized index structure

 Distributed, parallel computing on large data

Google: “A simple and powerful interface that enables automatic
parallelization and distribution of large-scale computations,
combined with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.”

 Programming model in general:
 Mental model a programmer has about execution of application

 Purpose: improve programmer's productivity

 Evaluation: expressiveness, simplicity, performance

Programming Models

 Von Neumann model
 Executes a stream of instructions (machine code)
 Instructions can specify

 Arithmetic operations
 Data addresses
 Next instruction to execute
 …

 Complexity
 Billions of data locations and millions of instructions
 Manages with:

 Modular design
 High-level programming languages

Programming Models

 Parallel programming models
 Message passing

 Independent tasks encapsulating local data
 Tasks interact by exchanging messages

 Shared memory
 Tasks share a common address space
 Tasks interact by reading and writing from/to this space

 Asynchronously

 Data parallelization
 Data are partitioned across tasks
 Tasks execute a sequence of independent operations

MapReduce Framework

 Divide-and-conquer paradigm
 Map breaks down a problem into sub-problems

 Processes input data to generate a set of intermediate key/value
pairs

 Reduce receives and combines the sub-solutions to solve the
problem

 Processes intermediate values associated with the same
intermediate key

 Many real world tasks can be expressed this way
 Programmer focuses on map/reduce code

 Framework cares about data partitioning, scheduling execution
across machines, handling machine failures, managing inter-
machine communication, …

MapReduce
A Bit More Formally

 Map
 Input: a key/value pair

 Output: a set of intermediate key/value pairs
 Usually different domain

 (k1,v1) → list(k2,v2)

 Reduce
 Input: an intermediate key and a set of values for that

key

 Output: a possibly smaller set of values
 The same domain

 (k2,list(v2)) → (k2,possibly smaller list(v2))

MapReduce
Example: Word Frequency

map(String key, String value):

 // key: document name

 // value: document contents

for each word w in value:

 EmitIntermediate(w, "1");

reduce(String key, Iterator values):

 // key: a word

 // values: a list of counts

int result = 0;

for each v in values:

 result += ParseInt(v);

Emit(key, AsString(result));

MapReduce
Example: Word Frequency

MapReduce
More Examples

 distributed grep
 Map: emits <word, line number> if it matches a supplied pattern

 Reduce: identity

 URL access frequency
 Map: processes web logs, emits <URL, 1>

 Reduce: sums values and emits <URL, sum>

 reverse web-link graph
 Map: <target, source> for each link to a target URL found in a

page named source

 Reduce: concatenates the list of all source URLs associated with
a given target URL <target, list(source)>

MapReduce
More Examples

 term vector per host
 “Term vector” summarizes the most important words that occur

in a document or a set of documents

 Map: emits <hostname, term vector> for each input document
 The hostname is extracted from the URL of the document

 Reduce: adds the term vectors together, throws away infrequent
terms

 inverted index
 Map: parses each document, emits <word, document ID>

 Reduce: sorts the corresponding document IDs, emits <word,
list(document ID)>

 distributed sort
 Map: extracts the key from each record, and emits <key, record>

 Reduce: emits all pairs unchanged

MapReduce
Application Parts

 Input reader
 Reads data from stable storage

 e.g., a distributed file system

 Divides the input into appropriate size 'splits'

 Prepares key/value pairs

 Map function
 User-specified processing of key/value pairs

 Partition function
 Map function output is allocated to a reducer

 Partition function is given the key (output of Map) and the
number of reducers and returns the index of the desired reducer
 Default is to hash the key and use the hash value modulo the

number of reducers

MapReduce
Application Parts

 Compare function
 Sorts the input for the Reduce function

 Reduce function
 User-specified processing of key/values

 Output writer
 Writes the output of the Reduce function to stable storage

 e.g., a distributed file system

MapReduce
Execution (Google) – Step 1

1. MapReduce library in the user program

splits the input files into M pieces

 Typically 16 – 64 MB per piece

 Controllable by the user via optional

parameter

2. It starts copies of the program on a

cluster of machines

MapReduce
Execution – Step 2

 Master = a special copy of the program

 Workers = other copies that are assigned

work by master

 M Map tasks and R Reduce tasks to

assign

 Master picks idle workers and assigns

each one a Map task (or a Reduce task)

MapReduce
Execution – Step 3

 A worker who is assigned a Map task:

Reads the contents of the corresponding input
split

Parses key/value pairs out of the input data

Passes each pair to the user-defined Map
function

 Intermediate key/value pairs produced by the
Map function are buffered in memory

MapReduce
Execution – Step 4

 Periodically, the buffered pairs are written
to local disk

Partitioned into R regions by the partitioning
function

 Locations of the buffered pairs on the local
disk are passed back to the master

 It is responsible for forwarding the locations to
the Reduce workers

MapReduce
Execution – Step 5

 Reduce worker is notified by the master about data
locations

 It uses remote procedure calls to read the buffered data
from local disks of the Map workers

 When it has read all intermediate data, it sorts it by the
intermediate keys
 Typically many different keys map to the same Reduce task

 If the amount of intermediate data is too large, an external sort
is used

MapReduce
Execution – Step 6

 A Reduce worker iterates over the sorted

intermediate data

 For each intermediate key encountered:

 It passes the key and the corresponding set of

intermediate values to the user's Reduce function

 The output is appended to a final output file for this

Reduce partition

MapReduce
Function combine

 After a map phase, the mapper transmits over
the network the entire intermediate data file to
the reducer

 Sometimes this file is highly compressible

 User can specify function combine
 Like a reduce function

 It is run by the mapper before passing the job to the
reducer
 Over local data

MapReduce
Counters

 Can be associated with any action that a
mapper or a reducer does

 In addition to default counters
 e.g., the number of input and output key/value

pairs processed

 User can watch the counters in real time to
see the progress of a job

MapReduce
Fault Tolerance

 A large number of machines process a large

number of data → fault tolerance is necessary

 Worker failure

 Master pings every worker periodically

 If no response is received in a certain amount of time,

master marks the worker as failed

 All its tasks are reset back to their initial idle state →

become eligible for scheduling on other workers

MapReduce
Fault Tolerance

 Master failure
 Strategy A:

 Master writes periodic checkpoints of the master data
structures

 If it dies, a new copy can be started from the last
checkpointed state

 Strategy B:
 There is only a single master → its failure is unlikely

 MapReduce computation is simply aborted if the master fails

 Clients can check for this condition and retry the MapReduce
operation if they desire

MapReduce
Stragglers

 Straggler = a machine that takes an unusually
long time to complete one of the map/reduce
tasks in the computation
 Example: a machine with a bad disk

 Solution:
 When a MapReduce operation is close to completion,

the master schedules backup executions of the
remaining in-progress tasks

 A task is marked as completed whenever either the
primary or the backup execution completes

MapReduce
Task Granularity

 M pieces of Map phase and R pieces of Reduce phase
 Ideally both much larger than the number of worker machines

 How to set them?

 Master makes O(M + R) scheduling decisions

 Master keeps O(M * R) status information in memory
 For each Map/Reduce task: state (idle/in-progress/completed)

 For each non-idle task: identity of worker machine

 For each completed Map task: locations and sizes of the R intermediate
file regions

 R is often constrained by users
 The output of each Reduce task ends up in a separate output file

 Practical recommendation (Google):
 Choose M so that each individual task is roughly 16 – 64 MB of input

data

 Make R a small multiple of the number of worker machines we expect to
use

Real-World Example (Google)
Cluster Configuration

 1,800 machines

 Each machine:
 2x 2GHz Intel Xeon processor

 With Hyper-Threading enabled

 4GB memory

 Approx. 1-1.5GB reserved by other tasks

 2x 160GB IDE disks

 Gigabit Ethernet link

 Arranged in a two-level tree-shaped switched network
with approximately 100-200 Gbps of aggregate
bandwidth available at the root

Real-World Example 1
grep

 Search through approx. 1 terabyte of data
looking for a particular pattern
 Rare three-character pattern

 Present in 92,337 records

 M = 15,000

 R = 1

 1,764 workers assigned

 Entire computation: 150 seconds
 About a minute of start-up overhead

Real World Example 2
sort

 Sorting of approx. 1 terabyte of data

 Map: 3-line function
 Extracts a 10-byte sorting key from a text line and emits the key

and the original text line

 Reduce: identity

 M = 15,000

 R = 4,000

 About 1,700 workers assigned

 Entire computation: 891 seconds
 5 stragglers increase the time of 44%

MapReduce Criticism
David DeWitt and Michael Stonebraker – 2008

1. MapReduce is a step backwards in database access based on
 Schema describing data structure

 Separating schema from the application

 Advanced query languages

2. MapReduce is a poor implementation
 Instead of indexes is uses brute force

3. MapReduce is not novel (ideas more than 20 years old and
overcome)

4. MapReduce is missing features common in DBMSs
 Indexes, transactions, integrity constraints, views, …

5. MapReduce is incompatible with applications implemented over
DBMSs

 Data mining, business intelligence, …

End of MapReduce?

 FaceBook used MapReduce in 2010

 Hadoop

but…

 Google has recently (June 2014) announced a

shift towards: Google Cloud DataFlow

 Based on cloud and stream data processing

 Idea: no need to maintain complex infrastructure

 Data can be easily read, transformed and analyzed in a cloud

http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html

http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html
http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html

Resources

 Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data
Processing on Large Clusters, Google, Inc.
 http://labs.google.com/papers/mapreduce.html

 Google Code: Introduction to Parallel Programming and
MapReduce
 code.google.com/edu/parallel/mapreduce-tutorial.html

 Hadoop Map/Reduce Tutorial
 http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html

 Open Source MapReduce
 http://lucene.apache.org/hadoop/

 David DeWitt and Michael Stonebraker: Relational Database
Experts Jump The MapReduce Shark

http://labs.google.com/papers/mapreduce.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html
http://lucene.apache.org/hadoop/

