NDBI040

Big Data Management and NoSQL Databases

Lecture 2. MapReduce

Doc. RNDr. Irena Holubova, Ph.D. holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

MapReduce Framework

- A programming model + implementation
- Developed by Google in 2008
 - □ To replace old, centralized index structure
- Distributed, parallel computing on large data

Google: "A simple and powerful interface that enables automatic parallelization and distribution of large-scale computations, combined with an implementation of this interface that achieves high performance on large clusters of commodity PCs."

- Programming model in general:
 - □ Mental model a programmer has about execution of application
 - Purpose: improve programmer's productivity
 - Evaluation: expressiveness, simplicity, performance

Programming Models

Von Neumann model

Executes a stream of instructions (machine code)

- Instructions can specify
 - Arithmetic operations
 - Data addresses
 - Next instruction to execute
 - **.**..

Complexity

- Billions of data locations and millions of instructions
- Manages with:
 - Modular design
 - □ High-level programming languages

Programming Models

Parallel programming models

□ Message passing

- Independent tasks encapsulating local data
- Tasks interact by exchanging messages

□ Shared memory

- Tasks share a common address space
- Tasks interact by reading and writing from/to this space
 Asynchronously

□ Data parallelization

- Data are partitioned across tasks
- Tasks execute a sequence of independent operations

MapReduce Framework

Divide-and-conquer paradigm

□ Map breaks down a problem into sub-problems

- Processes input data to generate a set of intermediate key/value pairs
- Reduce receives and combines the sub-solutions to solve the problem
 - Processes intermediate values associated with <u>the same</u> intermediate key
- Many real world tasks can be expressed this way
 - Programmer focuses on map/reduce code
 - Framework cares about data partitioning, scheduling execution across machines, handling machine failures, managing intermachine communication, ...

MapReduce A Bit More Formally

Map

- Input: a key/value pair
- Output: a set of intermediate key/value pairs
 - Usually different domain

$$\Box (k_1, v_1) \rightarrow \mathsf{list}(k_2, v_2)$$

Reduce

- Input: an intermediate key and a set of values for that key
- Output: a possibly smaller set of values
 - The same domain
- $\Box (k_2, list(v_2)) \rightarrow (k_2, possibly smaller list(v_2))$

MapReduce Example: Word Frequency

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

```
reduce(String key, Iterator values):
    // key: a word
    // values: a list of counts
    int result = 0;
    for each v in values:
        result += ParseInt(v);
Emit(key, AsString(result));
```

MapReduce Example: Word Frequency

MapReduce More Examples

distributed grep

□ Map: emits <word, line number> if it matches a supplied pattern

□ Reduce: identity

URL access frequency

- □ Map: processes web logs, emits <URL, 1>
- Reduce: sums values and emits <URL, sum>

reverse web-link graph

- Map: <target, source> for each link to a target URL found in a page named source
- Reduce: concatenates the list of all source URLs associated with a given target URL <target, list(source)>

MapReduce More Examples

term vector per host

- "Term vector" summarizes the most important words that occur in a document or a set of documents
- □ Map: emits <hostname, term vector> for each input document
 - The hostname is extracted from the URL of the document
- Reduce: adds the term vectors together, throws away infrequent terms

inverted index

- □ Map: parses each document, emits <word, document ID>
- Reduce: sorts the corresponding document IDs, emits <word, list(document ID)>

distributed sort

- □ Map: extracts the key from each record, and emits <key, record>
- Reduce: emits all pairs unchanged

MapReduce Application Parts

Input reader

- Reads data from stable storage
 - e.g., a distributed file system
- Divides the input into appropriate size 'splits'
- Prepares key/value pairs

Map function

□ <u>User-specified</u> processing of key/value pairs

Partition function

- Map function output is allocated to a reducer
- Partition function is given the key (output of Map) and the number of reducers and returns the index of the desired reducer
 - Default is to hash the key and use the hash value modulo the number of reducers

MapReduce Application Parts

Compare function

Sorts the input for the Reduce function

Reduce function

□ <u>User-specified</u> processing of key/values

Output writer

□ Writes the output of the Reduce function to stable storage

• e.g., a distributed file system

MapReduce Execution (Google) – Step 1

- 1. MapReduce library in the user program splits the input files into *M* pieces
 - □ Typically 16 64 MB per piece
 - Controllable by the user via optional parameter
- 2. It starts copies of the program on a cluster of machines

- Master = a special copy of the program
- Workers = other copies that are assigned work by master
- Map tasks and R Reduce tasks to assign
- Master picks <u>idle</u> workers and assigns each one a Map task (or a Reduce task)

- A worker who is assigned a Map task:
 Reads the contents of the corresponding input split
 - Parses key/value pairs out of the input data
 - Passes each pair to the user-defined Map function
 - Intermediate key/value pairs produced by the Map function are buffered in memory

- Periodically, the buffered pairs are <u>written</u> to local disk
 - Partitioned into R regions by the partitioning function
- Locations of the buffered pairs on the local disk are passed back to the master
 - It is responsible for forwarding the locations to the Reduce workers

- Reduce worker is notified by the master about data locations
- It uses <u>remote procedure calls</u> to read the buffered data from local disks of the Map workers
- When it has read all intermediate data, it sorts it by the intermediate keys
 - Typically many different keys map to the same Reduce task
 - If the amount of intermediate data is too large, an external sort is used

- A Reduce worker iterates over the sorted intermediate data
- For each intermediate key encountered:
 - It passes the key and the corresponding set of intermediate values to the user's Reduce function
 - The output is appended to a final output file for this Reduce partition

MapReduce Function combine

- After a map phase, the mapper transmits over the network the entire intermediate data file to the reducer
- Sometimes this file is highly compressible
- User can specify function combine
 - □ Like a reduce function
 - It is run by the mapper before passing the job to the reducer
 - Over local data

MapReduce Counters

- Can be associated with any action that a mapper or a reducer does
 - □ In addition to default counters
 - e.g., the number of input and output key/value pairs processed
- User can watch the counters in real time to see the progress of a job

MapReduce Fault Tolerance

■ A large number of machines process a large number of data → fault tolerance is necessary

Worker failure

- □ Master pings every worker periodically
- If no response is received in a certain amount of time, master marks the worker as failed
- \Box <u>All</u> its tasks are reset back to their initial <u>idle</u> state \rightarrow become eligible for scheduling on other workers

MapReduce Fault Tolerance

Master failure

- □ Strategy A:
 - Master writes periodic checkpoints of the master data structures
 - If it dies, a new copy can be started from the last checkpointed state
- □ Strategy B:
 - There is only a single master \rightarrow its failure is unlikely
 - MapReduce computation is simply aborted if the master fails
 - Clients can check for this condition and retry the MapReduce operation if they desire

MapReduce Stragglers

Straggler = a machine that takes an unusually long time to complete one of the map/reduce tasks in the computation

□ Example: a machine with a bad disk

- Solution:
 - When a MapReduce operation is close to completion, the master schedules backup executions of the remaining in-progress tasks
 - A task is marked as completed whenever either the primary or the backup execution completes

MapReduce Task Granularity

- M pieces of Map phase and R pieces of Reduce phase
 Ideally both much larger than the number of worker machines
 How to set them?
- Master makes O(M + R) scheduling decisions
- Master keeps O(M * R) status information in memory
 - □ For each Map/Reduce task: state (idle/in-progress/completed)
 - □ For each non-idle task: identity of worker machine
 - □ For each completed Map task: locations and sizes of the *R* intermediate file regions
- *R* is often constrained by users
 - □ The output of each Reduce task ends up in a separate output file
- Practical recommendation (Google):
 - Choose M so that each individual task is roughly 16 64 MB of input data
 - Make R a small multiple of the number of worker machines we expect to use

Real-World Example (Google)

Cluster Configuration

- 1,800 machines
- Each machine:
 - 2x 2GHz Intel Xeon processor
 - With Hyper-Threading enabled
 - □ 4GB memory
 - Approx. 1-1.5GB reserved by other tasks
 - 2x 160GB IDE disks
 - Gigabit Ethernet link
- Arranged in a two-level tree-shaped switched network with approximately 100-200 Gbps of aggregate bandwidth available at the root

Real-World Example 1

grep

- Search through approx. 1 terabyte of data looking for a particular pattern
 Rare three-character pattern
 - Present in 92,337 records
- M = 15,000
- R = 1
- 1,764 workers assigned
- Entire computation: 150 seconds
 - □ About a minute of start-up overhead

Real World Example 2

- Sorting of approx. 1 terabyte of data
- Map: 3-line function
 - Extracts a 10-byte sorting key from a text line and emits the key and the original text line
- Reduce: identity
- M = 15,000
- R = 4,000
- About 1,700 workers assigned
- Entire computation: 891 seconds
 - $\hfill\square$ 5 stragglers increase the time of 44%

MapReduce Criticism

David DeWitt and Michael Stonebraker – 2008

- 1. MapReduce is a step backwards in database access based on
 - Schema describing data structure
 - Separating schema from the application
 - Advanced query languages
- 2. MapReduce is a poor implementation
 - Instead of indexes is uses brute force
- 3. MapReduce is not novel (ideas more than 20 years old and overcome)
- 4. MapReduce is missing features common in DBMSs
 - Indexes, transactions, integrity constraints, views, ...
- 5. MapReduce is incompatible with applications implemented over DBMSs
 - Data mining, business intelligence, …

End of MapReduce?

FaceBook used MapReduce in 2010
 Hadoop

but...

- Google has recently (June 2014) announced a shift towards: Google Cloud DataFlow
 - Based on cloud and stream data processing
 - □ Idea: no need to maintain complex infrastructure
 - Data can be easily read, transformed and analyzed in a cloud

http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html

Resources

- Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data Processing on Large Clusters, Google, Inc.
 - http://labs.google.com/papers/mapreduce.html
- Google Code: Introduction to Parallel Programming and MapReduce
 - □ <u>code.google.com/edu/parallel/mapreduce-tutorial.html</u>
- Hadoop Map/Reduce Tutorial
 - http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html
- Open Source MapReduce
 - http://lucene.apache.org/hadoop/
- David DeWitt and Michael Stonebraker: Relational Database Experts Jump The MapReduce Shark