
Big Data Management 

and NoSQL Databases 
 

Lecture 2. MapReduce 

Doc. RNDr. Irena Holubova, Ph.D. 
holubova@ksi.mff.cuni.cz 

 

  

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/ 

NDBI040 

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/


MapReduce Framework 

 A programming model + implementation 

 Developed by Google in 2008 
 To replace old, centralized index structure 

 Distributed, parallel computing on large data 

Google: “A simple and powerful interface that enables automatic 
parallelization and distribution of large-scale computations, 
combined with an implementation of this interface that achieves 
high performance on large clusters of commodity PCs.” 

 Programming model in general: 
 Mental model a programmer has about execution of application 

 Purpose: improve programmer's productivity 

 Evaluation: expressiveness, simplicity, performance 



Programming Models 

 Von Neumann model 
 Executes a stream of instructions (machine code) 
 Instructions can specify 

 Arithmetic operations 
 Data addresses 
 Next instruction to execute 
 … 

 Complexity 
 Billions of data locations and millions of instructions 
 Manages with: 

 Modular design 
 High-level programming languages 

 



Programming Models 

 Parallel programming models 
 Message passing 

 Independent tasks encapsulating local data 
 Tasks interact by exchanging messages 

 Shared memory 
 Tasks share a common address space 
 Tasks interact by reading and writing from/to this space  

 Asynchronously 

 Data parallelization 
 Data are partitioned across tasks 
 Tasks execute a sequence of independent operations 

 



MapReduce Framework 

 Divide-and-conquer paradigm 
 Map breaks down a problem into sub-problems  

 Processes input data to generate a set of intermediate key/value 
pairs 

 Reduce receives and combines the sub-solutions to solve the 
problem 

 Processes intermediate values associated with the same 
intermediate key 

 Many real world tasks can be expressed this way 
 Programmer focuses on map/reduce code 

 Framework cares about data partitioning, scheduling execution 
across machines, handling machine failures, managing inter-
machine communication, … 



MapReduce  
A Bit More Formally 

 Map  
 Input: a key/value pair  

 Output: a set of intermediate key/value pairs  
 Usually different domain 

 (k1,v1) → list(k2,v2) 

 Reduce  
 Input: an intermediate key and a set of values for that 

key 

 Output: a possibly smaller set of values 
 The same domain 

 (k2,list(v2)) → (k2,possibly smaller list(v2)) 



MapReduce 
Example: Word Frequency 

map(String key, String value): 

  // key: document name 

  // value: document contents 

for each word w in value: 

  EmitIntermediate(w, "1"); 

reduce(String key, Iterator values): 

  // key: a word 

  // values: a list of counts 

int result = 0; 

for each v in values: 

  result += ParseInt(v); 

Emit(key, AsString(result)); 



MapReduce 
Example: Word Frequency 



MapReduce  
More Examples 

 distributed grep 
 Map: emits <word, line number> if it matches a supplied pattern 

 Reduce: identity 

 URL access frequency 
 Map: processes web logs, emits <URL, 1> 

 Reduce: sums values and emits <URL, sum> 

 reverse web-link graph 
 Map: <target, source> for each link to a target URL found in a 

page named source 

 Reduce: concatenates the list of all source URLs associated with 
a given target URL <target, list(source)> 



MapReduce  
More Examples 

 term vector per host 
 “Term vector” summarizes the most important words that occur 

in a document or a set of documents  

 Map: emits <hostname, term vector> for each input document  
 The hostname is extracted from the URL of the document 

 Reduce: adds the term vectors together, throws away infrequent 
terms 

 inverted index 
 Map: parses each document, emits <word, document ID> 

 Reduce: sorts the corresponding document IDs, emits <word, 
list(document ID)> 

 distributed sort 
 Map: extracts the key from each record, and emits <key, record> 

 Reduce: emits all pairs unchanged 



MapReduce 
Application Parts 

 Input reader 
 Reads data from stable storage  

 e.g., a distributed file system 

 Divides the input into appropriate size 'splits' 

 Prepares key/value pairs 

 Map function 
 User-specified processing of key/value pairs 

 Partition function 
 Map function output is allocated to a reducer 

 Partition function is given the key (output of Map) and the 
number of reducers and returns the index of the desired reducer 
 Default is to hash the key and use the hash value modulo the 

number of reducers 



MapReduce 
Application Parts 

 Compare function 
 Sorts the input for the Reduce function 

 Reduce function 
 User-specified processing of key/values 

 Output writer 
 Writes the output of the Reduce function to stable storage  

 e.g., a distributed file system 



MapReduce  
Execution (Google) – Step 1 

1. MapReduce library in the user program 

splits the input files into M pieces 

 Typically 16 – 64 MB per piece  

 Controllable by the user via optional 

parameter 

2. It starts copies of the program on a 

cluster of machines 





MapReduce  
Execution – Step 2 

 Master = a special copy of the program  

 Workers = other copies that are assigned 

work by master 

 M Map tasks and R Reduce tasks to 

assign 

 Master picks idle workers and assigns 

each one a Map task (or a Reduce task) 





MapReduce  
Execution – Step 3 

 A worker who is assigned a Map task:  

Reads the contents of the corresponding input 
split 

Parses key/value pairs out of the input data  

Passes each pair to the user-defined Map 
function 

 Intermediate key/value pairs produced by the 
Map function are buffered in memory 





MapReduce  
Execution – Step 4 

 Periodically, the buffered pairs are written 
to local disk 

Partitioned into R regions by the partitioning 
function 

 Locations of the buffered pairs on the local 
disk are passed back to the master 

 It is responsible for forwarding the locations to 
the Reduce workers 





MapReduce  
Execution – Step 5 

 Reduce worker is notified by the master about data 
locations 

 It uses remote procedure calls to read the buffered data 
from local disks of the Map workers 

 When it has read all intermediate data, it sorts it by the 
intermediate keys  
 Typically many different keys map to the same Reduce task 

 If the amount of intermediate data is too large, an external sort 
is used 





MapReduce  
Execution – Step 6 

 A Reduce worker iterates over the sorted 

intermediate data 

 For each intermediate key encountered: 

 It passes the key and the corresponding set of 

intermediate values to the user's Reduce function 

 The output is appended to a final output file for this 

Reduce partition 





MapReduce  
Function combine 

 After a map phase, the mapper transmits over 
the network the entire intermediate data file to 
the reducer 

 Sometimes this file is highly compressible 

 User can specify function combine 
 Like a reduce function 

 It is run by the mapper before passing the job to the 
reducer 
 Over local data 



MapReduce  
Counters 

 Can be associated with any action that a 
mapper or a reducer does 

 In addition to default counters  
 e.g., the number of input and output key/value 

pairs processed 

 User can watch the counters in real time to 
see the progress of a job 



MapReduce  
Fault Tolerance 

 A large number of machines process a large 

number of data → fault tolerance is necessary 

 Worker failure 

 Master pings every worker periodically 

 If no response is received in a certain amount of time, 

master marks the worker as failed 

 All its tasks are reset back to their initial idle state → 

become eligible for scheduling on other workers 



MapReduce  
Fault Tolerance 

 Master failure 
 Strategy A:  

 Master writes periodic checkpoints of the master data 
structures 

 If it dies, a new copy can be started from the last 
checkpointed state 

 Strategy B: 
 There is only a single master → its failure is unlikely 

 MapReduce computation is simply aborted if the master fails 

 Clients can check for this condition and retry the MapReduce 
operation if they desire 



MapReduce 
Stragglers 

 Straggler = a machine that takes an unusually 
long time to complete one of the map/reduce 
tasks in the computation 
 Example: a machine with a bad disk 

 Solution: 
 When a MapReduce operation is close to completion, 

the master schedules backup executions of the 
remaining in-progress tasks 

 A task is marked as completed whenever either the 
primary or the backup execution completes 



MapReduce 
Task Granularity 

 M pieces of Map phase and R pieces of Reduce phase 
 Ideally both much larger than the number of worker machines 

 How to set them? 

 Master makes O(M + R) scheduling decisions  

 Master keeps O(M * R) status information in memory 
 For each Map/Reduce task: state (idle/in-progress/completed) 

 For each non-idle task: identity of worker machine  

 For each completed Map task: locations and sizes of the R intermediate 
file regions 

 R is often constrained by users  
 The output of each Reduce task ends up in a separate output file 

 Practical recommendation (Google): 
 Choose M so that each individual task is roughly 16 – 64 MB of input 

data 

 Make R a small multiple of the number of worker machines we expect to 
use 



Real-World Example (Google) 
Cluster Configuration 

 1,800 machines 

 Each machine: 
 2x 2GHz Intel Xeon processor  

 With Hyper-Threading enabled 

 4GB memory 

 Approx. 1-1.5GB reserved by other tasks 

 2x 160GB IDE disks 

 Gigabit Ethernet link 

 Arranged in a two-level tree-shaped switched network 
with approximately 100-200 Gbps of aggregate 
bandwidth available at the root 



Real-World Example 1 
grep 

 Search through approx. 1 terabyte of data 
looking for a particular pattern 
 Rare three-character pattern  

 Present in 92,337 records 

 M = 15,000 

 R = 1 

 1,764 workers assigned 

 Entire computation: 150 seconds 
 About a minute of start-up overhead 



Real World Example 2 
sort 

 Sorting of approx. 1 terabyte of data  

 Map: 3-line function 
 Extracts a 10-byte sorting key from a text line and emits the key 

and the original text line 

 Reduce: identity 

 M = 15,000 

 R = 4,000 

 About 1,700 workers assigned 

 Entire computation: 891 seconds 
 5 stragglers increase the time of 44% 



MapReduce Criticism 
David DeWitt and Michael Stonebraker – 2008 

1. MapReduce is a step backwards in database access based on 
 Schema describing data structure 

 Separating schema from the application 

 Advanced query languages 

2. MapReduce is a poor implementation 
 Instead of indexes is uses brute force 

3. MapReduce is not novel (ideas more than 20 years old and 
overcome) 

4. MapReduce is missing features common in DBMSs 
 Indexes, transactions, integrity constraints, views, … 

5. MapReduce is incompatible with applications implemented over 
DBMSs 

 Data mining, business intelligence, … 



End of MapReduce? 

 FaceBook used MapReduce in 2010 

 Hadoop 

but… 

 Google has recently (June 2014) announced a 

shift towards: Google Cloud DataFlow 

 Based on cloud and stream data processing 

 Idea: no need to maintain complex infrastructure 

 Data can be easily read, transformed and analyzed in a cloud 

http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html 
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Resources 

 Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data 
Processing on Large Clusters, Google, Inc. 
 http://labs.google.com/papers/mapreduce.html 

 Google Code: Introduction to Parallel Programming and 
MapReduce 
 code.google.com/edu/parallel/mapreduce-tutorial.html 

 Hadoop Map/Reduce Tutorial 
 http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html 

 Open Source MapReduce 
 http://lucene.apache.org/hadoop/  

 David DeWitt and Michael Stonebraker: Relational Database 
Experts Jump The MapReduce Shark  
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