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MapReduce Framework 

 A programming model + implementation 

 Developed by Google in 2008 
 To replace old, centralized index structure 

 Distributed, parallel computing on large data 

Google: “A simple and powerful interface that enables automatic 
parallelization and distribution of large-scale computations, 
combined with an implementation of this interface that achieves 
high performance on large clusters of commodity PCs.” 

 Programming model in general: 
 Mental model a programmer has about execution of application 

 Purpose: improve programmer's productivity 

 Evaluation: expressiveness, simplicity, performance 



Programming Models 

 Von Neumann model 
 Executes a stream of instructions (machine code) 
 Instructions can specify 

 Arithmetic operations 
 Data addresses 
 Next instruction to execute 
 … 

 Complexity 
 Billions of data locations and millions of instructions 
 Manages with: 

 Modular design 
 High-level programming languages 

 



Programming Models 

 Parallel programming models 
 Message passing 

 Independent tasks encapsulating local data 
 Tasks interact by exchanging messages 

 Shared memory 
 Tasks share a common address space 
 Tasks interact by reading and writing from/to this space  

 Asynchronously 

 Data parallelization 
 Data are partitioned across tasks 
 Tasks execute a sequence of independent operations 

 



MapReduce Framework 

 Divide-and-conquer paradigm 
 Map breaks down a problem into sub-problems  

 Processes input data to generate a set of intermediate key/value 
pairs 

 Reduce receives and combines the sub-solutions to solve the 
problem 

 Processes intermediate values associated with the same 
intermediate key 

 Many real world tasks can be expressed this way 
 Programmer focuses on map/reduce code 

 Framework cares about data partitioning, scheduling execution 
across machines, handling machine failures, managing inter-
machine communication, … 



MapReduce  
A Bit More Formally 

 Map  
 Input: a key/value pair  

 Output: a set of intermediate key/value pairs  
 Usually different domain 

 (k1,v1) → list(k2,v2) 

 Reduce  
 Input: an intermediate key and a set of values for that 

key 

 Output: a possibly smaller set of values 
 The same domain 

 (k2,list(v2)) → (k2,possibly smaller list(v2)) 



MapReduce 
Example: Word Frequency 

map(String key, String value): 

  // key: document name 

  // value: document contents 

for each word w in value: 

  EmitIntermediate(w, "1"); 

reduce(String key, Iterator values): 

  // key: a word 

  // values: a list of counts 

int result = 0; 

for each v in values: 

  result += ParseInt(v); 

Emit(key, AsString(result)); 



MapReduce 
Example: Word Frequency 



MapReduce  
More Examples 

 distributed grep 
 Map: emits <word, line number> if it matches a supplied pattern 

 Reduce: identity 

 URL access frequency 
 Map: processes web logs, emits <URL, 1> 

 Reduce: sums values and emits <URL, sum> 

 reverse web-link graph 
 Map: <target, source> for each link to a target URL found in a 

page named source 

 Reduce: concatenates the list of all source URLs associated with 
a given target URL <target, list(source)> 



MapReduce  
More Examples 

 term vector per host 
 “Term vector” summarizes the most important words that occur 

in a document or a set of documents  

 Map: emits <hostname, term vector> for each input document  
 The hostname is extracted from the URL of the document 

 Reduce: adds the term vectors together, throws away infrequent 
terms 

 inverted index 
 Map: parses each document, emits <word, document ID> 

 Reduce: sorts the corresponding document IDs, emits <word, 
list(document ID)> 

 distributed sort 
 Map: extracts the key from each record, and emits <key, record> 

 Reduce: emits all pairs unchanged 



MapReduce 
Application Parts 

 Input reader 
 Reads data from stable storage  

 e.g., a distributed file system 

 Divides the input into appropriate size 'splits' 

 Prepares key/value pairs 

 Map function 
 User-specified processing of key/value pairs 

 Partition function 
 Map function output is allocated to a reducer 

 Partition function is given the key (output of Map) and the 
number of reducers and returns the index of the desired reducer 
 Default is to hash the key and use the hash value modulo the 

number of reducers 



MapReduce 
Application Parts 

 Compare function 
 Sorts the input for the Reduce function 

 Reduce function 
 User-specified processing of key/values 

 Output writer 
 Writes the output of the Reduce function to stable storage  

 e.g., a distributed file system 



MapReduce  
Execution (Google) – Step 1 

1. MapReduce library in the user program 

splits the input files into M pieces 

 Typically 16 – 64 MB per piece  

 Controllable by the user via optional 

parameter 

2. It starts copies of the program on a 

cluster of machines 





MapReduce  
Execution – Step 2 

 Master = a special copy of the program  

 Workers = other copies that are assigned 

work by master 

 M Map tasks and R Reduce tasks to 

assign 

 Master picks idle workers and assigns 

each one a Map task (or a Reduce task) 





MapReduce  
Execution – Step 3 

 A worker who is assigned a Map task:  

Reads the contents of the corresponding input 
split 

Parses key/value pairs out of the input data  

Passes each pair to the user-defined Map 
function 

 Intermediate key/value pairs produced by the 
Map function are buffered in memory 





MapReduce  
Execution – Step 4 

 Periodically, the buffered pairs are written 
to local disk 

Partitioned into R regions by the partitioning 
function 

 Locations of the buffered pairs on the local 
disk are passed back to the master 

 It is responsible for forwarding the locations to 
the Reduce workers 





MapReduce  
Execution – Step 5 

 Reduce worker is notified by the master about data 
locations 

 It uses remote procedure calls to read the buffered data 
from local disks of the Map workers 

 When it has read all intermediate data, it sorts it by the 
intermediate keys  
 Typically many different keys map to the same Reduce task 

 If the amount of intermediate data is too large, an external sort 
is used 





MapReduce  
Execution – Step 6 

 A Reduce worker iterates over the sorted 

intermediate data 

 For each intermediate key encountered: 

 It passes the key and the corresponding set of 

intermediate values to the user's Reduce function 

 The output is appended to a final output file for this 

Reduce partition 





MapReduce  
Function combine 

 After a map phase, the mapper transmits over 
the network the entire intermediate data file to 
the reducer 

 Sometimes this file is highly compressible 

 User can specify function combine 
 Like a reduce function 

 It is run by the mapper before passing the job to the 
reducer 
 Over local data 



MapReduce  
Counters 

 Can be associated with any action that a 
mapper or a reducer does 

 In addition to default counters  
 e.g., the number of input and output key/value 

pairs processed 

 User can watch the counters in real time to 
see the progress of a job 



MapReduce  
Fault Tolerance 

 A large number of machines process a large 

number of data → fault tolerance is necessary 

 Worker failure 

 Master pings every worker periodically 

 If no response is received in a certain amount of time, 

master marks the worker as failed 

 All its tasks are reset back to their initial idle state → 

become eligible for scheduling on other workers 



MapReduce  
Fault Tolerance 

 Master failure 
 Strategy A:  

 Master writes periodic checkpoints of the master data 
structures 

 If it dies, a new copy can be started from the last 
checkpointed state 

 Strategy B: 
 There is only a single master → its failure is unlikely 

 MapReduce computation is simply aborted if the master fails 

 Clients can check for this condition and retry the MapReduce 
operation if they desire 



MapReduce 
Stragglers 

 Straggler = a machine that takes an unusually 
long time to complete one of the map/reduce 
tasks in the computation 
 Example: a machine with a bad disk 

 Solution: 
 When a MapReduce operation is close to completion, 

the master schedules backup executions of the 
remaining in-progress tasks 

 A task is marked as completed whenever either the 
primary or the backup execution completes 



MapReduce 
Task Granularity 

 M pieces of Map phase and R pieces of Reduce phase 
 Ideally both much larger than the number of worker machines 

 How to set them? 

 Master makes O(M + R) scheduling decisions  

 Master keeps O(M * R) status information in memory 
 For each Map/Reduce task: state (idle/in-progress/completed) 

 For each non-idle task: identity of worker machine  

 For each completed Map task: locations and sizes of the R intermediate 
file regions 

 R is often constrained by users  
 The output of each Reduce task ends up in a separate output file 

 Practical recommendation (Google): 
 Choose M so that each individual task is roughly 16 – 64 MB of input 

data 

 Make R a small multiple of the number of worker machines we expect to 
use 



Real-World Example (Google) 
Cluster Configuration 

 1,800 machines 

 Each machine: 
 2x 2GHz Intel Xeon processor  

 With Hyper-Threading enabled 

 4GB memory 

 Approx. 1-1.5GB reserved by other tasks 

 2x 160GB IDE disks 

 Gigabit Ethernet link 

 Arranged in a two-level tree-shaped switched network 
with approximately 100-200 Gbps of aggregate 
bandwidth available at the root 



Real-World Example 1 
grep 

 Search through approx. 1 terabyte of data 
looking for a particular pattern 
 Rare three-character pattern  

 Present in 92,337 records 

 M = 15,000 

 R = 1 

 1,764 workers assigned 

 Entire computation: 150 seconds 
 About a minute of start-up overhead 



Real World Example 2 
sort 

 Sorting of approx. 1 terabyte of data  

 Map: 3-line function 
 Extracts a 10-byte sorting key from a text line and emits the key 

and the original text line 

 Reduce: identity 

 M = 15,000 

 R = 4,000 

 About 1,700 workers assigned 

 Entire computation: 891 seconds 
 5 stragglers increase the time of 44% 



MapReduce Criticism 
David DeWitt and Michael Stonebraker – 2008 

1. MapReduce is a step backwards in database access based on 
 Schema describing data structure 

 Separating schema from the application 

 Advanced query languages 

2. MapReduce is a poor implementation 
 Instead of indexes is uses brute force 

3. MapReduce is not novel (ideas more than 20 years old and 
overcome) 

4. MapReduce is missing features common in DBMSs 
 Indexes, transactions, integrity constraints, views, … 

5. MapReduce is incompatible with applications implemented over 
DBMSs 

 Data mining, business intelligence, … 



End of MapReduce? 

 FaceBook used MapReduce in 2010 

 Hadoop 

but… 

 Google has recently (June 2014) announced a 

shift towards: Google Cloud DataFlow 

 Based on cloud and stream data processing 

 Idea: no need to maintain complex infrastructure 

 Data can be easily read, transformed and analyzed in a cloud 

http://googledevelopers.blogspot.fr/2014/06/cloud-platform-at-google-io-new-big.html 
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Resources 

 Jeffrey Dean and Sanjay Ghemawat: MapReduce: Simplified Data 
Processing on Large Clusters, Google, Inc. 
 http://labs.google.com/papers/mapreduce.html 

 Google Code: Introduction to Parallel Programming and 
MapReduce 
 code.google.com/edu/parallel/mapreduce-tutorial.html 

 Hadoop Map/Reduce Tutorial 
 http://hadoop.apache.org/docs/r0.20.2/mapred_tutorial.html 

 Open Source MapReduce 
 http://lucene.apache.org/hadoop/  

 David DeWitt and Michael Stonebraker: Relational Database 
Experts Jump The MapReduce Shark  
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