
Big Data Management

and NoSQL Databases

Lecture 1. Introduction

Doc. RNDr. Irena Holubova, Ph.D.
holubova@ksi.mff.cuni.cz

http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

NDBI040

mailto:holubova@ksi.mff.cuni.cz
http://www.ksi.mff.cuni.cz/~holubova/NDBI040/

What is Big Data?

 buzzword?

 bubble?

 gold rush?

 revolution?

“Big data is like teenage sex: everyone talks

about it, nobody really knows how to do it,

everyone thinks everyone else is doing it, so

everyone claims they are doing it.”

Dan Ariely

What is Big Data?

 No standard definition

 First occurrence of the term: High

Performance Computing (HPC)

Gartner: “Big Data” is high volume,

high velocity, and/or high variety

information assets that require new

forms of processing to enable

enhanced decision making, insight

discovery and process optimization.

3 (4, 5)

Vs

Volume

Variety Velocity

Big Data

What is Big Data?

IBM: Depending on the industry and organization, Big Data

encompasses information from internal and external sources such

as transactions, social media, enterprise content, sensors, and

mobile devices.

Companies can leverage data to adapt their products and services

to better meet customer needs, optimize operations and

infrastructure, and find new sources of revenue.

http://www.ibmbigdatahub.com/

Social media and networks

(all of us are generating data)

Scientific instruments

(collecting all sorts of data)

Mobile devices

(tracking all objects all the time)

Sensor technology and networks

(measuring all kinds of data)

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Volume (Scale)

http://www.ibmbigdatahub.com/

Data volume is

increasing

exponentially,

not linearly

1021

109

1018

1012

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Variety (Complexity)

http://www.ibmbigdatahub.com/

Various formats,

types, and

structures (from

semi-structured

XML to

unstructured

multimedia)

Static data vs.

streaming data

1018

109

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Velocity (Speed)

http://www.ibmbigdatahub.com/

Data is being

generated fast and

need to be

processed fast

Online

Data

Analytics

http://www.ibmbigdatahub.com/

Big Data Characteristics:

Veracity (Uncertainty)

http://www.ibmbigdatahub.com/

Uncertainty due

to inconsistency,

incompleteness,

latency,

ambiguities, or

approximations.

1012

http://www.ibmbigdatahub.com/

Processing Big Data

 OLTP: Online Transaction Processing (DBMSs)
 Database applications

 Storing, querying, multiuser access

 OLAP: Online Analytical Processing (Data Warehousing)
 Answer multi-dimensional analytical queries

 Financial/marketing reporting, budgeting, forecasting, …

 RTAP: Real-Time Analytic Processing (Big Data
Architecture & Technology)
 Data gathered & processed in a real-time

 Streaming fashion

 Real-time data queried and presented in an online fashion

 Real-time and history data combined and mined interactively

Key Big Data-Related

Technologies

 Distributed file
systems

 NoSQL databases

 Grid computing,
cloud computing

 MapReduce and
other new
paradigms

 Large scale
machine learning

http://e-theses.imtlucca.it/34/

http://e-theses.imtlucca.it/34/
http://e-theses.imtlucca.it/34/
http://e-theses.imtlucca.it/34/

Relational Database Management

Systems (RDMBSs)

 Predominant technology for storing structured
data
 Web and business applications

 Relational calculus, SQL

 Often thought of as the only alternative for data
storage
 Persistence, concurrency control, integration

mechanism, …

 Alternatives: Object databases or XML stores
 Never gained the same adoption and market share

„NoSQL“

 1998 first used for a relational database that
omitted the use of SQL
 Carlo Strozzi

 2009 used for conferences of advocates of non-
relational databases
 Eric Evans

 Blogger, developer at Rackspace

NoSQL movement = “the whole point of

seeking alternatives is that you need to

solve a problem that relational

databases are a bad fit for”

„NoSQL“

 Not „no to SQL“
 Another option, not the only one

 Not „not only SQL“
 Oracle DB or PostgreSQL would fit the definition

 „Next Generation Databases mostly addressing some of
the points: being non-relational, distributed, open-source
and horizontally scalable. The original intention has been
modern web-scale databases. Often more
characteristics apply as: schema-free, easy replication
support, simple API, eventually consistent (BASE, not
ACID), a huge data amount, and more“

http://nosql-database.org/

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

The End of Relational Databases?

 Relational databases are not going away

 Compelling arguments for most projects

 Familiarity, stability, feature set, and available support

 We should see relational databases as one

option for data storage

 Polyglot persistence – using different data stores in

different circumstances

 Search for optimal storage for a particular application

Motivation for NoSQL Databases

 Huge amounts of data are now handled in real-
time

 Both data and use cases are getting more and
more dynamic

 Social networks (relying on graph data) have
gained impressive momentum
 Special type of NoSQL databases: graph databases

 Full-texts have always been treated shabbily by
RDBMS

Example: FaceBook
Statistics from 2010

 500 million users

 570 billion page views per month

 3 billion photos uploaded per month

 1.2 million photos served per second

 25 billion pieces of content (updates, comments) shared every
month

 50 million server-side operations per second

2008: 10,000 servers

2009: 30,000 servers

…

 One RDBMS may not be enough to keep this going on!

http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

And even bewer numbers:

https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/

http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://www.google.cz/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=DVlrHwE4TbQryM&tbnid=Oi0dU87Q224zwM:&ved=0CAUQjRw&url=http%3A%2F%2Fslant.investorplace.com%2F2013%2F09%2Ffacebook-stock-fb%2F&ei=STxHUvnSHsGltAaaj4CQCA&bvm=bv.53217764,d.Yms&psig=AFQjCNFi9IZtR9DkpLpiXEzUb1WCdsAQUQ&ust=1380486568849736
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/

Example: FaceBook
Architecture from 2010

Cassandra

 NoSQL distributed storage system with
no single point of failure

 For inbox searching

Hadoop/Hive

 An open source MapReduce
implementation

 Enables to perform calculations on
massive amounts of data

 Hive enables to use SQL queries
against Hadoop

Example: FaceBook
Architecture from 2010 and later

Memcached

 Distributed memory caching system

 Caching layer between the web servers
and MySQL servers
 Since database access is relatively slow

HBase

 Hadoop database, used for e-mails,
instant messaging and SMS

 Has recently replaced MySQL,
Cassandra and few others

 Built on Google’s BigTable model

NoSQL Databases
Five Advantages

1. Elastic scaling

 “Classical” database administrators scale up – buy
bigger servers as database load increases

 Scaling out – distributing the database across multiple
hosts as load increases

2. Big Data

 Volumes of data that are being stored have increased
massively

 Opens new dimensions that cannot be handled with
RDBMS

http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772

http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772
http://www.techrepublic.com/blog/10things/10-things-you-should-know-about-nosql-databases/1772

NoSQL Databases
Five Advantages

3. Goodbye DBAs (see you later?)

 Automatic repair, distribution, tuning, … vs. expensive,
highly trained DBAs of RDBMS

4. Economics

 Based on cheap commodity servers  less costs per
transaction/second

5. Flexible Data Models

 Non-existing/relaxed data schema  structural changes
cause no overhead

NoSQL Databases
Five Challenges

1. Maturity

 Still in pre-production phase

 Key features yet to be implemented

2. Support

 Mostly open source, result from start-ups
 Enables fact development

 Limited resources or credibility

3. Administration

 Require lot of skill to install and effort to maintain

NoSQL Databases
Five Challenges

4. Analytics and Business Intelligence

 Focused on web apps scenarios
 Modern Web 2.0 applications

 Insert-read-update-delete

 Limited ad-hoc querying
 Even a simple query requires significant programming expertise

5. Expertise

 Few number of NoSQL experts available in the market

Data Assumptions

RDBMS NoSQL

integrity is mission-critical OK as long as most data is correct

data format consistent, well-defined data format unknown or inconsistent

data is of long-term value data are expected to be replaced

data updates are frequent write-once, read multiple (no

updates, or at least not often)

predictable, linear growth unpredictable growth (exponential)

non-programmers writing queries only programmers writing queries

regular backup replication

access through master server sharding across multiple nodes

NoSQL Data Model
Aggregates

 Data model = the model by which the database
organizes data

 Each NoSQL solution has a different model
 Key-value, document, column-family, graph

 First three orient on aggregates

 Aggregate
 A data unit with a complex structure

 Not just a set of tuples like in RDBMS

 Domain-Driven Design: “an aggregate is a collection
of related objects that we wish to treat as a unit”
 A unit for data manipulation and management of consistency

NoSQL Data Model
Aggregates – aggregate-ignorant

 There is no universal strategy how to draw
aggregate boundaries
 Depends on how we manipulate the data

 RDBMS and graph databases are aggregate-
ignorant
 It is not a bad thing, it is a feature

 Allows to easily look at the data in different ways

 Better choice when we do not have a primary
structure for manipulating data

NoSQL

NoSQL Data Model
Aggregates – aggregate-oriented

 Aggregate orientation
 Aggregates give the database information about

which bits of data will be manipulated together
 Which should live on the same node

 Helps greatly with running on a cluster
 We need to minimize the number of nodes we need to query

when we are gathering data

 Consequence for transactions
 NoSQL databases support atomic manipulation of a

single aggregate at a time

NoSQL Databases
Materialized Views

 Disadvantage: the aggregated structure is given, other
types of aggregations cannot be done easily
 RDBMSs lack of aggregate structure  support for accessing

data in different ways (using views)

 Solution: materialized views
 Pre-computed and cached queries

 Strategies:
 Update materialized view when we update the base data

 For more frequent reads of the view than writes

 Run batch jobs to update the materialized views at regular
intervals

NoSQL Databases
Schemalessness

 When we want to store data in a RDBMS, we need to
define a schema

 Advocates of schemalessness rejoice in freedom and
flexibility
 Allows to easily change your data storage as we learn more

about the project

 Easier to deal with non-uniform data

 Fact: there is usually an implicit schema present
 The program working with the data must know its structure

Types of NoSQL Databases

Core:

 Key-value databases

 Document databases

 Column-family (column-oriented/columnar) stores

 Graph databases

Non-core:

 Object databases

 XML databases

 …

http://nosql-database.org/

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

Key-value store
Basic characteristics

 The simplest NoSQL data stores

 A simple hash table (map), primarily used when all
access to the database is via primary key

 A table in RDBMS with two columns, such as ID and
NAME
 ID column being the key

 NAME column storing the value
 A BLOB that the data store just stores

 Basic operations:
 Get the value for the key

 Put a value for a key

 Delete a key from the data store

 Simple  great performance, easily scaled

 Simple  not for complex queries, aggregation needs

Key-value store
Representatives

Project

Voldemort

MemcachedDB

not

open-source

open-source

version

Key-value store
Suitable Use Cases

Storing Session Information

 Every web session is assigned a unique session_id value

 Everything about the session can be stored by a single PUT request
or retrieved using a single GET

 Fast, everything is stored in a single object

User Profiles, Preferences

 Every user has a unique user_id, user_name + preferences such as
language, colour, time zone, which products the user has access to,
…

 As in the previous case:
 Fast, single object, single GET/PUT

Shopping Cart Data

 Similar to the previous cases

Key-value store
When Not to Use

Relationships among Data

 Relationships between different sets of data

 Some key-value stores provide link-walking features
 Not usual

Multioperation Transactions

 Saving multiple keys
 Failure to save any one of them → revert or roll back the rest of the

operations

Query by Data

 Search the keys based on something found in the value part

Operations by Sets

 Operations are limited to one key at a time

 No way to operate upon multiple keys at the same time

Column-Family Stores
Basic Characteristics

 Also “columnar” or “column-oriented”

 Column families = rows that have many columns
associated with a row key

 Column families are groups of related data that is often
accessed together
 e.g., for a customer we access all profile information at the same

time, but not orders

Column-Family Stores
Representatives

Google’s

BigTable

Column-Family Stores
Suitable Use Cases

Event Logging

 Ability to store any data structures → good choice to store event information

Content Management Systems, Blogging Platforms

 We can store blog entries with tags, categories, links, and trackbacks in
different columns

 Comments can be either stored in the same row or moved to a different
keyspace

 Blog users and the actual blogs can be put into different column families

Column-Family Stores
When Not to Use

Systems that Require ACID Transactions

 Column-family stores are not just a special kind of RDBMSs with
variable set of columns!

Aggregation of the Data Using Queries

 (such as SUM or AVG)

 Have to be done on the client side

For Early Prototypes

 We are not sure how the query patterns may change

 As the query patterns change, we have to change the column family
design

Document Databases
Basic Characteristics

 Documents are the main concept
 Stored and retrieved

 XML, JSON, …

 Documents are
 Self-describing

 Hierarchical tree data structures

 Can consist of maps, collections (lists, sets, …), scalar values,
nested documents, …

 Documents in a collection are expected to be similar
 Their schema can differ

 Document databases store documents in the value part
of the key-value store
 Key-value stores where the value is examinable

Document Databases
Representatives

Lotus Notes

Storage Facility

http://en.wikipedia.org/wiki/File:Lotus_Notes_8_icon.png

Document Databases
Suitable Use Cases

Event Logging

 Many different applications want to log events
 Type of data being captured keeps changing

 Events can be sharded (i.e. divided) by the name of the application or type
of event

Content Management Systems, Blogging Platforms

 Managing user comments, user registrations, profiles, web-facing
documents, …

Web Analytics or Real-Time Analytics

 Parts of the document can be updated

 New metrics can be easily added without schema changes
 E.g. adding a member of a list, set,…

E-Commerce Applications

 Flexible schema for products and orders

 Evolving data models without expensive data migration

Document Databases
When Not to Use

Complex Transactions Spanning Different Operations

 Atomic cross-document operations
 Some document databases do support (e.g., RavenDB)

Queries against Varying Aggregate Structure

 Design of aggregate is constantly changing → we need
to save the aggregates at the lowest level of granularity
 i.e. to normalize the data

Graph Databases
Basic Characteristics

 To store entities and relationships between these entities
 Node is an instance of an object

 Nodes have properties

 e.g., name

 Edges have directional significance

 Edges have types

 e.g., likes, friend, …

 Nodes are organized by relationships
 Allow to find interesting patterns

 e.g., “Get all nodes employed by Big Co that like NoSQL
Distilled”

Example:

Graph Databases
RDBMS vs. Graph Databases

 When we store a graph-like structure in RDBMS, it is for
a single type of relationship
 “Who is my manager”

 Adding another relationship usually means a lot of
schema changes

 In RDBMS we model the graph beforehand based on the
Traversal we want
 If the Traversal changes, the data will have to change

 In graph databases the relationship is not calculated at query
time but persisted

Graph Databases
Representatives

FlockDB

http://en.wikipedia.org/wiki/File:Neo4j.jpg

Graph Databases
Suitable Use Cases

Connected Data

 Social networks

 Any link-rich domain is well suited for graph databases

Routing, Dispatch, and Location-Based Services

 Node = location or address that has a delivery

 Graph = nodes where a delivery has to be made

 Relationships = distance

Recommendation Engines

 “your friends also bought this product”

 “when invoicing this item, these other items are usually invoiced”

Graph Databases
When Not to Use

 When we want to update all or a subset of entities
 Changing a property on all the nodes is not a straightforward

operation

 e.g., analytics solution where all entities may need to be updated
with a changed property

 Some graph databases may be unable to handle lots of
data
 Distribution of a graph is difficult or impossible

NoSQL Data Model
Aggregates and NoSQL databases

Key-value database

 Aggregate = some big blob of mostly meaningless bits
 But we can store anything

 We can only access an aggregate by lookup based on
its key

Document database

 Enables to see a structure in the aggregate
 But we are limited by the structure when storing (similarity)

 We can submit queries to the database based on the
fields in the aggregate

NoSQL Data Model
Aggregates and NoSQL databases

Column-family stores

 A two-level aggregate structure
 The first key is a row identifier, picking up the aggregate of

interest

 The second-level values are referred to as columns

 Ways to think about how the data is structured:
 Row-oriented: each row is an aggregate with column families

representing useful chunks of data (profile, order history)

 Column-oriented: each column family defines a record type (e.g.,
customer profiles) with rows for each of the records; a row is the
join of records in all column families

References

 http://nosql-database.org/

 Pramod J. Sadalage – Martin Fowler: NoSQL Distilled:
A Brief Guide to the Emerging World of Polyglot
Persistence

 Eric Redmond – Jim R. Wilson: Seven Databases in
Seven Weeks: A Guide to Modern Databases and the
NoSQL Movement

 Sherif Sakr – Eric Pardede: Graph Data Management:
Techniques and Applications

 Shashank Tiwari: Professional NoSQL

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

