Course A7B36DBS: Database Systems

Practice 01:

Conceptual Modeling in ER and UML

Martin Svoboda

Faculty of Electrical Engineering, Czech Technical University in Prague

Conceptual Modeling

- Database modeling layers
 - Conceptual, logical and physical

• ER

- Entity type (strong / weak)
- Relationship type (binary / n-ary / recursive, cardinalities)
- Attribute (ordinary / composite, multivalued)
- Identifier (full / partial)
- ISA hierarchy (covering / overlap constraints)

• UML

Class, association, attribute, generalization

Assignments

- Create an ER conceptual schema for a simple student information system...
 - Each person has a name, personal id number, address and one e-mail address
 - Values of personal id are unique for different persons

- Extend the previous diagram...
 - Each person may have several login names that can be used for accessing the information system
 - Together with each login name we also store hashed value of a corresponding password

- Modify the previous diagram...
 - We would like to split the unstructured address attribute of a person to separate values of a street, city and post code
 - Each person may have at least one e-mail address from this moment

- Extend the previous diagram...
 - Two types of persons are now distinguished:
 - Student have at least one phone number
 - Teacher may have a website and is identifiable also using an employee number

- Extend the previous diagram...
 - Course is identified by its code, it has a unique name and also a number of credits
 - Each course is guaranteed by right one teacher

- Extend the previous diagram...
 - Two courses may have a mutual dependency
 - We also would like to distinguish between the two following types of such dependencies: co-requisites and pre-requisites

- Extend the previous diagram...
 - Students work on theses which are lead by teachers
 - Each thesis has its type (bachelor, master, doctoral), unique name and year of assignment
 - Use an entity type for theses
 - Determine all the relationship cardinalities correctly

- Modify the previous diagram...
 - Can the previous relationship type for assignment / leadership of theses be modeled using a binary relationship type (instead of ternary)?

- Extend the previous diagram...
 - Model a timetable using a relationship type
 - I.e. describe timetable events of teaching courses by teachers, always in a given day of a week, at a given time and on a given place
 - You can limit yourself on one active semester only

- Modify the previous diagram...
 - Model timetable events using an entity type

- Extend the previous diagram...
 - Each thesis may also be associated with several teachers acting as consultants

- Modify the previous diagram...
 - Thesis name as such is no longer sufficient to identify particular theses
 - However, a pair of a thesis type and name is sufficient for this purpose
 - Finally, an artificially assigned thesis number in a repository may be used for the identification as well

- Extend the previous diagram...
 - Departments consist of research groups
 - Each department has its name and code, both allowing to be used as independent identifiers
 - Research group can only be identified locally using its abbreviated name within a particular department it belongs to

- Extend and modify the previous diagram...
 - Timetable events must support different semesters
 - Students can enroll in courses (even repeatedly)
 - For each such enrollment we need to record the final achieved grade (if any)

- Create a UML schema diagram for the entire student information system as described
 - I.e. model all the following classes and associations:
 - Person, student, teacher, login, course, thesis, timetable event, time slot, room, semester, department, group