
course:

Database Systems (A7B36DBS)

Acknowledgement:
The slides were kindly lent by Doc. RNDr. Tomas Skopal, Ph.D.,
Department of Software Engineering, Charles University in Prague

Doc. RNDr. Irena Holubova, Ph.D.

lecture 12:

Database Architectures and
Models

 architectures of database systems
 centralized systems

 client – server systems

 parallel systems

 distributed systems
 logical database models

 relational

 object-relational

 object
 types of queries
 NoSQL databases

 centralized systems
 client – server systems
 parallel systems
 distributed systems

 run on a single computer system
 do not interact with other computer systems
 general-purpose computer system

 one to a few CPUs and a number of device controllers
 connected through a common bus

▪ provides access to a shared memory
 single-user system (e.g., personal computer or workstation)

 desk-top unit, single user, usually has one or two CPUs and one or
two hard disks

 the OS may support only one user
 multi-user system:

 more disks, more memory, multiple CPUs, and a multi-user OS
 serve a large number of users who are connected to the system via

terminals

 server systems satisfy requests generated at m
client systems

 advantages of replacing mainframes with networks
of workstations or personal computers connected to
back-end server machines:

 better functionality for the cost

 flexibility in locating resources and expanding facilities

 better user interfaces

 easier maintenance

 database functionality can be divided into:

 back-end: manages access structures, query evaluation
and optimization, concurrency control and recovery

 front-end: consists of tools such as forms, report-writers,
and graphical user interface facilities

 interface between the front-end and the back-end:

 SQL

 application program interface

 consist of multiple processors and multiple disks
connected by a fast interconnection network
 a coarse-grain parallel machine consists of a small

number of powerful processors

 a massively parallel or fine-grain parallel machine utilizes
thousands of smaller processors

 two main performance measures:
 throughput – the number of tasks that can be completed

in a given time interval

 latency (response time) – the amount of time it takes to
complete a single task from the time it is submitted

 speed-up: a fixed-sized problem executing on a small system
is given to a system which is N-times larger (more efficient)

 scale-up: increase the size of both the problem and the
system
 N-times larger system used to perform N-times larger job

 both often sub-linear due to:
 Start-up costs: Cost of starting up multiple processes > computation

time
▪ If the degree of parallelism is high

 Interference: Processes accessing shared resources (e.g., system bus,
disks, or locks) compete with each other  spend time waiting on
other processes rather than performing useful work

 Skew: Increasing the degree of parallelism increases the variance in
service times of tasks executed in parallel
▪ Overall execution time is determined by the slowest of executing tasks

 Bus: components send data on and receive data from a
single communication bus
 cons: does not scale well with increasing parallelism

 Mesh: components are arranged as nodes in a grid, and each
component is connected to adjacent components
 pros: communication links grow with growing number of components

▪ scales better

 cons: may require 2n hops to send message to a node
 Hypercube: components are numbered in binary

representation  components are connected to one another
if their binary representations differ in exactly one bit.
 n components are connected to log(n) other components and can

reach each other via at most log(n) links
 reduces communication delays

 Shared memory – processors share a common memory
 efficient communication between processors
 not scalable much

▪ the bus or the interconnection network becomes a bottleneck
 Shared disk – processors share a common disk

 a degree of fault tolerance – if a processor fails, other processors can take
over its tasks
▪ data are accessible from all processors

 bottleneck = interconnection to the disk
 Shared nothing – processors share neither a common memory nor

common disk
 processors communicate using an interconnection network
 drawback: cost of communication and non-local disk access

 Hierarchical – combination of the above architectures
 top level is a shared-nothing
 each node of the system could be a shared-memory sub-system

 scale-out:data are distributed (spread) over
multiple machines = nodes

 data are replicated
 system can work even if a node fails

 homogeneous distributed databases
 same software/schema on all nodes, data may be

partitioned among nodes
 goal: provide a view of a single database, hiding details of

distribution
 heterogeneous distributed databases

 different software/schema on different nodes
 goal: integrate existing databases to provide useful

functionality

 single server – no distribution
 sharding – putting different parts of the data onto

different servers
 too many data to be stored on a single node

 master/slave replication – master provides
reads/writes, slaves provide reads
 no scalability of writes

 peer-to-peer replication – all replicas have
equivalent weight
 each node is a master

 often: combination of sharding and replication

sharding = distribution
master/slave replication

peer-to-peer replication

 current common models:
 relational databases
 object databases
 object-relational databases

 old, outdated database models:

 still used on mainframes
 hierarchical

▪ tree data structure
▪ a record can have one ancestor and multiple descendants

 network databases
▪ allows also multiple ancestors for a record (tree  graph)

 currently replaced by XML databases (trees) or (in general) object
databases (general graphs)

 motivation: success of object-oriented programming (OOP)
 data modelled by classes

 instances = objects
 advantages similar to OOP:

 encapsulation
 conceptual model is merged with logical model
 direct associations among objects (pointers)

▪ native modelling of graphs

 the model can be directly used by OOP
 disadvantages:

 persistency of objects and related operations are non-trivial to
implement
▪ complexity incomparable to relational databases

 suitable for navigational queries but not for declarative queries (i.e.,
SQL-like)

 idea: a relational database extended with object-oriented
features

 typically:
 relation (table) is a basis as in RDBMS

 object types are allowed
▪ object tables

▪ attributes as object

  tables are not in first normal form
▪ nested classes

 since SQL:1999 it is a standard
 currently the most popular compromise

 advantages of both approaches

 e.g., MS SQL Server, Oracle DB, IBM DB2, …

 declarative
 we describe the data we want, but not how to get it

 e.g., DRC, TRC
 procedural

 we describe how to get the data we want
▪ i.e., what operations should be done

 e.g., relational algebra (partially)
 SQL has both the features

 QBE (Query by Example)

 graphical query language from mid 70-ies (IBM)
▪ developed as an alternative to SQL

 many graphical front-ends for databases re-use the idea today

Sailors (sid: integer, sname: string, rating: integer, age: real)
Boats (bid: integer, bname: string, color: string)
Reserves (sid: integer, bid: integer, day: dates)

Sailors with rating 10

Names and ages of all sailors

Sailors who have reserved a boat for 8/24/96 and who are older than 25

Colors of boats Interlake reserved by sailors who have reserved a boat

for 8/24/96 and who are older than 25

 since 2009 (approx.)
 NoSQL movement: “the whole point of seeking alternatives

is that you need to solve a problem that relational databases
are a bad fit for”

 not „no to SQL“, not „not only SQL“
 Oracle or Postgres would fit the definition

 „Next generation databases mostly addressing some of the
points: being non-relational, distributed, open-source and
horizontally scalable. The original intention has been
modern web-scale databases. Often more characteristics
apply as: schema-free, easy replication support, simple API,
eventually consistent (not ACID), a huge data amount, and
more“

http://nosql-database.org/

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

 Key-value databases
 a table with two columns, such as ID and NAME

▪ ID column being the key
▪ NAME column storing the value = a blob that the data store just stores

 basic operations: get the value for the key, put a value for a key,
delete a key from the data store

 Document databases
 document databases store documents in the value part of the key-

value store
▪ e.g., JSON, XML, …

 key-value stores where the value is examinable
▪ hierarchical tree data structures
▪ can consist of maps, collections, scalar values, nested documents, …

 Column-family (column-oriented/columnar) stores
 column families = rows that have many columns associated with a

row key
▪ groups of related data that is often accessed together

▪ rows do not have to have the same columns
 Graph databases

 to store entities and relationships between these entities
▪ node = an instance of an object

▪ nodes have properties (e.g., name)

▪ edges have directional significance
▪ edges have types (e.g., likes, friend, …)

 allow to find interesting patterns
▪ e.g., “get all nodes employed by Big Co that like NoSQL Distilled”

http://en.wikipedia.org/wiki/File:Neo4j.jpg

typical use case: logging of events in a system (their parameters are similar but not same)

“Get all nodes

employed by Big

Co that like

NoSQL Distilled”

 relational databases are not going away
 still have compelling arguments for most projects

 familiarity, stability, feature set, and available support
 we should see relational databases as one option for data

storage
 polyglot persistence – using different data stores in different

circumstances
 problems NoSQL databases solve:

 huge amounts of data are now handled in real-time

 both data and use cases are getting more and more dynamic

 social networks (relying on graph data) have gained impressive
momentum

 …

 500 million users
 570 billion page views per month
 3 billion photos uploaded per month
 1.2 million photos served per second
 25 billion pieces of content (updates, comments) shared

every month
 50 million server-side operations per second
 2008: 10,000 servers; 2009: 30,000, …

=> One RDBMS may not be enough to keep this going on!

http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

