course:

Database Systems (A7B36DBS)

Dafa base Architectures and
Models

Doc. RNDr. Irena Holubova, Ph.D.

Today’s Lecture Outline

architectures of database systems
centralized systems
client —server systems
parallel systems

distributed systems
logical database models

relational

object-relational

object
types of queries
NoSQL databases

Architectures of Database Systems

centralized systems
client —server systems
parallel systems
distributed systems

Centralized Systems

run on a single computer system
do not interact with other computer systems
general-purpose computer system

one to a few CPUs and a number of device controllers

connected through a common bus

_ = provides access to a shared memory _
single-user system (e.g., personal computer or workstation)

desk-top unit, single user, usually has one or two CPUs and one or
two hard disks

the OS may support only one user
multi-user system:

more disks, more memory, multiple CPUs, and a multi-user OS

serve a large number of users who are connected to the system via
terminals

Multi-User Systems

Central Computer

ol
@//

Client-Server Systems

server systems satisfy requests generated at m
client systems
advantages of replacing mainframes with networks
of workstations or personal computers connected to
back-end server machines:
better functionality for the cost
flexibility in locating resources and expanding facilities
better user interfaces

easier maintenance

Client-Server Systems

Front-End vs. Back-End

database functionality can be divided into:

back-end: manages access structures, query evaluation
and optimization, concurrency control and recovery

front-end: consists of tools such as forms, report-writers,
and graphical user interface facilities

interface between the front-end and the back-end:
SQL
application program interface

Parallel Systems

consist of multiple processors and multiple disks
connected by a fast interconnection network

a coarse-grain parallel machine consists of a small
number of powerful processors

a massively parallel or fine-grain parallel machine utilizes
thousands of smaller processors

two main performance measures:

throughput — the number of tasks that can be completed
in a given time interval

latency (response time) —the amount of time it takes to
complete a single task from the time it is submitted

Parallel Systems

speed-up: a fixed-sized problem executing on a small system
is given to a system which is N-times larger (more efficient)
scale-up: increase the size of both the problem and the
system

N-times larger system used to perform N-times larger job
both often sub-linear due to:

Start-up costs: Cost of starting up multiple processes > computation

time

If the degree of parallelism is high

Interference: Processes accessing shared resources (e.g., system bus,
disks, or locks) compete with each other = spend time waiting on
other processes rather than performing useful work

Skew: Increasing the degree of parallelism increases the variance in
service times of tasks executed in parallel

Overall execution time is determined by the slowest of executing tasks

Interconnection Architectures

Bus: components send data on and receive data from a
single communication bus

cons: does not scale well with increasing parallelism
Mesh: components are arranged as nodes in a grid, and each
component is connected to adjacent components

pros: communication links grow with growing number of components

scales better

cons: may require 23n hops to send message to a node
Hypercube: components are numbered in binary
representation = components are connected to one another
if their binary representations differ in exactly one bit.

n components are connected to log(n) other components and can
reach each other via at most log(n) links

reduces communication delays

Interconnection Architectures

(a) bus

(b) mesh

001

000

011

101/r

010~

100

(c) hypercube

111

110

Parallel (Database) Architectures

Shared memory — processors share a common memory
efficient communication between processors

not scalable much

the bus or the interconnection network becomes a bottleneck
Shared disk — processors share a common disk

a degree of fault tolerance —if a processor fails, other processors can take
over its tasks

data are accessible from all processors

bottleneck = interconnection to the disk
Shared nothing — processors share neither a common memory nor
common disk

processors communicate using an interconnection network

drawback: cost of communication and non-local disk access
Hierarchical — combination of the above architectures

top level is a shared-nothing
each node of the system could be a shared-memory sub-system

Parallel Database Architectures

P N M— P

P MH P

e e M7 ——3

P _6 IMH P 48

P —3 M P &
(a) shared memory (b) shared disk
M P

B | O - - -
M- P = [P1— [P1—

S 5 8 o8 —g

- = [P —

M'_é 8 mHt6 mte mtis

(c) shared nothing (d) hierarchical

Distributed Systems

scale-out:data are distributed (spread) over
multiple machines = nodes
data are replicated

system can work even if a node fails
homogeneous distributed databases

same software/schema on all nodes, data may be
partitioned among nodes

goal: provide a view of a single database, hiding details of
distribution

heterogeneous distributed databases
different software/schema on different nodes

?oal: integrate existing databases to provide useful
unctionality

Distribution Models

single server — no distribution
sharding — putting different parts of the data onto
different servers

too many data to be stored on a single node
master/slave replication — master provides
reads/writes, slaves provide reads

no scalability of writes
peer-to-peer replication — all replicas have
equivalent weight

each node is a master
often: combination of sharding and replication

s v

All updates are made to
the master

Master
N
7.&/

Each shard reads and

Reads can be done from
wmaster or slave
Changes propogateto —
writes its own data

4 @3-~ -8B 8-

Slaves

sharding = distribution L
master/slave replication

. v

N
N A T o

o s

All nodes read and

Nodes communicate
their writes

N

N

3
&

v
0D

£y
n

peer-to-peer replication

Logical Database Models

current common models:
relational databases
object databases
object-relational databases

old, outdated database models:
still used on mainframes
hierarchical

tree data structure

a record can have one ancestor and multiple descendants
network databases

allows also multiple ancestors for a record (tree = graph)

currently replaced by XML databases (trees) or (in general) object
databases (general graphs)

Object Databases (ODBMS)

motivation: success of object-oriented programming (OOP)
data modelled by classes

instances = objects
advantages similar to OOP:

encapsulation

conceptual model is merged with logical model

direct associations among objects (pointers)

native modelling of graphs

the model can be directly used by OOP

disadvantages:

persistency of objects and related operations are non-trivial to
implement
complexity incomparable to relational databases

suitable for navigational queries but not for declarative queries (i.e.,
SQL-like)

Object-Relational Databases

(ORDBMS)

idea: a relational database extended with object-oriented
features
typically:

relation (table) is a basis as in RDBMS

object types are allowed
object tables
attributes as object

= tables are not in first normal form
nested classes
since SQL:1999 it is a standard
currently the most popular compromise
advantages of both approaches
e.g., MS SQL Server, Oracle DB, IBM DB2, ...

Types of Queries

declarative

we describe the data we want, but not how to get it
e.g.,, DRC, TRC
procedural
we describe how to get the data we want
i.e., what operations should be done
e.g., relational algebra (partially)

SQL has both the features

QBE (Query by Example)
graphical query language from mid 70-ies (IBM)
developed as an alternative to SQL
many graphical front-ends for databases re-use the idea today

Sailors (sid: integer, sname: string, rating: integer, age: real)

Q B E Boats (bid: integer, bname: string, color: string)
Reserves (sid: integer, bid: integer, day: dates)

Sailors | sid | sname | rating | age _ _ _
Sailors with rating 10

P. 10
Sailors | sid | sname | rating | age :
= Names and ages of all sailors
P._N P._A
Sailors | sid | sname | rating | age Reserves | sid | bid | day
Id | P.S > 25 _Id ‘8/24/96

Sailors who have reserved a boat for 8/24/96 and who are older than 25

Sailors | sid | sname | rating | age

_Id = 25
Reserves | sid | bid | day Boats | bid | bname color
d | B | '8/24/96 B | Interlake | P.

Colors of boats Interlake reserved by sailors who have reserved a boat
for 8/24/96 and who are older than 25

NoSQL Databases

since 2009 (approx.)
NoSQL movement: “the whole point of seeking alternatives
is that you need to solve a problem that relational databases
are a bad fit for”
not ,noto SQL", not ,not only SQL"

Oracle or Postgres would fit the definition
.Next generation databases mostly addressing some of the
points: being non-relational, distributed, open-source and
horizontally scalable. The original intention has been
modern web-scale databases. Often more characteristics
apply as: schema-free, easy replication support, simple API,
eventually consistent (not ACID), a huge data amount, and
more"

http://nosgl-database.org/

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

Types of NoSQL Databases

sriak @
Key-value databases ANy rl q

a table with two columns, such as ID and NAME
ID column being the key
NAME column storing the value = a blob that the data store just stores

basic operations: get the value for the key, put a value for a key,
delete a key from the data store

Document databases
document databases store documents in the value part of the key-
value store
e.g., JSON, XML, ...
key-value stores where the value is examinable
hierarchical tree data structures
can consist of maps, collections, scalar values, nested documents, ...

L
“ mongoDB ‘:

ColichDB

Types of NoSQL Databases

T I\,
®
H-BASE Cassandra
Column-family (column-oriented/columnar) stores
column families = rows that have many columns associated with a
row key
groups of related data that is often accessed together

rows do not have to have the same columns

Graph databases

to store entities and relationships between these entities
node = an instance of an object
nodes have properties (e.g., name)
edges have directional significance
edges have types (e.g., likes, friend, ...)
allow to find interesting patterns
e.g., "get all nodes employed by Big Co that like NoSQL Distilled”

§

Neogy]

the graph database

The Distributed Graph Database
for the Cloud and Beyond

http://en.wikipedia.org/wiki/File:Neo4j.jpg

Column Family Examples

-

Row Columnl Column2 ColumnN
KeyX m name2:value2 nameN: valueN

RG# Columnl Column9 ColumnN
KeyY m name9:value9 (nameN:valueN)

Event Column family

appName:Atlas eventName: Login appUser:wspirk

fc9866ed48cab

typical use case: logging of events in a system (their parameters are similar but not same)

Graph Database Example

“Get all nodes
employed by Big
Co that like
NoSQL Distilled”

BigCo
employee
employee
employge
Anna frie Carol
frien Barbara
friend
Likes :
likeés likes
Likes
Refactoring
NoSQL
Distilled
author
ausor
author
Martin
&
&(
Pramod

Jill
friend
friend
friend Dawn
Elizabeth
Likeés
liKes
Databases
Ca ¢
OCV
category
Database
Refactoring
auttfor

NoSQL Databases —the End of

Relational Databases?

relational databases are not going away
still have compelling arguments for most projects
familiarity, stability, feature set, and available support
we should see relational databases as one option for data
storage
polyglot persistence — using different data stores in different
circumstances
problems NoSQL databases solve:
huge amounts of data are now handled in real-time
both data and use cases are getting more and more dynamic

social networks (relying on graph data) have gained impressive
momentum

Example: FaceBook

Statistics from 2010

A

users
page views per month
photos uploaded per month
photos served per second
pieces of content (updates, comments) shared
every month
server-side operations per second
2008: 10,000 servers; 2009: 30,000, ...

=> One RDBMS may not be enough to keep this going on!

http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

