
course:

Database Systems (A7B36DBS)

Acknowledgement:
The slides were kindly lent by Doc. RNDr. Tomas Skopal, Ph.D.,
Department of Software Engineering, Charles University in Prague

Doc. RNDr. Irena Holubova, Ph.D.

lecture 12:

Database Architectures and
Models

 architectures of database systems
 centralized systems

 client – server systems

 parallel systems

 distributed systems
 logical database models

 relational

 object-relational

 object
 types of queries
 NoSQL databases

 centralized systems
 client – server systems
 parallel systems
 distributed systems

 run on a single computer system
 do not interact with other computer systems
 general-purpose computer system

 one to a few CPUs and a number of device controllers
 connected through a common bus

▪ provides access to a shared memory
 single-user system (e.g., personal computer or workstation)

 desk-top unit, single user, usually has one or two CPUs and one or
two hard disks

 the OS may support only one user
 multi-user system:

 more disks, more memory, multiple CPUs, and a multi-user OS
 serve a large number of users who are connected to the system via

terminals

 server systems satisfy requests generated at m
client systems

 advantages of replacing mainframes with networks
of workstations or personal computers connected to
back-end server machines:

 better functionality for the cost

 flexibility in locating resources and expanding facilities

 better user interfaces

 easier maintenance

 database functionality can be divided into:

 back-end: manages access structures, query evaluation
and optimization, concurrency control and recovery

 front-end: consists of tools such as forms, report-writers,
and graphical user interface facilities

 interface between the front-end and the back-end:

 SQL

 application program interface

 consist of multiple processors and multiple disks
connected by a fast interconnection network
 a coarse-grain parallel machine consists of a small

number of powerful processors

 a massively parallel or fine-grain parallel machine utilizes
thousands of smaller processors

 two main performance measures:
 throughput – the number of tasks that can be completed

in a given time interval

 latency (response time) – the amount of time it takes to
complete a single task from the time it is submitted

 speed-up: a fixed-sized problem executing on a small system
is given to a system which is N-times larger (more efficient)

 scale-up: increase the size of both the problem and the
system
 N-times larger system used to perform N-times larger job

 both often sub-linear due to:
 Start-up costs: Cost of starting up multiple processes > computation

time
▪ If the degree of parallelism is high

 Interference: Processes accessing shared resources (e.g., system bus,
disks, or locks) compete with each other spend time waiting on
other processes rather than performing useful work

 Skew: Increasing the degree of parallelism increases the variance in
service times of tasks executed in parallel
▪ Overall execution time is determined by the slowest of executing tasks

 Bus: components send data on and receive data from a
single communication bus
 cons: does not scale well with increasing parallelism

 Mesh: components are arranged as nodes in a grid, and each
component is connected to adjacent components
 pros: communication links grow with growing number of components

▪ scales better

 cons: may require 2n hops to send message to a node
 Hypercube: components are numbered in binary

representation components are connected to one another
if their binary representations differ in exactly one bit.
 n components are connected to log(n) other components and can

reach each other via at most log(n) links
 reduces communication delays

 Shared memory – processors share a common memory
 efficient communication between processors
 not scalable much

▪ the bus or the interconnection network becomes a bottleneck
 Shared disk – processors share a common disk

 a degree of fault tolerance – if a processor fails, other processors can take
over its tasks
▪ data are accessible from all processors

 bottleneck = interconnection to the disk
 Shared nothing – processors share neither a common memory nor

common disk
 processors communicate using an interconnection network
 drawback: cost of communication and non-local disk access

 Hierarchical – combination of the above architectures
 top level is a shared-nothing
 each node of the system could be a shared-memory sub-system

 scale-out:data are distributed (spread) over
multiple machines = nodes

 data are replicated
 system can work even if a node fails

 homogeneous distributed databases
 same software/schema on all nodes, data may be

partitioned among nodes
 goal: provide a view of a single database, hiding details of

distribution
 heterogeneous distributed databases

 different software/schema on different nodes
 goal: integrate existing databases to provide useful

functionality

 single server – no distribution
 sharding – putting different parts of the data onto

different servers
 too many data to be stored on a single node

 master/slave replication – master provides
reads/writes, slaves provide reads
 no scalability of writes

 peer-to-peer replication – all replicas have
equivalent weight
 each node is a master

 often: combination of sharding and replication

sharding = distribution
master/slave replication

peer-to-peer replication

 current common models:
 relational databases
 object databases
 object-relational databases

 old, outdated database models:

 still used on mainframes
 hierarchical

▪ tree data structure
▪ a record can have one ancestor and multiple descendants

 network databases
▪ allows also multiple ancestors for a record (tree graph)

 currently replaced by XML databases (trees) or (in general) object
databases (general graphs)

 motivation: success of object-oriented programming (OOP)
 data modelled by classes

 instances = objects
 advantages similar to OOP:

 encapsulation
 conceptual model is merged with logical model
 direct associations among objects (pointers)

▪ native modelling of graphs

 the model can be directly used by OOP
 disadvantages:

 persistency of objects and related operations are non-trivial to
implement
▪ complexity incomparable to relational databases

 suitable for navigational queries but not for declarative queries (i.e.,
SQL-like)

 idea: a relational database extended with object-oriented
features

 typically:
 relation (table) is a basis as in RDBMS

 object types are allowed
▪ object tables

▪ attributes as object

 tables are not in first normal form
▪ nested classes

 since SQL:1999 it is a standard
 currently the most popular compromise

 advantages of both approaches

 e.g., MS SQL Server, Oracle DB, IBM DB2, …

 declarative
 we describe the data we want, but not how to get it

 e.g., DRC, TRC
 procedural

 we describe how to get the data we want
▪ i.e., what operations should be done

 e.g., relational algebra (partially)
 SQL has both the features

 QBE (Query by Example)

 graphical query language from mid 70-ies (IBM)
▪ developed as an alternative to SQL

 many graphical front-ends for databases re-use the idea today

Sailors (sid: integer, sname: string, rating: integer, age: real)
Boats (bid: integer, bname: string, color: string)
Reserves (sid: integer, bid: integer, day: dates)

Sailors with rating 10

Names and ages of all sailors

Sailors who have reserved a boat for 8/24/96 and who are older than 25

Colors of boats Interlake reserved by sailors who have reserved a boat

for 8/24/96 and who are older than 25

 since 2009 (approx.)
 NoSQL movement: “the whole point of seeking alternatives

is that you need to solve a problem that relational databases
are a bad fit for”

 not „no to SQL“, not „not only SQL“
 Oracle or Postgres would fit the definition

 „Next generation databases mostly addressing some of the
points: being non-relational, distributed, open-source and
horizontally scalable. The original intention has been
modern web-scale databases. Often more characteristics
apply as: schema-free, easy replication support, simple API,
eventually consistent (not ACID), a huge data amount, and
more“

http://nosql-database.org/

http://nosql-database.org/
http://nosql-database.org/
http://nosql-database.org/

 Key-value databases
 a table with two columns, such as ID and NAME

▪ ID column being the key
▪ NAME column storing the value = a blob that the data store just stores

 basic operations: get the value for the key, put a value for a key,
delete a key from the data store

 Document databases
 document databases store documents in the value part of the key-

value store
▪ e.g., JSON, XML, …

 key-value stores where the value is examinable
▪ hierarchical tree data structures
▪ can consist of maps, collections, scalar values, nested documents, …

 Column-family (column-oriented/columnar) stores
 column families = rows that have many columns associated with a

row key
▪ groups of related data that is often accessed together

▪ rows do not have to have the same columns
 Graph databases

 to store entities and relationships between these entities
▪ node = an instance of an object

▪ nodes have properties (e.g., name)

▪ edges have directional significance
▪ edges have types (e.g., likes, friend, …)

 allow to find interesting patterns
▪ e.g., “get all nodes employed by Big Co that like NoSQL Distilled”

http://en.wikipedia.org/wiki/File:Neo4j.jpg

typical use case: logging of events in a system (their parameters are similar but not same)

“Get all nodes

employed by Big

Co that like

NoSQL Distilled”

 relational databases are not going away
 still have compelling arguments for most projects

 familiarity, stability, feature set, and available support
 we should see relational databases as one option for data

storage
 polyglot persistence – using different data stores in different

circumstances
 problems NoSQL databases solve:

 huge amounts of data are now handled in real-time

 both data and use cases are getting more and more dynamic

 social networks (relying on graph data) have gained impressive
momentum

 …

 500 million users
 570 billion page views per month
 3 billion photos uploaded per month
 1.2 million photos served per second
 25 billion pieces of content (updates, comments) shared

every month
 50 million server-side operations per second
 2008: 10,000 servers; 2009: 30,000, …

=> One RDBMS may not be enough to keep this going on!

http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/
http://royal.pingdom.com/2010/06/18/the-software-behind-facebook/

