
course:

Database Systems (A7B36DBS)

Acknowledgement:
The slides were kindly lent by Doc. RNDr. Tomas Skopal, Ph.D.,
Department of Software Engineering, Charles University in Prague

Doc. RNDr. Irena Holubova, Ph.D.

 disk management, paging, buffer manager
 database files organization
 indexing

 B+-tree

 bitmaps

 hashing

Implementation of database structures (A7B36DBS, Lect. 11)

 conceptual layer

 models a part of the “structured” real world relevant
for applications built on top of your database
▪ real world part

= real-world entities and relationships between them

 different conceptual models (e.g. ER, UML)

 logical layer

 specifies how conceptual components are represented
in logical machine interpretable data structures

 different logical models (e.g. object, relational, object-relational, XML,
graph, etc.)

 physical model

 specifies how logical database structures are implemented in a specific
technical environment

 data files, index structures (e.g. B+ trees), etc.

abstraction

implementation

 relations/tables are stored in files on the disk
 we need to organize table records within a file

 efficient storage, update and access

Example:
Employees (name char(20), age integer, salary integer)

Implementation of database structures (A7B36DBS, Lect. 11)

 records are stored in disk pages of fixed size (a few kB)

 reason: hardware

▪ assuming a magnetic disk based on rotational plates and reading heads

 the data organization must be adjusted w.r.t. this mechanism

 the HW firmware can only access entire pages

 I/O operations – reads, writes

 real time for I/O operations =
 = seek time + rotational delay + data transfer time

 sequential access to pages is much faster than random access

 the seek time and rotational delay not needed

 Example: reading 4 KB could take 8 + 4 + 0,5 ms = 12,5 ms;
i.e., the reading itself takes only 0,5 ms = 4% of the real time!!!

Implementation of database structures (A7B36DBS, Lect. 11)

 I/O is a unit of time cost
 the page is divided into slots, that are used to store records

 a record is identified by rid (record id) = page id + slot id

 a record can be stored

 in multiple pages

▪ better space utilization

▪ need for more I/Os for record manipulation

 in a single page (assuming it fits)

▪ a part of page may not be used

▪ less I/Os

 ideally: records fit the entire page

Implementation of database structures (A7B36DBS, Lect. 11)

 only fixed-size data types are used in the record
 fixed record size

 also variable-size data types are used in the record
 variable size of the records,
 e.g., types varchar(X), BLOB, ...

 fixed-size records = fixed-size slots
 variable-size records = need for slot directory in the page

header

Implementation of database structures (A7B36DBS, Lect. 11)

full slots

empty slots

5

number of stored
records

Slot 1

Slot 2

Slot 3

Slot 4

Slot 5

Slot 6

Slot 7

Slot 1

Slot 2

Slot 3

Slot 4

Slot 6

Slot 7

Slot 5

7

number of slots

 1 1 1 0 1 0 1

bitmap showing slot
utilization

Implementation of database structures (A7B36DBS, Lect. 11)

3 50 8 20
number of stored
records

slot directory
(pairs offset + record size)

Implementation of database structures (A7B36DBS, Lect. 11)

 buffer = a piece of main memory for temporary storage of disk pages

 disk pages are mapped into memory frames 1:1

 every frame has 2 flags:

 pin_count = number of references to the page in frame

 dirty = indication of containing a modified record

 buffer manager

 implements read and write operations for higher DBMS logic

 read: retrieves the page from buffer + increasing pin_count

 if it is not there, it is first fetched from the disk

 write: puts the page into the buffer + setting dirty
 if the buffer is full (during read or write), some page must be replaced
 various policies, e.g., LRU (least-recently-used),

 if the replaced page is dirty, it must be stored

Implementation of database structures (A7B36DBS, Lect. 11)

DB disk

memory

higher DBMS logic

Implementation of database structures (A7B36DBS, Lect. 11)

 data files – contain table data
 index files – speed up processing of queries
 system catalogue – contains metadata

 table schemas

 index names

 integrity constraints, keys, etc.

Implementation of database structures (A7B36DBS, Lect. 11)

1. heap
2. sorted file
3. hashed file

Observing average I/O cost of simple operations:
1) sequential access to records
2) searching records based on equality (w.r.t search key)
3) searching records based on range (w.r.t search key)
4) record insertion
5) record deletion

Cost model:

N = number of pages, R = records per page

Implementation of database structures (A7B36DBS, Lect. 11)

 sequential reading of pages
SELECT * FROM Employees

 searching on equality
SELECT * FROM Employees WHERE age = 40

 searching on range
SELECT * FROM Employees
WHERE salary > 10000 AND salary < 20000

 record insertion
INSERT INTO Employees VALUES (...)

 record deletion based on rid
DELETE FROM Employees WHERE rid = 1234

 record deletion
DELETE FROM Employees WHERE salary < 5000

Implementation of database structures (A7B36DBS, Lect. 11)

 records stored in pages are not ordered (e.g., according to
key)
 they are stored in the order of insertion

 page search can only be achieved by sequential scan
(GetNext operation)

 quick record insertion (at the end of file)
 deletion problems: „holes“ (pieces of not utilized space)

Implementation of database structures (A7B36DBS, Lect. 11)

 double linked list
 header + lists of full and non full pages

 page directory

 linked list of directory pages

 every item in the directory refers to a data page

▪ flag = item utilization

Implementation of database structures (A7B36DBS, Lect. 11)

header

non full
page

non full
page

non full
page

full page full page full page

double linked
list

page page

page

page

page

page directory

Implementation of database structures (A7B36DBS, Lect. 11)

 sequential access = N
 search on equality = N
 search on range = N
 record insertion = 1
 record deletion

 2,

 assuming rid based search costs 1 I/O

 N or 2*N,
if deleted based on equality or range

Implementation of database structures (A7B36DBS, Lect. 11)

 records stored in pages based on an ordering according to
a search key
 single or multiple attributes

 file pages maintained contiguous, i.e., no „holes“
 fast: search on equality and/or range
 slow: insertion and deletion

 „moving“ the rest of pages
 in practice:

 sorted file at the beginning

 each page has an overhead space where to insert

 if the overhead space is full, update pages are used (linked list)

 a reorganization needed from time to time
▪ i.e., sorting

Implementation of database structures (A7B36DBS, Lect. 11)

 sequential access = N
 search on equality = log2N
 search on range = log2N + M

 where M is the number of relevant pages

 record insertion = N
 record deletion = log2N + N (based on key)

Implementation of database structures (A7B36DBS, Lect. 11)

 organized in K buckets

 a bucket is extensible to multiple disk pages

 a record is inserted into/read from a bucket determined
by hashing function f applied on search key

 bucket id = f(key)

 if the bucket is full, new pages are allocated and linked
to the bucket (linked list)

 fast search / deletion on equality
 higher space overhead, problems with chained pages

(solved by dynamic hashed techniques)

Implementation of database structures (A7B36DBS, Lect. 11)

search key
(age) f(k)

mary, 25, 30000

tom, 26, 55000

john, 21, 30000

sue, 25, 30500

sil, 35, 40000

tim, 39, 73000

pete, 32, 32000

ron, 35, 31500

 barb, 55, 40000

 marg, 51, 74000

buckets

hashing function
h(age) = 0

h(age) = 1

h(age) = 2

Implementation of database structures (A7B36DBS, Lect. 11)

 sequential access = N
 search on equality = N/K (best case)

 K = number of buckets

 search on range = N
 record insertion = N/K (best case)
 deletion on equality = N/K + 1 (best case)

Implementation of database structures (A7B36DBS, Lect. 11)

 index is a helper structure that provides fast search based on
search key(s)

 organized into disk pages (like data files)
 usually different file than data files

 usually contains only search keys and links to the respective
records
 i.e., rid

 need much less space than data files
 e.g., 100x less

Implementation of database structures (A7B36DBS, Lect. 11)

 index item can contain
 the whole record (then index and data file are the same)

 pair <key, rid>

 pair <key, rid-list>, where rid-list is a list of links to
records with the same search key value

1. clustered: ordering of index items is (almost) the same as
ordering in the data file

 tree-based index, index containing the entire records, hashed index,
…

 primary key = search key used in clustered index

2. unclustered: the order of search keys is not preserved

Implementation of database structures (A7B36DBS, Lect. 11)

items in index pages

records in data file pages records in data file pages

CLUSTERED INDEX UNCLUSTERED INDEX

Clustered index:

Pros: huge speedup when searching on range – result record pages are read
sequentially from data file

Cons: large overhead for keeping the data file sorted

Implementation of database structures (A7B36DBS, Lect. 11)

 extends B-tree
 balanced tree-based index

 provides logarithmic complexity for insertion, search on
equality (no duplicates), deletion on equality (no duplicates)

 guarantees 50% node (page) utilization
 B+-tree extends B-tree by

 all keys are in the leaves – inner nodes contain indexed intervals

 linking leaf pages for efficient range queries

Implementation of database structures (A7B36DBS, Lect. 11)

http://cs.wikipedia.org/wiki/Soubor:B-tree-search.png

P 0 K 1 P 1 K 2 P 2 K m P m

inner node item

inner
nodes/pages

nodes/pages
(ordered by a search key)

leaf

Implementation of database structures (A7B36DBS, Lect. 11)

key

pointer

to child

node

 similar to hashed data file

 i.e., buckets + hashing function

 buckets contain only key values together with
the rids

 same pros/cons

Implementation of database structures (A7B36DBS, Lect. 11)

 suitable for indexing attributes of low-cardinality data types

 e.g., attribute FAMILY_STATUS = {single, married, divorced, widow}

 for each value h of an indexed attribute a a bitmap (binary vector) is constructed,
where 1 on ith position means the value h appears in the ith record (in the attribute
a), while it holds

 bitwise OR = 1 (every attribute has a value)

 bitwise AND = 0 (attribute values are deterministic)

Implementation of database structures (A7B36DBS, Lect. 11)

Name Address Family status

John Smith London single

Rostislav Drobil Prague married

Franz Neumann Munich married

Fero Lakatoš Malacky single

Sergey Prokofjev Moscow divorced

 single married divorced widow

 1 0 0 0

 0 1 0 0
 0 1 0 0
 1 0 0 0
 0 0 1 0

 query evaluation

 bitwise operations with attribute bitmaps

 resulting bitmap marks the queried records

 example

 Which single or divorced people did not complete the military service?
(bitmap(single) OR bitmap(divorced)) AND not bitmap(YES)

Implementation of database structures (A7B36DBS, Lect. 11)

answer: Sergey Prokofjev, Moscow

 single OR divorced
 1
 0
 0
 1
 1

 (single OR divorced) AND not YES
 0
 0
 0
 0
 1

Name Address Military

service

Family

status

John Smith London YES single

Rostislav Drobil Prague YES married

Franz Neumann Munich NO married

Fero Lakatoš Malacky YES single

Sergey Prokofjev Moscow NO divorced

 Family status Military service
 single married divorced widow YES
 1 0 0 0 1
 0 1 0 0 1
 0 1 0 0 0
 1 0 0 0 1
 0 0 1 0 0

 pros
 efficient storage, could be also compressed

 fast query processing, bitwise operations are fast

 easy parallelization
 cons

 suitable only for attributes with small cardinality domain

 range queries get slow linearly with the number of values in the range
(bitmaps for all the values must be processed)

Implementation of database structures (A7B36DBS, Lect. 11)

