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 schema analysis 
 basic algorithms (attribute closure, FD membership and redundancy) 

 determining the keys 

 testing normal forms 

 

 normalization of universal schema 
 decomposition (to BCNF) 

 synthesis (to 3NF) 
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 closure X+ of attribute set X according to FD set F 
 principle: we iteratively derive all attributes „F-determined“ by attributes in X 

 complexity O(m*n), where n is the number of attributes and m is number of FDs 

 

algorithm AttributeClosure(set of dependencies F, set of attributes X) : 

returns set X+ 

 ClosureX := X; DONE := false; m = |F|; 

 while not DONE do 

  DONE := true; 

  for i := 1 to m do 

   if (LS[i]  ClosureX and RS[i]  ClosureX) then 

    ClosureX := ClosureX  RS[i]; 

   DONE := false; 

  endif 

 endfor 

 endwhile 

 return ClosureX; 

 

The trivial FD is used (algorithm initialization) and then transitivity (test of left-hand side in the closure).  
The composition and decomposition usage is hidden in the inclusion test. 
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Left-hand side of FD Right-hand side of FD 

functional dependency 



F = {a  b, bc  d, bd  a} 
 
{b,c}+ = ? 

 
1. ClosureX := {b,c}  (initialization) 

  2. ClosureX := ClosureX  {d} = {b,c,d}  (bc  d) 

 3. ClosureX := ClosureX  {a} = {a,b,c,d}  (bd  a) 

 
{b,c}+ = {a,b,c,d} 
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 we often need to check if a FD X  Y belongs to F+, i.e., 
to solve the problem {X  Y}  F+ 

 materializing F+ is not practical, we can employ the attribute 
closure 

 
algorithm IsDependencyInClosure(set of FDs F,  

                                FD X  Y) 

  return Y  AttributeClosure(F, X); 
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The membership test can be easily used when testing redundancy of 
• FD X  Y in F 
• attribute a in X (according to F and X  Y) 
 
algorithm IsDependencyRedundant(set of FDs F, FD X  Y  F) 

 return IsDependencyInClosure(F – {X  Y}, X  Y); 

 

algorithm IsAttributeRedundant(set of FDs F, FD X  Y  F, attr. a  X) 

 return IsDependencyInClosure(F, X – {a}  Y); 

 

In the following slides we find useful the algorithm for reduction of the left-hand side of a FD: 
 
algorithm ReduceAttributes(set of FDs F, FD X  Y  F) 

 X’ := X; 

 for each a  X do 

  if IsAttributeRedundant(F, X’  Y, a) then X’ := X’ – {a}; 

 endfor 

return X’; 
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 for all FDs we test redundancies and remove them 
 

algorithm GetMinimumCover(set of dependencies F) 

  : returns minimal cover G 

 decompose each FD in F into elementary FDs 

 for each X  Y in F do 

 F :=  (F –  

  {X  Y})   

  {ReduceAttributes(F, X  Y)  Y}; 

 endfor 

for each X  Y in F do 

  if IsDependencyRedundant(F, X  Y)  

      then F := F – {X  Y};  

endfor 

return F; 
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removing redundant attributes 

removing redundant FDs 



 the algorithm for attribute redundancy testing could be used directly for 
determining a key 

 redundant attributes are iteratively removed from left-hand side of 
trivial FD A  A 

 
algorithm GetFirstKey(set of deps. F, set of attributes A) 

: returns a key K; 

 return ReduceAttributes(F, A  A); 

 

 

 

Note: Because multiple keys can exists, the algorithm finds only one of 
them.  

Which one? It depends on the traversing of the attribute set within the 
algorithm ReduceAttributes.  
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K 

X 

y 
A 

Let us have a schema S(A, F). 
Simplify F to minimal cover. 

A 

X 

y 

1. Find any key K (see the previous slide). 

3. Because X  y and K  A, it transitively holds also X{K – y}  A, i.e., X{K – y} is super-key.  

4. Reduce FD X{K – y}  A so we obtain key K’ on the left-hand side.    

    This key is surely different from K (we removed y). 

5. If K’ is not among the determined keys so far, we add it, declare K=K’ and continue from step 2.    
Otherwise we finish. 

2. Take a FD X  y in F such that y K or terminate if not exists (there is no other key).  



 Formally: Lucchesi-Osborn algorithm 

 having  an already determined key, we search for equivalent sets of attributes, i.e., other keys 

 NP-complete problem (theoretically exponential number of keys/FDs) 
 

algorithm GetAllKeys(set of FDs F, set of attr. A)  

   : returns set of all keys Keys; 

 let all dependencies in F be non-trivial 

 K := GetFirstKey(F, A); 

 Keys := {K}; 

 for each K in Keys do 

   for each X  Y in F do 

       if (Y  K   and K’  Keys : K’  (K  X) – Y) then 

         N := ReduceAttributes(F, ((K  X) – Y)  A); 

       Keys := Keys   {N}; 

         endif 

   endfor 

 endfor 

return Keys; 
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Contracts(A, F) 
A = {c = ContractId, s = SupplierId, j = ProjectId, d = DeptId,  
  p = PartId, q = Quantity, v = Value} 
F = {c  all, sd  p, p  d, jp  c, j  s} 
 

1. Determine the first key – Keys = {c} 
2. Iteration 1: take jp  c that has a part of the last key on the right-hand side (in 

this case the whole key – c) and jp is not a super-set of already determined key 
3. jp  all is reduced (no redundant attribute), i.e.,   
 Keys = {c, jp} 
4. Iteration 2: take sd  p that has a part of the last key on the right-hand side 

(jp),  
{jsd} is not a super-set of c nor jp, i.e., it is a key candidate 

5. in jsd  all we get redundant attribute s, i.e., 
 Keys = {c, jp, jd} 
6. Iteration 3: take p  d, however, jp was already found so we do not add it 
7. Finish as the iteration 3 resulted in no key addition. 
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 NP-complete problem  

 we must know all keys – then it is sufficient to test a FD in F, so we do not 
need to materialize F+ 

 or, just one key needed, but also needing extension of F to F+ 

 

 fortunately, in practice determination of keys is fast 

 thanks to limited size of F and „separability“ of FDs 
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Two ways of modelling a relational database: 
1. we get a set of relational schemas (as either direct relational design or 

conversion from conceptual model) 

 normalization performed separately on each table 

 the database could get unnecessarily highly “granularized” (too many tables) 

 
2. considering the whole database as a bag of (global) attributes results in a 

single universal database schema – i.e., one big table + a single set of FDs 

 normalization performed on the universal schema 

 less tables (better „granulating“) 

 „classes/entities“ are generated (recognized) as the consequence of FD set 

 
 both approaches could be combined – i.e.,  

 create a conceptual database model 

 convert it to relational schemas  

 merge and/or normalize some of the schemas 
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 just one way – decomposition to multiple schemas 
 or merging some „abnormal“ schemas and then decomposition 

 different criteria 
 data integrity preservation 

▪ lossless join 

▪ dependency preserving 

 requirement on normal form (3NF or BCNF) 

 manually or algorithmically 
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Company HQ Altitude 

Sun Santa Clara 25 m 

Oracle Redwood 20 m 

Microsoft Redmond 10 m 

IBM New York 15 m 
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HQ 

Santa Clara 

Redwood 

Redmond 

New York 

If the decomposition is not limited, we can decompose the table into 
several single-column ones that surely are all in BCNF. 

Clearly, there is something wrong with 
such a decomposition... 

Company,  
HQ  Altitude 

Altitude 

25 m 

20 m 

10 m 

15 m 

HQ Altitude Company  

...it is lossy and it does not 
preserve dependencies 



 a property of decomposition that ensures correct joining (reconstruction) of the universal 
relation from the decomposed ones 
 

 Definition 1: 
Let R({X  Y  Z}, F) be universal schema, where Y  Z  F.  
Then decomposition R1({Y  Z}, F1), R2({Y  X}, F2) is lossless. 
 
 

 Alternative Definition 2: 
Decomposition of R(A, F) into R1(A1, F1), R2(A2, F2) is lossless, if A1  A2  A1 or A2  A1  A2  

 
 

 
 Alternative Definition 3: 

Decomposition of R(A, F) into R1(A1, F1), ..., Rn(An, Fn) is lossless, if R = *i=1..n Ri[Ai].  
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natural join 

projection 

used in algorithm 

used for checking 
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Company Uses DBMS Data managed 

Sun Oracle 50 TB 

Sun DB2 10 GB 
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Microsoft Oracle 30 TB 
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Company, Uses DBMS 

Company, Data managed 

Company, Uses DBMS, Data managed 

„reconstruction“ 
(natural join) 
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(natural join) 



 a decomposition property that ensures no FD will be lost 
 Definition: 

Let R1(A1, F1), R2(A2, F2) be decomposition of R(A, F). Then such 
decomposition preserves dependencies if F+ = (i=1..nFi)

+. 
 Dependency preserving could be violated in two ways 

 during decomposition of F we do not derive all valid FDs – we lose FD that 
should be preserved in a particular schema 

 even if we derive all valid FDs (i.e., we perform projection of F+),  
we may lose a FD that is valid across the schemas 
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 algorithm for decomposition into BCNF, preserving lossless join 
 may not preserve dependencies 

 not an algorithm property – sometimes we simply cannot decompose into BCNF with all FDs preserved 

 
algorithm Decomposition(set of elem. FDs. F, set of attributes A) : returns set {Ri(Ai, Fi)} 
  Result := {R(A, F)}; 
  Done := false; 
  Create F+; 
  while not Done do 
 if Ri(Fi, Ai)  Result not being in BCNF then         // if there is a schema in the result violating BCNF 
  Let X  Y  Fi such that X  Ai  F+.           // X is not (super-)key and so X  Y violates BCNF 
  Result :=  (Result – {Ri(Ai, Fi)})                 // we remove the schema being decomposed  

  {Ri(Ai – Y, cover(F, Ai – Y))}   // we add the schema being decomposed without attributes Y  
  {Rj(X  Y, cover(F, X  Y))}      // we add the schema with attributes XY 

 else 
  Done := true; 
 endwhile 
  return Result; 
 
Note: Function cover(X, F) returns all FDs valid on attributes from X, i.e., a subset of F+ that contains only 

attributes from X. Therefore it is necessary to compute F+. 

This partial decomposition on two tables is lossless, we get two schemas that 
both contain X, while the second one contains also Y and it holds X  Y.  
X is now in the second table a super-key and X  Y is no more violating BCNF  
(in the first table there is not Y anymore). 



csjpdqv 

sd  p 

csjdqv 

j  s 

js cqjdv 

sdp 

p  d 

pd sp 

Contracts(A, F) 
A = {c = ContractId, s = SupplierId, j = ProjectId, d = DeptId, p = PartId, q = Quantity, v = Value} 
F = {c  all, sd  p, p  d, jp  c, j  s} 

(3NF) 

(1NF) 

(1NF) 

(BCNF) 

FDs not preserved:  
c  p 
sd  p 

cp 

sdp 

(BCNF) 

(3NF) 



 algorithm for decomposition into 3NF, preserving dependencies 

 basic version not preserving lossless joins 
 
algorithm Synthesis(set of elem. FDs F, set of attributes A) : returns set {Ri(Fi, Ai)} 
 G = minimal cover of F 

compose FDs having equal left-hand side into a single FD 
 every composed FD forms a scheme Ri (Ai, Fi) of decomposition  
return i=1..n{Ri (Ai, Fi)} 
 

 lossless joins can be preserved by adding another schema into the 
decomposition that contains universal key  

 i.e., a key from the original universal schema 

 a schema in decomposition that is a subset of another one can be deleted 
 we can try to merge schemas that have functionally equivalent keys, but such 

an operation can violate 3NF (or BCNF if achieved)! 
 i.e., we can try to minimize the number of relations 



Contracts(A, F) 
 A = {c = ContractId, s = SupplierId, j = ProjectId, d = DeptId, p = PartId,  
          q = Quantity, v = Value} 
 F = {c  sjdpqv, sd  p, p  d, jp  c, j  s} 

Minimal cover: 
There are no redundant attributes in FDs.  
Reundant FDs c  s and c  p were removed. 

G = {c  j, c  d, c  q, c  v, sd  p, p  d, jp  c, j  s} 
 

Composition: 
G’ = {c  jdqv, sd  p, p  d, jp  c, j  s} 

 
Result: 
R1({cqjdv}, {c  jdqv}),   R2({sdp}, {sd  p}),   R3({pd},{p  d}),   R4({jpc}, {jp  c}),   R5({js}, {j  s}))  
                (subset of  R2) 

 

Equivalent keys:  {c, jp, jd} 
R1({cqjpdv}, {c  jdqv, jp  c}),        R2({sdp}, {sd  p, p  d}),        R5({js}, {j  s})) 

merging R1 and R4  
(however, now p  d violates BCNF) 


