
course:

Database Systems (A7B36DBS)

Acknowledgement:
The slides were kindly lent by Doc. RNDr. Tomas Skopal, Ph.D.,
Department of Software Engineering, Charles University in Prague

Doc. RNDr. Irena Holubova, Ph.D.

 schema analysis
 basic algorithms (attribute closure, FD membership and redundancy)

 determining the keys

 testing normal forms

 normalization of universal schema
 decomposition (to BCNF)

 synthesis (to 3NF)

Relational design – algorithms (A7B36DBS, Lect. 9)

 closure X+ of attribute set X according to FD set F
 principle: we iteratively derive all attributes „F-determined“ by attributes in X

 complexity O(m*n), where n is the number of attributes and m is number of FDs

algorithm AttributeClosure(set of dependencies F, set of attributes X) :

returns set X+

 ClosureX := X; DONE := false; m = |F|;

 while not DONE do

 DONE := true;

 for i := 1 to m do

 if (LS[i]  ClosureX and RS[i]  ClosureX) then

 ClosureX := ClosureX  RS[i];

 DONE := false;

 endif

 endfor

 endwhile

 return ClosureX;

The trivial FD is used (algorithm initialization) and then transitivity (test of left-hand side in the closure).
The composition and decomposition usage is hidden in the inclusion test.

Relational design – algorithms (A7B36DBS, Lect. 9)

Left-hand side of FD Right-hand side of FD

functional dependency

F = {a  b, bc  d, bd  a}

{b,c}+ = ?

1. ClosureX := {b,c} (initialization)

 2. ClosureX := ClosureX  {d} = {b,c,d} (bc  d)

 3. ClosureX := ClosureX  {a} = {a,b,c,d} (bd  a)

{b,c}+ = {a,b,c,d}

Relational design – algorithms (A7B36DBS, Lect. 9)

 we often need to check if a FD X  Y belongs to F+, i.e.,
to solve the problem {X  Y}  F+

 materializing F+ is not practical, we can employ the attribute
closure

algorithm IsDependencyInClosure(set of FDs F,

 FD X  Y)

 return Y  AttributeClosure(F, X);

Relational design – algorithms (A7B36DBS, Lect. 9)

The membership test can be easily used when testing redundancy of
• FD X  Y in F
• attribute a in X (according to F and X  Y)

algorithm IsDependencyRedundant(set of FDs F, FD X  Y  F)

 return IsDependencyInClosure(F – {X  Y}, X  Y);

algorithm IsAttributeRedundant(set of FDs F, FD X  Y  F, attr. a  X)

 return IsDependencyInClosure(F, X – {a}  Y);

In the following slides we find useful the algorithm for reduction of the left-hand side of a FD:

algorithm ReduceAttributes(set of FDs F, FD X  Y  F)

 X’ := X;

 for each a  X do

 if IsAttributeRedundant(F, X’  Y, a) then X’ := X’ – {a};

 endfor

return X’;

Relational design – algorithms (A7B36DBS, Lect. 9)

 for all FDs we test redundancies and remove them

algorithm GetMinimumCover(set of dependencies F)

 : returns minimal cover G

 decompose each FD in F into elementary FDs

 for each X  Y in F do

 F := (F –

 {X  Y}) 

 {ReduceAttributes(F, X  Y)  Y};

 endfor

for each X  Y in F do

 if IsDependencyRedundant(F, X  Y)

 then F := F – {X  Y};

endfor

return F;

Relational design – algorithms (A7B36DBS, Lect. 9)

removing redundant attributes

removing redundant FDs

 the algorithm for attribute redundancy testing could be used directly for
determining a key

 redundant attributes are iteratively removed from left-hand side of
trivial FD A  A

algorithm GetFirstKey(set of deps. F, set of attributes A)

: returns a key K;

 return ReduceAttributes(F, A  A);

Note: Because multiple keys can exists, the algorithm finds only one of
them.

Which one? It depends on the traversing of the attribute set within the
algorithm ReduceAttributes.

Relational design – algorithms (A7B36DBS, Lect. 9)

Relational design – algorithms (A7B36DBS, Lect. 9)

K

X

y
A

Let us have a schema S(A, F).
Simplify F to minimal cover.

A

X

y

1. Find any key K (see the previous slide).

3. Because X  y and K  A, it transitively holds also X{K – y}  A, i.e., X{K – y} is super-key.

4. Reduce FD X{K – y}  A so we obtain key K’ on the left-hand side.

 This key is surely different from K (we removed y).

5. If K’ is not among the determined keys so far, we add it, declare K=K’ and continue from step 2.
Otherwise we finish.

2. Take a FD X  y in F such that y K or terminate if not exists (there is no other key).

 Formally: Lucchesi-Osborn algorithm

 having an already determined key, we search for equivalent sets of attributes, i.e., other keys

 NP-complete problem (theoretically exponential number of keys/FDs)

algorithm GetAllKeys(set of FDs F, set of attr. A)

 : returns set of all keys Keys;

 let all dependencies in F be non-trivial

 K := GetFirstKey(F, A);

 Keys := {K};

 for each K in Keys do

 for each X  Y in F do

 if (Y  K   and K’  Keys : K’  (K  X) – Y) then

 N := ReduceAttributes(F, ((K  X) – Y)  A);

 Keys := Keys  {N};

 endif

 endfor

 endfor

return Keys;

Relational design – algorithms (A7B36DBS, Lect. 9)

Contracts(A, F)
A = {c = ContractId, s = SupplierId, j = ProjectId, d = DeptId,
 p = PartId, q = Quantity, v = Value}
F = {c  all, sd  p, p  d, jp  c, j  s}

1. Determine the first key – Keys = {c}
2. Iteration 1: take jp  c that has a part of the last key on the right-hand side (in

this case the whole key – c) and jp is not a super-set of already determined key
3. jp  all is reduced (no redundant attribute), i.e.,
 Keys = {c, jp}
4. Iteration 2: take sd  p that has a part of the last key on the right-hand side

(jp),
{jsd} is not a super-set of c nor jp, i.e., it is a key candidate

5. in jsd  all we get redundant attribute s, i.e.,
 Keys = {c, jp, jd}
6. Iteration 3: take p  d, however, jp was already found so we do not add it
7. Finish as the iteration 3 resulted in no key addition.

Relational design – algorithms (A7B36DBS, Lect. 9)

 NP-complete problem

 we must know all keys – then it is sufficient to test a FD in F, so we do not
need to materialize F+

 or, just one key needed, but also needing extension of F to F+

 fortunately, in practice determination of keys is fast

 thanks to limited size of F and „separability“ of FDs

Relational design – algorithms (A7B36DBS, Lect. 9)

Two ways of modelling a relational database:
1. we get a set of relational schemas (as either direct relational design or

conversion from conceptual model)

 normalization performed separately on each table

 the database could get unnecessarily highly “granularized” (too many tables)

2. considering the whole database as a bag of (global) attributes results in a

single universal database schema – i.e., one big table + a single set of FDs

 normalization performed on the universal schema

 less tables (better „granulating“)

 „classes/entities“ are generated (recognized) as the consequence of FD set

 both approaches could be combined – i.e.,

 create a conceptual database model

 convert it to relational schemas

 merge and/or normalize some of the schemas

Relational design – algorithms (A7B36DBS, Lect. 9)

 just one way – decomposition to multiple schemas
 or merging some „abnormal“ schemas and then decomposition

 different criteria
 data integrity preservation

▪ lossless join

▪ dependency preserving

 requirement on normal form (3NF or BCNF)

 manually or algorithmically

Relational design – algorithms (A7B36DBS, Lect. 9)

Relational design – algorithms (A7B36DBS, Lect. 9)

Company HQ Altitude

Sun Santa Clara 25 m

Oracle Redwood 20 m

Microsoft Redmond 10 m

IBM New York 15 m

Company

Sun

Oracle

Microsoft

IBM

HQ

Santa Clara

Redwood

Redmond

New York

If the decomposition is not limited, we can decompose the table into
several single-column ones that surely are all in BCNF.

Clearly, there is something wrong with
such a decomposition...

Company,
HQ  Altitude

Altitude

25 m

20 m

10 m

15 m

HQ Altitude Company

...it is lossy and it does not
preserve dependencies

 a property of decomposition that ensures correct joining (reconstruction) of the universal
relation from the decomposed ones

 Definition 1:
Let R({X  Y  Z}, F) be universal schema, where Y  Z  F.
Then decomposition R1({Y  Z}, F1), R2({Y  X}, F2) is lossless.

 Alternative Definition 2:
Decomposition of R(A, F) into R1(A1, F1), R2(A2, F2) is lossless, if A1  A2  A1 or A2  A1  A2

 Alternative Definition 3:

Decomposition of R(A, F) into R1(A1, F1), ..., Rn(An, Fn) is lossless, if R = *i=1..n Ri[Ai].

Relational design – algorithms (A7B36DBS, Lect. 9)

natural join

projection

used in algorithm

used for checking

Relational design – algorithms (A7B36DBS, Lect. 9)

Company Uses DBMS Data managed

Sun Oracle 50 TB

Sun DB2 10 GB

Microsoft MSSQL 30 TB

Microsoft Oracle 30 TB

Company Uses

DBMS

Sun Oracle

Sun DB2

Microsoft MSSQL

Microsoft Oracle

Company Data

managed

Sun 50 TB

Sun 10 GB

Microsoft 30 TB

Company Uses DBMS Data managed

Sun Oracle 50 TB

Sun Oracle 10 GB

Sun DB2 10 GB

Sun DB2 50 TB

Microsoft MSSQL 30 TB

Microsoft Oracle 30 TB

Company, Uses DBMS
Company, Uses DBMS

Company, Data managed

Company, Uses DBMS, Data managed

„reconstruction“
(natural join)

Relational design – algorithms (A7B36DBS, Lect. 9)

Company HQ Altitude

Sun Santa Clara 25 m

Oracle Redwood 20 m

Microsoft Redmond 10 m

IBM New York 15 m

Company HQ

Sun Santa Clara

Oracle Redwood

Microsoft Redmond

IBM New York

HQ Altitude

Santa Clara 25 m

Redwood 20 m

Redmond 10 m

New York 15 m

Company,
HQ  Altitude

Company HQ

„reconstruction“
(natural join)

 a decomposition property that ensures no FD will be lost
 Definition:

Let R1(A1, F1), R2(A2, F2) be decomposition of R(A, F). Then such
decomposition preserves dependencies if F+ = (i=1..nFi)

+.
 Dependency preserving could be violated in two ways

 during decomposition of F we do not derive all valid FDs – we lose FD that
should be preserved in a particular schema

 even if we derive all valid FDs (i.e., we perform projection of F+),
we may lose a FD that is valid across the schemas

Relational design – algorithms (A7B36DBS, Lect. 9)

Relational design – algorithms (A7B36DBS, Lect. 9)

Company HQ Altitude

Sun Santa Clara 25 m

Oracle Redwood 20 m

Microsoft Redmond 10 m

IBM New York 15 m

Company HQ

Sun Santa Clara

Oracle Redwood

Microsoft Redmond

IBM New York

HQ Altitude

Santa Clara 25 m

Redwood 20 m

Redmond 10 m

New York 15 m

Company,
HQ  Altitude

Company

HQ

dependencies
preserved

Company Altitude

Sun 25 m

Oracle 20 m

Microsoft 10 m

IBM 15 m

Company HQ

Sun Santa Clara

Oracle Redwood

Microsoft Redmond

IBM New York

Company

HQ

dependencies not preserved, we lost
HQ  Altitude

 algorithm for decomposition into BCNF, preserving lossless join
 may not preserve dependencies

 not an algorithm property – sometimes we simply cannot decompose into BCNF with all FDs preserved

algorithm Decomposition(set of elem. FDs. F, set of attributes A) : returns set {Ri(Ai, Fi)}
 Result := {R(A, F)};
 Done := false;
 Create F+;
 while not Done do
 if Ri(Fi, Ai)  Result not being in BCNF then // if there is a schema in the result violating BCNF
 Let X  Y  Fi such that X  Ai  F+. // X is not (super-)key and so X  Y violates BCNF
 Result := (Result – {Ri(Ai, Fi)})  // we remove the schema being decomposed

 {Ri(Ai – Y, cover(F, Ai – Y))}  // we add the schema being decomposed without attributes Y
 {Rj(X  Y, cover(F, X  Y))} // we add the schema with attributes XY

 else
 Done := true;
 endwhile
 return Result;

Note: Function cover(X, F) returns all FDs valid on attributes from X, i.e., a subset of F+ that contains only

attributes from X. Therefore it is necessary to compute F+.

This partial decomposition on two tables is lossless, we get two schemas that
both contain X, while the second one contains also Y and it holds X  Y.
X is now in the second table a super-key and X  Y is no more violating BCNF
(in the first table there is not Y anymore).

csjpdqv

sd  p

csjdqv

j  s

js cqjdv

sdp

p  d

pd sp

Contracts(A, F)
A = {c = ContractId, s = SupplierId, j = ProjectId, d = DeptId, p = PartId, q = Quantity, v = Value}
F = {c  all, sd  p, p  d, jp  c, j  s}

(3NF)

(1NF)

(1NF)

(BCNF)

FDs not preserved:
c  p
sd  p

cp

sdp

(BCNF)

(3NF)

 algorithm for decomposition into 3NF, preserving dependencies

 basic version not preserving lossless joins

algorithm Synthesis(set of elem. FDs F, set of attributes A) : returns set {Ri(Fi, Ai)}
 G = minimal cover of F

compose FDs having equal left-hand side into a single FD
 every composed FD forms a scheme Ri (Ai, Fi) of decomposition
return i=1..n{Ri (Ai, Fi)}

 lossless joins can be preserved by adding another schema into the
decomposition that contains universal key

 i.e., a key from the original universal schema

 a schema in decomposition that is a subset of another one can be deleted
 we can try to merge schemas that have functionally equivalent keys, but such

an operation can violate 3NF (or BCNF if achieved)!
 i.e., we can try to minimize the number of relations

Contracts(A, F)
 A = {c = ContractId, s = SupplierId, j = ProjectId, d = DeptId, p = PartId,
 q = Quantity, v = Value}
 F = {c  sjdpqv, sd  p, p  d, jp  c, j  s}

Minimal cover:
There are no redundant attributes in FDs.
Reundant FDs c  s and c  p were removed.

G = {c  j, c  d, c  q, c  v, sd  p, p  d, jp  c, j  s}

Composition:
G’ = {c  jdqv, sd  p, p  d, jp  c, j  s}

Result:
R1({cqjdv}, {c  jdqv}), R2({sdp}, {sd  p}), R3({pd},{p  d}), R4({jpc}, {jp  c}), R5({js}, {j  s}))
 (subset of R2)

Equivalent keys: {c, jp, jd}
R1({cqjpdv}, {c  jdqv, jp  c}), R2({sdp}, {sd  p, p  d}), R5({js}, {j  s}))

merging R1 and R4
(however, now p  d violates BCNF)

