
course:

Database Systems (A7B36DBS)

Acknowledgement:
The slides were kindly lent by Doc. RNDr. Tomas Skopal, Ph.D.,
Department of Software Engineering, Charles University in Prague

Doc. RNDr. Irena Holubova, Ph.D.

 relational calculus

 domain relational calculus

 tuple relational calculus

 safe formulas

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

Map of the Lecture
Database design

Formulation of the task Example: Information system for contracts, organizations

and tenders

Conceptual modelling

Transformation to relational

model

 class P...

Contract

- referenceNumber

- title

- description

- mainObject

- additionalObject [0..*]

- startDate

- endDate

- estimatedPrice

- agreedPrice

- actualPrice

- numberOfTenders

Organization

- legalName

- officialNumber

ItemType

- code

- title

Address

- streetName

- streetNumber

- city

- countryTender

- estimatedEndDate

- offeredPrice

+issuedContract 0..*

+contractingAuthority 1

+parentContract 1

+lot 0..*

+tenderingSupplier

0..*

+tenderedContract

0..*

+suppliedContract

0..*

+awardedSupplier

0..1

0..*0..*

0..1 1

0..1

+mainAddress 1

0..1

+tenderAddress

0..1

SQL: Data

Definition

SQL: Data

Manipulation

physical

storage,

implementation

of indices

relational algebra,

relational calculus

functional

dependencies,

normal forms,

decomposition,

synthesis

ER, UML

or XML, object, object-relational…

CREATE TABLE Contract (

 id INTEGER,

 startDate DATETIME,

 endDate DATETIME,

 ...);

SELECT id, name

FROM Contract, Organization

WHERE Organization.id = ... AND

 startDate > ...;

 application of first-order calculus (predicate logic) for
database querying

 extension by „database predicate“ testing a membership of
an element in a relation, defined at two levels of granularity
 domain calculus (DRC) – variables are attributes

 tuple calculus (TRC) – variables are tuples (whole elements of relation)

 query result in DRC/TRC is relation
(and the appropriate schema)

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

 the “language”
1. terms – variables and constants

2. predicate symbols

▪ standard binary predicates {<, >, =, , ≤, }

▪ „database predicates” (extending the first-order calculus)

3. formulas

▪ atomic – R(t1, t2, ...), where R is predicate symbol and ti is term

▪ complex – expressions that combine atomic or other complex formulas
using logic predicates ,,,,

4. quantifiers  (existential), (universal)

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

A B A  B A  B A  B A  B

1 1 1 1 1 1

1 0 0 1 0 0

0 1 0 1 1 0

0 0 0 0 1 1

 variables stand for attributes (= their values)

 database predicate: R(x, y, ...)

 R stands for the name of table the predicate is applied on

 predicate that for interpreted x, y, ... returns true if there is an
element in R (table row) with the same values
▪ i.e., row membership test

 predicate scheme (input parameters) is the same as the scheme
of relation R, i.e., each parameter x, y,... is substituted by a
(interpreted) variable or constant

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

 database predicate
 full notation: variables and constants in the predicate have an

attribute name assigned, determining the value testing, e.g.:
CINEMA(NAME_CINEMA : x , FILM : y)

 short notation: if the list of variables and constants does not contain
the attribute names, it is assumed they belong to the attributes given
by the relation schema R, e.g.:
CINEMA(x, y)

▪ where (NAME_CINEMA, FILM) is the schema of CINEMA

▪ in the following we consider this short notation

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

 the result of query given in DRC is a set of all interpretations of variables
and constants in the form of ordered n-tuple, for which the formula of
the query is true

{(t1, t2, ...) | query formula that includes t1, t2, ... }
▪ ti is either a constant or a free variable, i.e., a variable that is not quantified inside

the formula

▪ the schema of the result relation is defined directly by the names of the free
variables

{(x, y) | CINEMA(x, y)}

 returns relation consisting of all CINEMA elements

{(x) | CINEMA(x, ‘Titanic’)}

 returns names of cinemas that screen the film Titanic

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

 quantifiers allow to declare bound variables that are
interpreted within the database predicates

 formula x R(t1, t2, ..., x, ...) is evaluated as true if there exists
domain interpretation of x such that n-tuple (t1, t2, ..., x, ...) is a
member of R

 formula x R(t1, t2, ..., x, ...) is evaluated as true if all domain
interpretations of x leading to n-tuples (t1, t2, ..., x, ...) are
members of R

{(film) | name_cinema CINEMA(name_cinema, film) }

 returns names of all films screened at least in one cinema

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

 it is important to determine which domain is used for
interpretation of variables (both bound and free variables)
1. domain can be unspecified (i.e., interpretation is not limited) – the

domain is the whole universum

2. domain is an attribute type (i.e., integer, string, …) – domain
interpretation

3. domain is a set of values of a given attribute that exist in the relation
on which the interpretation is applied – actual domain interpretation

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

{(film) | name_cinema CINEMA(name_cinema, film) }

 could be evaluated differently based on the way variable name_cinema

is interpreted

 if the universum is used, the query result is an empty set, because the relation
CINEMA is surely not infinite, also it is type-restricted
▪ e.g., values in NAME_CINEMA will not include ‘horse’, 125, ‘quertyuiop’

 if the domain (attribute type) is used, the query answer will be also empty –
still infinite relation CINEMA assumed, containing all strings, e.g., ‘horse’,
‘qwertyuiop’, ...

 if the actual domain is used, the query result consists of names of films
screened in all cinemas (that are contained in the relation CINEMA)

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

 if we implicitly consider interpretation based on the actual domain, we
call such limited DRC as DRC with limited interpretation

 another simplification: because schemas often consist of many
attributes, we can use simplifying notation of quantification

 an expression R(t1,..., ti, ti+2, ...),
 i.e., ti+1 is missing,
is understood as ti+1 R(t1,..., ti, ti+1, ti+2, ...)
▪ the binding of variables then must be clear from the context, or strict attribute assignment must

be declared
 in the following we will assume that the names of variables denote the respective columns

{(name) | CINEMA(name)} is the same as {(name) | film CINEMA(name, film)}

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

FILM(NAME_FILM, NAME_ACTOR) ACTOR(NAME_ACTOR, YEAR_BIRTH)

In what films all the actors appeared?
{(film) | FILM(film)  actor (ACTOR(actor)  FILM(film, actor))}

Which actor is the youngest?
{(actor,year) | ACTOR(actor,year)  actor2 year2 (ACTOR(actor2,year2)  actor ≠ actor2) 

year2 < year}
 or
{(actor,year) | ACTOR(actor,year)  actor2 (ACTOR(actor2)  year2(ACTOR(actor2,year2) 

actor ≠ actor2  year2 > year))}

Which pairs of actors appeared at least in one film?
{(actor1, actor2) | ACTOR(actor1)  ACTOR(actor2)  actor1 ≠ actor2  film (FILM(film, actor1) 

FILM(film, actor2)) }

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

Which actor is the youngest?
{(a,y) | ACTOR(a,y)  a2(ACTOR(a2) y2 (ACTOR(a2,y2)  a ≠ a2  y2 > y)) }

$result = 
for each (a,y) do
 if (ACTOR(a,y) and
 (for each a2 do
 if (not ACTOR(a2) or not (for each y2 do
 if (ACTOR(a2,y2)  a ≠ a2  y2 > y) = true then return true
 end for
 return false)) = false then return false

 end for
 return true)) = true then Add (a,y) into $result
end for

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

universal quantifier = chain of conjunctions

existential quantifier = chain of disjunctions

 almost the same as DRC
 the difference is variables are whole elements of relations (i.e., rows of

tables), i.e., predicate R(t) is interpreted as true if (a row) t belongs to R

 the resulting schema is defined by concatenation of schemas of the free
variables (n-tuples)

 to access the attributes within a tuple t, a “dot notation” is used

 {t | CINEMA(t)  t.FILM = ‘Titanic’} returns cinemas which screen film Titanic

 the result schema could be projected using […] only on a subset of
attributes

 {t[NAME_CINEMA] | CINEMA(t)}

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

FILM(NAME_FILM, NAME_ACTOR) ACTOR(NAME_ACTOR, YEAR_BIRTH)

Get the pairs of actors of the same age acting in the same film.

{a1, a2 | ACTOR(a1)  ACTOR(a2)  a1  a2  a1.YEAR_BIRTH = a2.YEAR_BIRTH

  f1, f2 (FILM(f1)  FILM(f2)  f1.NAME_FILM = f2.NAME_FILM
  f1.NAME_ACTOR = a1.NAME_ACTOR
  f2.NAME_ACTOR = a2.NAME_ACTOR)}

Which films were casted by all the actors?

{fi[NAME_FILM] | FILM(fi)  actor(ACTOR(actor) 

 f(FILM(f)  f.NAME_ACTOR = actor.NAME_ACTOR 
 f.NAME_FILM = fi.NAME_FILM))}

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

 unbound interpretation of variables (domain-dependent formulas, resp.)
could lead to infinite query results

 negation: {x | R(x)}

▪ e.g. {j | Employee(Name: j)}

 disjunction: {x, y | R(..., x, ...)  S(..., y, ...)}

▪ e.g. {i, j | Employee(Name: i)  Student(Name: j)}

 universal quantifiers lead to an empty set
{x | y R(x, ..., y)}, and generally {x | y (x, ..., y)}, where  does not include
disjunctions (implications, resp.)

 the solution is to limit the set of DRC formulas – set of safe formulas

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

 to simply avoid infinite quantification ad-hoc,
it is good to constrain the quantifiers so that the
interpretation of bound variables is limited to a finite set

 using x (R(x)  (x)) instead of x ((x))

 using x (R(x)  (x)) instead of x ((x))

▪ by this convention the evaluation is implemented as
 for each x in R // finite enumeration
 instead of
 for each x // infinite enumeration

 free variables in (x) can be limited as well – by conjunction
 R(x)  (x)

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

{x,y | x = y} not safe (x, y not limited)

{x,y | x = y  R(x,y)} not safe
(the disjunction elements share both free variables, but the first maximal
conjunction (x=y) contains equation of not limited variables)

{x,y | x = y  R(x,y)} is safe

{x,y,z | R(x,y)  (P(x,y)  Q(y,z))} not safe
 (z is not limited in the conjunction + the disjunction elements do not share

the same variables)

{x,y,z | R(x,y)  P(x,y)  Q(y,z)} equivalent formula to the previous
 one – now safe

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

 “even more declarative” than relational algebra
(where the structure of nested operations hints the evaluation)

 just specification of what the result should satisfy

 both DRC and TRC are relational complete

 moreover, could be extended to be stronger

 besides the different language constructs, the three formalisms can be
used for differently “coarse” access to data

 operations of relational algebra work with entire relations (tables)

 database predicates of TRC work with relation elements (rows)

 database predicates of DRC work with attributes (attributes)

Query formalisms for relational model – relational calculus (A7B36DBS, Lect. 7)

FILM(NAME_FILM, NAME_ACTOR) ACTOR(NAME_ACTOR, YEAR_BIRTH)

Which films were casted by all the actors?

RA:
FILM  ACTOR[NAME_ACTOR]

DRC:
{(film) | FILM(film)  actor (ACTOR(actor)  FILM(film, actor))}

TRC:
{film[NAME_FILM] | FILM(film)  actor(ACTOR(actor) 

 f(FILM(f)  f.NAME_ACTOR = actor.NAME_ACTOR 
 f.NAME_FILM = film.NAME_FILM))}

