course:

Database Systems (A7B36DBS) lecture 6:

Query formalisms for relational model – relational algebra

Doc. RNDr. Irena Holubova, Ph.D.

Acknowledgement: The slides were kindly lent by Doc. RNDr. Tomas Skopal, Ph.D., Department of Software Engineering, Charles University in Prague

Today's lecture outline

- relational algebra
 - relational operations
 - equivalent expressions
 - relational completeness

Map of the Lecture

estimatedEndDate

offeredPrice

wardedSupplier

Lissuad Contr

streetNumber city country

+tenderAddres

0..1

ame

IOUSE

Vindows

Printer

Phone

aptop

Bing

key

Database design

Formulation of the task

startDate > ...;

Database query

- query = delimiting particular set of data instances
 - a single query may be expressed by multiple expressions of the query language – equivalent expressions
- query extent (power of the query language)
 - in classical models, only subset of the database is expected as a query result
 - i.e., values actually present in the database tables
 - in **extended models**, also derived data can be returned
 - i.e., computations, statistics, aggregations derived from the data

Query language formalisms

- as the "table data" model is based on the relational model, there can be used well-known formalisms
 - relational algebra (this lecture)
 - operations on relations used as query constructs
 - relational calculus (next lecture)
 - database extension of the first-order logic used as a query language

Relational algebra (RA)

- RA is a set of operations (unary or binary) on relations (having schemas); their results are also relations (having schemas)
 - for completeness, with a relation (table content) R* we always consider also a schema R(A) consisting of name and (typed) attributes, i.e., a tuple <R*, R(A)>
- a schema will be named by any unique user-defined identifier
 - for the relation resulting from an operation we mostly do not need to define a name for the relation and the schema
 - it either enters another operation or it is the final result
 - if we need to "store" (or label) the result, e.g., for decomposition of complex query, we use

ResultName := <*expression consisting of relational operations*>

Relational algebra (RA)

- if it is clear from the context, we use just R₁ operation R₂ instead of <R₁, R₁(A₁)> operation <R₂, R₂(A₂)>
- for binary operations we use infix notation
- for unary operations we use postfix notation
- the operation result can be used recursively as an operand of another operation, i.e., a tree of operations can be defined for a more complex query

RA – attribute renaming

attribute renaming (unary operation)

$$\begin{array}{l} \mathbf{R}^{*} < \mathbf{a}_{i} \rightarrow \mathbf{b}_{i}, \ \mathbf{a}_{j} \rightarrow \mathbf{b}_{j}, \ \dots > = \\ < \mathbf{R}^{*}, \ \mathbf{R}_{x}((\mathbf{A} - \{\mathbf{a}_{i}, \ \mathbf{a}_{j}, \ \dots\}) \cup \{\mathbf{b}_{i}, \ \mathbf{b}_{j}, \ \dots\}) > \end{array}$$

 only attributes in the schema are renamed, no data manipulation (i.e., the result is the same relation and the same schema, just of different attribute names)

RA – set operations

- set operations (binary, infix notation)
 - union: $(R_1, R_1(A)) \cup (R_2, R_2(A)) = (R_1 \cup R_2, R_2(A))$
 - intersection: $\langle R_1, R_1(A) \rangle \cap \langle R_2, R_2(A) \rangle = \langle R_1 \cap R_2, R_2(A) \rangle$
 - subtraction: $\langle R_1, R_1(A) \rangle \langle R_2, R_2(A) \rangle = \langle R_1 R_2, R_2(A) \rangle$
 - Cartesian product: $\langle R_1, R_1(A) \rangle \times \langle R_2, R_2(B) \rangle$

 $= \langle \mathsf{R}_1 \times \mathsf{R}_2, \mathsf{R}_x(\{\mathsf{R}_1\} \times \mathsf{A} \cup \{\mathsf{R}_2\} \times \mathsf{B}) \rangle$

- union, intersection and subtraction require compatible schemas of the operands!!!
 - it is also the schema of the result
 - i.e., we cannot, e.g., unify two different schemas

RA – Cartesian product

- a Cartesian product produces a new schema consisting of attributes from both source schemas
 - if the attribute names are ambiguous, we use a prefix notation, e.g., R₁.a, R₂.a
- if both the operands are the same, we first need to rename the attributes of one operand, i.e.,

 $\langle R_1, R_1(\{a,b,c\}) \rangle \times R_1 \langle a \rightarrow d, b \rightarrow e, c \rightarrow f \rangle$

Example – set operations

- FILM(FILM_NAME, ACTOR_NAME)
- AMERICAN_FILM = {('Titanic', 'DiCaprio'), ('Titanic', 'Winslet'), ('Top Gun', 'Cruise')}
- NEW_FILM = {('Titanic', 'DiCaprio'), ('Titanic', 'Winslet'), ('Samotáři', 'Macháček')}
- CZECH_FILM = {('Pelíšky', 'Donutil'), ('Samotáři', 'Macháček')}

```
ALL_FILMS := AMERICAN_FILM \cup CZECH_FILM =
{(`Titanic', `DiCaprio'), (`Titanic', `Winslet'), (`Top Gun', `Cruise'),
(`Pelíšky', `Donutil'), (`Samotáři', `Macháček')}
```

OLD_AMERICAN_AND_CZECH_FILM := (AMERICAN_FILM \colored CZECH_FILM) - NEW_FILM = {(`Top Gun', `Cruise'), (`Pelíšky', `Donutil')}

NEW_CZECH_FILM := **NEW_FILM** \cap **CZECH_FILM** = {(`Samotáři', `Macháček')}

RA – projection

projection (unary operation)

<R*[C], R(A)> = <{ $U[C] \in R*$ }, R(C)>, where C \subseteq A

- u[C] = values only in attributes from C
- possible duplicities are removed

RA – selection

selection (unary)

<R*(ϕ), R(A)> = <{ $\upsilon | \upsilon \in R^* \text{ and } \phi(\upsilon)$ }, R(A)>

- selection of those elements from R* that match a condition φ
- condition φ is a Boolean expression
 - using and, or, not on atomic formulas t₁ O t₂ or t₁ O a
 - $\Theta \in \{<_{I}>_{I}=_{I}\geq_{I}\leq_{I}\neq\}$
 - t_i are names of attributes

RA – natural join

natural join (binary)

<R*, R(A)> * <S*, S(B)> =
 <{u | u[A] \in R* and u[B] \in S*}, R_x(A \cup B)>

- joining elements of relations A, B using identity on <u>all shared</u> attributes
- if $A \cap B = \emptyset$, natural join corresponds to Cartesian product
 - no shared attributes
 - everything in A is joined with everything in B
- could be expressed using Cartesian product, selection and projection

Example – selection, projection, natural join

FILM(FILM_NAME, ACTOR_NAME)
FILM = {('Titanic', 'DiCaprio'), ('Titanic', 'Winslet'), ('Top Gun', 'Cruise')}
ACTOR(ACTOR_NAME, BIRTH_YEAR)
ACTOR = {('DiCaprio',1974), ('Winslet',1975), ('Cruise', 1962), ('Jolie', 1975)}

ACTOR_YEAR := ACTOR[BIRTH_YEAR] =

{(1974), (1975), (1962)}

YOUNG_ACTOR := ACTOR(BIRTH_YEAR > 1970) [ACTOR_NAME] = {(`DiCaprio'), (`Winslet'), ('Jolie')}

FILM_ACTOR := FILM * ACTOR =

{('Titanic', 'DiCaprio', 1974), ('Titanic', 'Winslet', 1975), ('Top Gun', 'Cruise', 1962)}

RA – inner Θ-join

theta

inner Θ-join (binary)

<R*, R(A)>[t₁ Θ t₂]<S*, S(B)> = <{u | u[A] \in R*, u[B] \in S*, u.t₁ Θ u.t₂}, A \cup B>

- generalization of natural join

RA – left 🛛 -semi-join

Ieft inner Θ-semi-join (binary)

<R*, R(A)><t₁ Θ t₂]<S*, S(B)> = (R[t₁ Θ t₂]S)[A]

- join restricted to the "left side"
 - only attributes of A in the resulting schema
- right semi-join similar
 - only attributes of B in the resulting schema

Inner vs. outer join

- in practice, it is useful to introduce **null meta-values** (NULL) of attributes
- outer join appends series of NULL values to those elements, that were not joined (i.e., they do not appear in inner join)
 - left outer join

 $\mathbf{R} *_{\mathsf{L}} \mathbf{S} = (\mathbf{R} * \mathbf{S}) \cup (\mathbf{R} \times (\mathsf{NULL}, \mathsf{NULL}, \ldots))$

• right outer join

 $\mathbf{R} *_{\mathbf{R}} \mathbf{S} = (\mathbf{R} * \mathbf{S}) \cup ((\mathbf{NULL}, \mathbf{NULL}, ...) \times \underline{\mathbf{S}})$

where \mathbb{R} , resp. \underline{S} consist of *n*-tuples not joined with S, resp. R

full outer join

 $\mathbf{R} *_{\mathbf{F}} \mathbf{S} = (\mathbf{R} *_{\mathsf{L}} \mathbf{S}) \cup (\mathbf{R} *_{\mathsf{R}} \mathbf{S})$

- the above joins are defined as natural joins, outer Θ -joins are defined similarly
- the reason for outer join is a complete information on elements of a relation being joined
 - some are joined regularly, some only with NULLs

RA – relation division

relation division (binary)

<R*, R(A)> ÷ <S*, S(B \subset A)> =
<{t | $\forall s \in S^*$ (t $\oplus s$) $\in R^*$ }, A - B}

- used in situations where objects with all properties are needed
 - kind of universal quantifier in RA
- ⊕ is concatenation operation
 - relation elements <a₁, a₂, ...> and <b₁, b₂, ...> become <a₁, a₂, ..., b₁, b₂, ...>
- returns those elements from R* that, when projected on A–B, are duplicates and, when projected on B, is equal to S*
- alternative definition: $\mathbf{R}^* \div \mathbf{S}^* = \mathbf{R}^*[A-B] ((\mathbf{R}^*[A-B] \times S^*) \mathbf{R}^*)[A-B]$

Example – relation division

FILM(FILM_NAME, ACTOR_NAME) ACTOR(ACTOR_NAME, BIRTH_YEAR)

What are the films where **all** the actors appeared? ACTOR_ALL_FILM := **FILM ÷ ACTOR[ACTOR_NAME])** = {('Titanic')}

FILM_NAME	ACTOR_NAME		ACTOR_NAME	BIRTH_YEAR
Titanic	DiCaprio –		DiCaprio	1974
Titanic	Winslet	V,	Zane	1966
The Beach	DiCaprio	M	Winslet	1075
Enigma	Winslet	T	WINSIEt	1975
The Kiss	Zane			
Titanic	Zane			

RA query evaluation

- logical order of operation evaluation
 - depth-first traversal of a syntactic tree
 - e.g., (((S1 op1 S2) op2 (S3 op4)) op5 S4 op6 S5)
 - syntactic tree construction (query parsing) is driven by operation op6 priorities, parentheses, or associativity conventions operation precedence (priority) projection R[] (highest) 1. 2. selection R() op1 Cart. product X join, division *,÷ subtraction 5.
 - 6. union, intersection \cup , \cap (lowest)

Example – query evaluation

To which destination can fly Boeings? (such that all passengers in the flight fit the plane)

(Flight[Passengers, Destination] [Passengers <= Capacity] (Plane(Plane = 'Boeing*')[Capacity]))[Destination]

Equivalent expressions

- a single query may be defined by multiple expressions
 - by replacing "redundant" operations with the basic ones (e.g., division, natural join)
 - by use of commutativity, distributivity and associativity of (some) operations
- selection
 - selection cascade $(...((R(\phi_1))(\phi_2))...)(\phi_n) \equiv R(\phi_1 \land \phi_2 \land ... \land \phi_n)$
 - commutativity of selection $(R(\phi_1))(\phi_2) \equiv (R(\phi_2))(\phi_1)$
- projection
 - projection cascade $(...(R[A_1])[A_2])...)[A_n] \equiv R[A_n]$, where $A_n \subseteq A_{n-1} \subseteq ... \subseteq A_2 \subseteq A_1$
- join and Cartesian product
 - commutativity $\mathbf{R} \times \mathbf{S} \equiv \mathbf{S} \times \mathbf{R}, \mathbf{R} [\Theta] \mathbf{S} \equiv \mathbf{S} [\Theta] \mathbf{R}, \text{ etc.}$
 - associativity $\mathbf{R} \times (\mathbf{S} \times \mathbf{T}) \equiv (\mathbf{R} \times \mathbf{S}) \times \mathbf{T}, \mathbf{R} [\Theta] (\mathbf{S} [\Theta] \mathbf{T}) \equiv (\mathbf{R} [\Theta] \mathbf{S}) [\Theta] \mathbf{T}, \text{ etc.}$

Relational completeness

- not all the mentioned operations are necessary for expression of every query
 - the minimal set consists of the following operations B = {union, Cartesian product, subtraction, selection, projection, attribute renaming}
- relational algebra query language is a set of expressions that result from composition of operations in B over a database schema
- if two expressions denote the same query they are equivalent
- query language that is able to express all queries of RA is relational complete
- Questions:

- How can we prove that a particular language is relational complete?
- Is SQL relational complete?

RA – properties

RA = declarative query language

- i.e., non-procedural, however, the structure of the expression suggests the sequence of operations
- the result is **always finite** relation
 - "safely" defined operations
- operation properties
 - associativity, commutativity
 - cart. product, join