course:
Database Systems (A7B36DBS)
lecture 6:

## Query formalisms for relational model - relational algebra

Doc. RNDr. Irena Holubova, Ph.D.

Acknowledgement:
The slides were kindly lent by Doc. RNDr. Tomas Skopal, Ph.D., Department of Software Engineering, Charles University in Prague

# Today's lecture outline 

## relational algebra

- relational operations
- equivalent expressions
- relational completeness


## Map of the Lecture

## Database design

Formulation of the task

Conceptual modelling ER, UML

Transformation to relational model
or XML, object, object-relational...


SQL: Data
relational algebra,
retationalcalculus

Example: Information system for contracts, organizations and tenders


CREATE TABLE Contract (
id INTEGER,
startDate DATETIME, endDate DATETIME, ...);

```
SELECT id, name
```

FROM Contract, Organization

WHERE Organization.id = ... AND
startDate > ...;

## Database query

- query = delimiting particular set of data instances
- a single query may be expressed by multiple expressions of the query language - equivalent expressions
- query extent (power of the query language)
- in classical models, only subset of the database is expected as a query result
" i.e., values actually present in the database tables
- in extended models, also derived data can be returned
- i.e., computations, statistics, aggregations derived from the data


## Query language formalisms

- as the "table data" model is based on the relational model, there can be used well-known formalisms
- relational algebra (this lecture)
- operations on relations used as query constructs
- relational calculus (next lecture)
- database extension of the first-order logic used as a query language


## Relational algebra (RA)

- RA is a set of operations (unary or binary) on relations (having schemas); their results are also relations (having schemas)
- for completeness, with a relation (table content) R* we always consider also a schema $R(A)$ consisting of name and (typed) attributes, i.e., a tuple <R*, $R(A)>$
- a schema will be named by any unique user-defined identifier
- for the relation resulting from an operation we mostly do not need to define a name for the relation and the schema
- it either enters another operation or it is the final result
- if we need to "store" (or label) the result, e.g., for decomposition of complex query, we use

ResultName := <expression consisting of relational operations>

## Relational algebra (RA)

- if it is clear from the context, we use just $R_{1}$ operation $R_{2}$ instead of

$$
\left\langle\mathrm{R}_{1,} \mathrm{R}_{1}\left(\mathrm{~A}_{1}\right)\right\rangle \text { operation }\left\langle\mathrm{R}_{2}, \mathrm{R}_{2}\left(\mathrm{~A}_{2}\right)\right\rangle
$$

- for binary operations we use infix notation
- for unary operations we use postfix notation
- the operation result can be used recursively as an operand of another operation, i.e., a tree of operations can be defined for a more complex query



## RA - attribute renaming

- attribute renaming (unary operation)

$$
\begin{aligned}
R^{*}<a_{i} \rightarrow & b_{i}, a_{j} \rightarrow b_{j}, \ldots>= \\
& <R^{*}, R_{x}\left(\left(A-\left\{a_{i}, a_{j}, \ldots\right\}\right) \cup\left\{b_{i}, b_{j}, \ldots\right\}\right)>
\end{aligned}
$$

- only attributes in the schema are renamed, no data manipulation (i.e., the result is the same relation and the same schema, just of different attribute names)


## RA - set operations

- set operations (binary, infix notation)
- union:
- intersection:
- subtraction:

$$
\begin{aligned}
& \left\langle R_{1 \prime} R_{1}(A)\right\rangle \cup\left\langle R_{2 \prime} R_{2}(A)\right\rangle=\left\langle R_{1} \cup R_{2 \prime} R_{x}(A)\right\rangle \\
& \left\langle R_{1 \prime}^{\prime \prime} R_{1}(A)\right\rangle\left\langle R_{2 \prime} R_{2}(A)\right\rangle=\left\langle R_{1} \cap R_{2}, R_{x}(A)\right\rangle \\
& \left\langle R_{1 \prime} R_{1}(A)\right\rangle-\left\langle R_{2 \prime} R_{2}(A)\right\rangle=\left\langle R_{1}-R_{2}, R_{x}(A)\right\rangle
\end{aligned}
$$

- Cartesian product: $\left\langle R_{1,} R_{1}(A)\right\rangle \times<R_{21} R_{2}$ (B) $\rangle$

$$
=\left\langle R_{1} \times R_{2}, R_{x}\left(\left\{R_{1}\right\} \times A \cup\left\{R_{2}\right\} \times B\right)\right\rangle
$$

- union, intersection and subtraction require compatible schemas of the operands!!!
- it is also the schema of the result
- i.e., we cannot, e.g., unify two different schemas


## RA - Cartesian product

- a Cartesian product produces a new schema consisting of attributes from both source schemas
- if the attribute names are ambiguous, we use a prefix notation, e.g., $\mathrm{R}_{1} \cdot \mathrm{a}_{1} \mathrm{R}_{2} \cdot \mathrm{a}$
- if both the operands are the same, we first need to rename the attributes of one operand, i.e.,

$$
\left.<R_{1}, R_{1}(\{a, b, c\})>\times R_{1}<a \rightarrow d, b \rightarrow e, c \rightarrow f\right\rangle
$$

## Example - set operations

- FILM(FILM_NAME,ACTOR_NAME)
- AMERICAN_FILM = \{('Titanic', 'DiCaprio'), ('Titanic', 'Winslet'), ('Top Gun', 'Cruise')\}
- NEW_FILM = \{('Titanic', 'DiCaprio'), ('Titanic', 'Winslet'), ('Samotáři', 'Macháček')\}
- CZECH_FILM = \{('Pelišky', 'Donutil'), ('Samotáři', 'Macháček')\}

ALL_FILMS := AMERICAN_FILM $\cup$ CZECH_FILM = \{('Titanic', 'DiCaprio'), ('Titanic', 'Winslet'), ('Top Gun', 'Cruise'), ('Pelíšky', 'Donutil'), ('Samotáři', 'Macháček')\}

OLD_AMERICAN_AND_CZECH_FILM := (AMERICAN_FILM $\cup$ CZECH_FILM) - NEW_FILM $=$ \{('Top Gun', 'C̄ruise'), ('Pelíšky', 'Donutil')\}

NEW_CZECH_FILM := NEW_FILM $\cap$ CZECH_FILM = \{('Samotáři', 'Macháček')\}

## RA - projection

projection (unary operation)
$<R *[C], R(A)>=\langle\{U[C] \in R *\}, R(C)>$, where $C \subseteq A$

- $u[C]=$ values only in attributes from C
- possible duplicities are removed


## RA - selection

- selection (unary)
$<R *(\varphi), R(A)>\quad=\left\langle\left\{u \mid u \in R^{*}\right.\right.$ and $\left.\varphi(u)\right\}, R(A)>$
- selection of those elements from R * that match a condition $\varphi$
- condition $\varphi$ is a Boolean expression
- using and, or, not on atomic formulas $\mathrm{t}_{1} \Theta \mathrm{t}_{2}$ or $\mathrm{t}_{1} \Theta$ a
- $\Theta \in\{<,>,=, \geq, \leq, \neq\}$
- $\mathbf{t}_{\mathbf{i}}$ are names of attributes


## RA - natural join

- natural join (binary)
$<\mathrm{R} *, \mathrm{R}(\mathrm{A})>*<\mathrm{S}^{*}, \mathrm{~S}(\mathrm{~B})>=$

$$
<\left\{u \mid u[A] \in R^{*} \text { and } u[B] \in S *\right\}, R_{x}(A \cup B)>
$$

- joining elements of relations $A, B$ using identity on all shared attributes
- if $\mathrm{A} \cap \mathrm{B}=\varnothing$, natural join corresponds to Cartesian product
- no shared attributes
- everything in A is joined with everything in B
" could be expressed using Cartesian product, selection and projection


## Example - selection, projection, natural join

FILM(FILM_NAME,ACTOR_NAME)
FILM = \{('Titanic', 'DiCaprio'), ('Titanic', 'Winslet'), ('Top Gun', 'Cruise')\}
ACTOR(ACTOR_NAME, BIRTH_YEAR)


ACTOR_YEAR := ACTOR[BIRTH_YEAR] = $\{(1974),(1975),(1962)\}$

YOUNG_ACTOR := ACTOR(BIRTH_YEAR > 1970) [ACTOR_NAME] = \{('DiCaprio'), ('Winslet'), ('Jolie')\}

FILM_ACTOR := FILM * ACTOR = \{('Titanic', 'DiCaprio', 1974), ('Titanic', 'Winslet', 1975), ('Top Gun', 'Cruise', 1962)\}

## RA - inner $\Theta$-join

## theta

- inner $\Theta$-join (binary)
$<R *, R(A)>\left[t_{1} \Theta t_{2}\right]<S *, S(B)>=$ $<\left\{u \mid u[A] \in R *, u[B] \in S *\right.$, u.t. $\left.\Theta u . t_{2}\right\}, A \cup B>$
" generalization of natural join
- joins over predicate (condition) $\Theta$ applied on individual attributes (of schemas entering the operation)


## RA - left $\Theta$-semi-join

- left inner $\Theta$-semi-join (binary)
$\left.<R *, R(A)><t_{1} \Theta t_{2}\right]<S *, S(B)>=\left(R\left[t_{1} \Theta t_{2}\right] S\right)[A]$
" join restricted to the "left side"
- only attributes of A in the resulting schema
- right semi-join similar
- only attributes of B in the resulting schema


## Inner vs. outer join

- in practice, it is useful to introduce null meta-values (NULL) of attributes outer join appends series of NULL values to those elements, that were not joined (i.e., they do not appear in inner join)
- left outer join

$$
R * L S=(R * S) \cup(\underline{R} \times(N U L L, N U L L, \ldots))
$$

- right outer join

$$
R *_{R} S=(R * S) \cup((N U L L, N U L L, \ldots) \times \underline{S})
$$

where $\underline{R}$, resp. $\underline{S}$ consist of $n$-tuples not joined with $S$, resp. $R$

- full outer join

$$
R *_{F} S=(R * L S) \cup\left(R *_{R} S\right)
$$

- the above joins are defined as natural joins, outer $\Theta$-joins are defined similarly the reason for outer join is a complete information on elements of a relation being joined
- some are joined regularly, some only with NULLs


## RA - relation division

- relation division (binary)

$$
\begin{aligned}
<R^{*}, R(A)>\div<S^{*}, & S(B \subset A)>= \\
& \left.<\left\{t \mid \forall s \in S^{*}(t \oplus s) \in R^{*}\right\}, A-B\right\}
\end{aligned}
$$

- used in situations where objects with all properties are needed
- kind of universal quantifier in RA
- $\oplus$ is concatenation operation
- relation elements $\left\langle\mathrm{a}_{1,} \mathrm{a}_{21} \ldots\right.$ and $\left\langle\mathrm{b}_{11} \mathrm{~b}_{21} \ldots>\right.$ become $\left\langle\mathrm{a}_{1 \prime} \mathrm{a}_{21}, \ldots, \mathrm{~b}_{11} \mathrm{~b}_{21} \ldots>\right.$
- returns those elements from $\mathbf{R *}$ that, when projected on $\mathbf{A}-\mathbf{B}$, are duplicates and, when projected on $B$, is equal to $S^{*}$
- alternative definition: $R^{*} \div S^{*}=R *[A-B]-((R *[A-B] \times S *)-R *)[A-B]$


## Example - relation division

FILM(FILM_NAME,ACTOR_NAME)
ACTOR(ACTOR_NAME, BIRTH_YEAR)
What are the films where all the actors appeared?
ACTOR_ALL_FILM := FILM $\div$ ACTOR[ACTOR_NAME] $)=\left\{\left({ }^{\prime}\right.\right.$ Titanic') $\}$

| FILM_NAME | ACTOR_NAME |  | ACTOR_NAME | BIRTH_YEAR |
| :--- | :--- | :--- | :--- | :--- |
| Titanic | DiCaprio | DiCaprio | 1974 |  |
| Titanic | Winslet | Zane | 1966 |  |
| The Beach | DiCaprio | Winslet | Winslet | 1975 |
| Enigma | Zane |  |  |  |
| The Kiss | Zane |  |  |  |
| Titanic |  |  |  |  |

## RA query evaluation

- logical order of operation evaluation
- depth-first traversal of a syntactic tree
- e.g., (((S1 op1 S2) op2 (S3 op4)) op5 S4 op6 S5)
- syntactic tree construction (query parsing) is driven by operation priorities, parentheses, or associativity conventions
- operation precedence (priority)

1. projection
$R[] \quad$ (highest)
$R()$
$\times$
$*, \div$

- 

$\cup, \cap$ (lowest)


## Example - query evaluation

To which destination can fly Boeings? (such that all passengers in the flight fit the plane)
(Flight[Passengers, Destination] [Passengers <= Capacity] (Plane(Plane = 'Boeing*')[Capacity]))[Destination]


Query formalisms for relational model - relational algebra (A7B36DBS, Lect. 6)

## Equivalent expressions

- a single query may be defined by multiple expressions
" by replacing "redundant" operations with the basic ones (e.g., division, natural join)
- by use of commutativity, distributivity and associativity of (some) operations
- selection
- selection cascade $\quad\left(\ldots\left(\left(R\left(\varphi_{1}\right)\right)\left(\varphi_{2}\right)\right) \ldots\right)\left(\varphi_{n}\right) \equiv R\left(\varphi_{1} \wedge \varphi_{2} \wedge \ldots \wedge \varphi_{n}\right)$
- commutativity of selection $\quad\left(R\left(\varphi_{1}\right)\right)\left(\varphi_{2}\right) \equiv\left(R\left(\varphi_{2}\right)\right)\left(\varphi_{1}\right)$
- projection
- projection cascade $\left.\quad\left(\ldots\left(R\left[A_{1}\right]\right)\left[A_{2}\right]\right) \ldots\right)\left[A_{n}\right] \equiv R\left[A_{n}\right]$, where $A_{n} \subseteq A_{n-1} \subseteq \ldots \subseteq A_{2} \subseteq A_{1}$
- join and Cartesian product
- commutativity
$R \times S \equiv S \times R, R[\Theta] S \equiv S[\Theta] R$, etc.
- associativity

$$
R \times(S \times T) \equiv(R \times S) \times T, R[\Theta](S[\Theta] T) \equiv(R[\Theta] S)[\Theta] T, \text { etc. }
$$

## Relational completeness

- not all the mentioned operations are necessary for expression of every query
- the minimal set consists of the following operations
$B=\{u n i o n$, Cartesian product, subtraction, selection, projection, attribute renaming\}
- relational algebra query language is a set of expressions that result from composition of operations in B over a database schema
- if two expressions denote the same query they are equivalent
- query language that is able to express all queries of RA is relational complete
- Questions:
- How can we prove that a particular language is relational complete?
- Is SQL relational complete?


## RA - properties

RA = declarative query language

- i.e., non-procedural, however, the structure of the expression suggests the sequence of operations
- the result is always finite relation
" „safely" defined operations
operation properties
- associativity, commutativity
- cart. product, join

