
course:

Database Systems (A7B36DBS)

Acknowledgement:
The slides were kindly lent by Doc. RNDr. Tomas Skopal, Ph.D.,
Department of Software Engineering, Charles University in Prague

Doc. RNDr. Irena Holubova, Ph.D.

 relational algebra

 relational operations

 equivalent expressions

 relational completeness

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

Map of the Lecture
Database design

Formulation of the task Example: Information system for contracts, organizations

and tenders

Conceptual modelling

Transformation to relational

model

 class P...

Contract

- referenceNumber

- title

- description

- mainObject

- additionalObject [0..*]

- startDate

- endDate

- estimatedPrice

- agreedPrice

- actualPrice

- numberOfTenders

Organization

- legalName

- officialNumber

ItemType

- code

- title

Address

- streetName

- streetNumber

- city

- countryTender

- estimatedEndDate

- offeredPrice

+issuedContract 0..*

+contractingAuthority 1

+parentContract 1

+lot 0..*

+tenderingSupplier

0..*

+tenderedContract

0..*

+suppliedContract

0..*

+awardedSupplier

0..1

0..*0..*

0..1 1

0..1

+mainAddress 1

0..1

+tenderAddress

0..1

SQL: Data

Definition

SQL: Data

Manipulation

physical

storage,

implementation

of indices

relational algebra,

relational calculus

functional

dependencies,

normal forms,

decomposition,

synthesis

ER, UML

or XML, object, object-relational…

CREATE TABLE Contract (

 id INTEGER,

 startDate DATETIME,

 endDate DATETIME,

 ...);

SELECT id, name

FROM Contract, Organization

WHERE Organization.id = ... AND

 startDate > ...;

 query = delimiting particular set of data instances
 a single query may be expressed by multiple expressions of the query

language – equivalent expressions

 query extent (power of the query language)
 in classical models, only subset of the database is expected

as a query result

▪ i.e., values actually present in the database tables

 in extended models, also derived data can be returned

▪ i.e., computations, statistics, aggregations derived from the data

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 as the “table data” model is based on the relational
model, there can be used well-known formalisms

 relational algebra (this lecture)
▪ operations on relations used as query constructs

 relational calculus (next lecture)
▪ database extension of the first-order logic used

as a query language

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 RA is a set of operations (unary or binary) on relations (having schemas);
their results are also relations (having schemas)

 for completeness, with a relation (table content) R* we always consider also a
schema R(A) consisting of name and (typed) attributes, i.e., a tuple <R*, R(A)>

 a schema will be named by any unique user-defined identifier

 for the relation resulting from an operation we mostly do not need to define a
name for the relation and the schema

▪ it either enters another operation or it is the final result

 if we need to “store” (or label) the result, e.g., for decomposition of complex
query, we use

 ResultName := <expression consisting of relational operations>

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 if it is clear from the context, we use just R1 operation R2 instead of
 <R1, R1(A1)> operation <R2, R2(A2)>

 for binary operations we use infix notation
 for unary operations we use postfix notation

 the operation result can be used recursively as an operand of another

operation, i.e., a tree of operations can be defined for a more complex
query

 (<R1*, R1(A)> op1 <R1*, R1(A)>) op2

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

infix postfix

 attribute renaming (unary operation)

R*<ai  bi, aj  bj, ... > =
 <R* , Rx((A – {ai, aj, ...})  {bi, bj, ...})>

 only attributes in the schema are renamed,
no data manipulation (i.e., the result is the same
relation and the same schema, just of different
attribute names)

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 set operations (binary, infix notation)

 union: <R1, R1 (A)>  <R2, R2 (A)> = <R1  R2 , Rx(A)>

 intersection: <R1, R1 (A)>  <R2, R2 (A)> = <R1  R2 , Rx(A)>

 subtraction: <R1, R1 (A)> – <R2, R2 (A)> = <R1 – R2 , Rx(A)>

 Cartesian product: <R1, R1 (A)>  <R2, R2 (B)>
 = <R1  R2 , Rx({R1}  A  {R2}  B)>

 union, intersection and subtraction require compatible
schemas of the operands!!!
 it is also the schema of the result

 i.e., we cannot, e.g., unify two different schemas

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 a Cartesian product produces a new schema
consisting of attributes from both source schemas
 if the attribute names are ambiguous, we use a prefix

notation, e.g., R1.a, R2.a

 if both the operands are the same, we first need to
rename the attributes of one operand, i.e.,

 <R1, R1 ({a,b,c})>  R1<a  d, b  e, c  f>

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

RA – Cartesian product

 FILM(FILM_NAME, ACTOR_NAME)

 AMERICAN_FILM = {(‘Titanic’, ‘DiCaprio’), (‘Titanic’, ‘Winslet’), (‘Top Gun’, ‘Cruise’)}

 NEW_FILM = {(‘Titanic’, ‘DiCaprio’), (‘Titanic’, ‘Winslet’), (‘Samotáři’, ‘Macháček’)}

 CZECH_FILM = {(‘Pelíšky’, ‘Donutil’), (‘Samotáři’, ‘Macháček’)}

ALL_FILMS := AMERICAN_FILM  CZECH_FILM =
{(‘Titanic’, ‘DiCaprio’), (‘Titanic’, ‘Winslet’), (‘Top Gun’, ‘Cruise’),
(‘Pelíšky’, ‘Donutil’), (‘Samotáři’, ‘Macháček’)}

OLD_AMERICAN_AND_CZECH_FILM :=
(AMERICAN_FILM  CZECH_FILM) – NEW_FILM =
{(‘Top Gun’, ‘Cruise’), (‘Pelíšky’, ‘Donutil’)}

NEW_CZECH_FILM := NEW_FILM  CZECH_FILM = {(‘Samotáři’, ‘Macháček’)}

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 projection (unary operation)

<R*[C], R(A)> = <{u[C]  R*}, R(C)>, where C  A

 u[C] = values only in attributes from C

 possible duplicities are removed

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 selection (unary)

<R*(), R(A)> = <{u | u  R* and (u)}, R(A)>

 selection of those elements from R* that match a condition 

 condition  is a Boolean expression

▪ using and, or, not on atomic formulas t1  t2 or t1  a

▪   {<, >, =, , ≤, }

▪ ti are names of attributes

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 natural join (binary)

<R*, R(A)>  <S*, S(B)> =
 <{u | u[A]  R* and u[B]  S*}, Rx(A  B)>

 joining elements of relations A, B using identity on all shared

attributes

 if A  B = , natural join corresponds to Cartesian product
▪ no shared attributes

▪ everything in A is joined with everything in B

 could be expressed using Cartesian product, selection and projection

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

FILM(FILM_NAME, ACTOR_NAME)

FILM = {(‘Titanic’, ‘DiCaprio’), (‘Titanic’, ‘Winslet’), (‘Top Gun’, ‘Cruise’)}

ACTOR(ACTOR_NAME, BIRTH_YEAR)

ACTOR = {(‘DiCaprio’,1974), (‘Winslet’,1975), (‘Cruise’, 1962), (‘Jolie’, 1975)}

ACTOR_YEAR := ACTOR[BIRTH_YEAR] =

{(1974), (1975), (1962)}

YOUNG_ACTOR := ACTOR(BIRTH_YEAR > 1970) [ACTOR_NAME] =

 {(‘DiCaprio’), (‘Winslet’), (‘Jolie’)}

FILM_ACTOR := FILM  ACTOR =

 {(‘Titanic’, ‘DiCaprio’, 1974), (‘Titanic’, ‘Winslet’, 1975), (‘Top Gun’, ‘Cruise’, 1962)}

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 inner -join (binary)

<R*, R(A)>[t1t2]<S*, S(B)> =
 <{u | u[A]  R*, u[B]  S*, u.t1u.t2}, A  B>

 generalization of natural join

 joins over predicate (condition)  applied on individual
attributes (of schemas entering the operation)

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

theta

 left inner-semi-join (binary)

<R*, R(A)><t1t2]<S*, S(B)> = (R[t1t2]S)[A]

 join restricted to the “left side”

▪ only attributes of A in the resulting schema

 right semi-join similar
▪ only attributes of B in the resulting schema

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 in practice, it is useful to introduce null meta-values (NULL) of attributes
 outer join appends series of NULL values to those elements, that were not

joined (i.e., they do not appear in inner join)

 left outer join
 R L S = (R  S)  (R  (NULL, NULL, ...))

 right outer join
 R R S = (R  S)  ((NULL, NULL, ...)  S)
 where R, resp. S consist of n-tuples not joined with S, resp. R

 full outer join

 R F S = (R L S)  (R R S)

 the above joins are defined as natural joins, outer -joins are defined similarly

 the reason for outer join is a complete information on elements
of a relation being joined

 some are joined regularly, some only with NULLs

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 relation division (binary)

<R*, R(A)>  <S*, S(B  A)> =
 <{t | s  S* (t  s)  R*}, A – B}

 used in situations where objects with all properties are needed

▪ kind of universal quantifier in RA

  is concatenation operation
▪ relation elements <a1, a2, ...> and <b1, b2, ...> become <a1, a2, ..., b1, b2, ...>

 returns those elements from R* that, when projected on A–B, are
duplicates and, when projected on B, is equal to S*

 alternative definition: R*  S* = R*[A–B] – ((R*[A–B]  S*) – R*)[A–B]

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

FILM(FILM_NAME, ACTOR_NAME)
ACTOR(ACTOR_NAME, BIRTH_YEAR)

What are the films where all the actors appeared?
ACTOR_ALL_FILM := FILM  ACTOR[ACTOR_NAME]) = {(‘Titanic’)}

FILM_NAME ACTOR_NAME

Titanic DiCaprio

Titanic Winslet

The Beach DiCaprio

Enigma Winslet

The Kiss Zane

Titanic Zane

ACTOR_NAME BIRTH_YEAR

DiCaprio 1974

Zane 1966

Winslet 1975

 logical order of operation evaluation

 depth-first traversal of a syntactic tree

 e.g., (((S1 op1 S2) op2 (S3 op4)) op5 S4 op6 S5)

 syntactic tree construction (query parsing) is driven by operation
priorities, parentheses, or associativity conventions

 operation precedence (priority)

1. projection R[] (highest)

2. selection R()

3. Cart. product 

4. join, division , 

5. subtraction –

6. union, intersection ,  (lowest)

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

op2

op1 op4

op5

op6

S1 S2 S3

S4

S5

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

To which destination can fly Boeings? (such that all passengers in the flight fit the plane)

(Flight[Passengers, Destination] [Passengers <= Capacity] (Plane(Plane = ‘Boeing*’)[Capacity]))[Destination]

Flight Company Destination Passengers

OK251 CSA New York 276

LH438 Lufthansa Stuttgart 68

OK012 CSA Milano 37

AC906 Air Canada Torronto 116

KL1245 KLM Amsterdam 130

Plane Capacity

Boeing 717 106

Airbus A380 555

Airbus A350 253

projection
[Passengers, Destination]

selection
(Plane = ‘Boeing*’)

projection
[Capacity]

-join
[Passengers <= Capacity]

projection
[Destination]

Destination Passengers

New York 276

Stuttgart 68

Milano 37

Torronto 116

Amsterdam 130

Plane Capacity

Boeing 717 106

Destination Passengers Capacity

Stuttgart 68 106

Milano 37 106

Capacity

106

Destination

Stuttgart

Milano

 a single query may be defined by multiple expressions

 by replacing “redundant” operations with the basic ones (e.g., division, natural join)

 by use of commutativity, distributivity and associativity of (some) operations

 selection

 selection cascade (...((R(1))(2))...)(n) ≡ R(1  2  ...  n)

 commutativity of selection (R(1))(2) ≡ (R(2))(1)

 projection

 projection cascade (...(R[A1])[A2])...)[An] ≡ R[An], where An An-1  ...  A2  A1

 join and Cartesian product

 commutativity R  S ≡ S  R, R [] S ≡ S [] R, etc.

 associativity R  (S  T) ≡ (R  S)  T, R [] (S [] T) ≡ (R [] S) [] T, etc.

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 not all the mentioned operations are necessary for expression of every
query

 the minimal set consists of the following operations
 B = {union, Cartesian product, subtraction, selection, projection,
 attribute renaming}

 relational algebra query language is a set of expressions that result from
composition of operations in B over a database schema

 if two expressions denote the same query they are equivalent
 query language that is able to express all queries of RA is relational

complete

 Questions:

 How can we prove that a particular language is relational complete?

 Is SQL relational complete?

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

 RA = declarative query language
 i.e., non-procedural, however, the structure of

the expression suggests the sequence
of operations

 the result is always finite relation
 „safely“ defined operations

 operation properties
 associativity, commutativity

- cart. product, join

Query formalisms for relational model – relational algebra (A7B36DBS, Lect. 6)

