Course A7B36DBS: Database Systems

Lecture 02:
Relational Model

Martin Svoboda
Irena Holubova
Tomas Skopal

Faculty of Electrical Engineering, Czech Technical University in Prague

Outline

* Logical database models
= Short introduction
* Model-Driven Development

* Relational model
= Description and features
= Transformation of ER / UML conceptual schemas

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015

Logical Database Models

Layers of Database Modeling

Abstraction

e Conceptual layer

= Models a part of the structured real world (entities,
their characteristics and relationships between them)
relevant for applications built on top of our database

e Logical layer

= Specifies how conceptual components are represented
in logical data structures interpretable by machines

e Physical layer

= Specifies how logical database structures are
v implemented in a specific technical environment

Implementation

Logical Data Structures

* What are actually these structures?

= Formally...

— Sets, relations, functions, graphs, trees, ...
* |.e. traditional and well-defined mathematical structures

= Orin a more friendly way...
— Tables, objects, pointers, collections, ...

Overview of Logical Models

e Models based on tables

[[[|
= Structure —‘ UL L
— Rows for entities r

] I I
— Columns for attributes

= Operations
— Selection, projection, joins, ...

= Examples
— Relational model

— ... and various derived table models such as:
* SQL (as it is standardized)
* and particular implementations like Oracle, MySQL, ...

Overview of Logical Models

* Models based on objects -
= Structure ’/

~ Objects with attributes N\ //
o

— Pointers between objects

= Motivation
— Object-oriented programming (OOP)
— Encapsulation, inheritance, ...

= Operations
— Navigation

Overview of Logical Models

* Models based on trees

= Structure Al
— Vertices with attributes “

— Edges between vertices é
= Motivation

— Hierarchies, categorization

= Examples
— Hierarchical model (one of the very first database models)
— XML documents
— JSON documents

Overview of Logical Models

* Models based on graphs

= Structure ‘/Iv\ /T
— Vertices, edges, attributes ; 'E

= Operations
— Navigation
= Examples
— Network model (one of the very first database models)

— Resource Description Framework (RDF)
— Neodj, InfiniteGraph, OrientDB, FlockDB, ...

Overview of Logical Models

* There are plenty of (different / similar) models

— The previous overview was intended just as an insight into
some of the basic ideas and models

= Hierarchical, network, relational, object, object-
relational, XML, key-value, document-oriented,
graph, ...
" Note that
— They are suitable for different purposes
— Standards are often not strictly followed
— Proprietary extensions are often available

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015

10

Process of Logical Modeling

* Problem 1: Choosing the right logical model/s

Conceptual schema

?

Relational model RDF model
XML model

* Note that...
= Relational model is not always the best solution!

Process of Logical Modeling

* Problem 1: Choosing the right logical model/s

= According to...
— Data features
* True nature of real-world entities and their relationships

— Intended usage
» Storage (JSON data in document-oriented databases, ...)
* Exchange (XML documents sent by Web Service, ...)
* Publication (RDF triples forming the Web of Data, ...)

— Query possibilities — available expressive power
— Requirements of stakeholders

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015

12

Process of Logical Modeling

* Problem 2: Designing logical schema/s

Conceptual schema

Process of Logical Modeling

* Problem 2: Designing logical schema/s
— Having a given conceptual schema
— Working with different logical models
— Covering different parts of the reality
— Serving for different purposes
= Challenge: can this be achieved automatically?

* Or at least semi-automatically?

— Answer: Model-Driven Development

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015

14

Model-Driven Development (MDD)

Model-Driven Development

* MDD

= Software development approach
— Can be used as a database design methodology as well

* |t enables us to create executable schemas instead of
executable code

— |.e. to create schemas that can be automatically (or at least
semi-automatically) converted to executable code

— Unfortunately, just in theory... recent ideas, not yet
applicable in practice today (lack of suitable tools)

— But we will show how to apply its principles in order to deal
with multiple and different logical schemas we need to apply
in our database system

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 16

MDD for Logical Database Schemas

e Levels of abstraction

= Platform-Independent Level
— Hides particular platform-specific details

= Platform-Specific Level

— Maps the conceptual schema (or its part)
to a given logical model

— Adds platform-specific details
" Code Level

— Expresses the schema in a selected
machine-interpretable logical language

— SQL, XML Schema, OWL, ...

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10.2015

—
—

Conceptual
layer

17

Practical Example

* Information System for Public Procurement

= http://www.isvzus.cz/

" There are many logical models to deal with:
— Relational data model

* for data storage

— XML data model

* for exchanging data with information systems of public
authorities which issue public contracts

— RDF data model

* for publishing data on the Web of Linked Data in a machine-
readable form (at least this is a goal...)

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 18

http://www.isvzus.cz/
http://www.isvzus.cz/

Practical Example

e Platform-independent schema

+tenderingSupplier

Organization Address
0..* 0..1 1
- legalName) - streetName
. officialNumb +awardedSupplier - dreetNumber
0.1 - City
Tender +contractingAuthority |1 h - country
- estimatedEndDate T +mainAddress| 1 0.1
- offeredPrice +tenderAddress
+issuedContract |0..*
+tenderedContract +suppliedContract
Contract
0..* 0..*
- referenceNumber
- title
- description 0..1
ltemType - mainObject
. ek o - O..*: ;c;criti[t)i;)tr;aIObject[O..*] 0.1
- title
- endDate
- estimatedPrice +lot 0..*
- agreedPrice
- actualPrice
- numberOfTenders
+parentContract 1

Practical Example

atform-specific schema: relational model

+PK_Organization|

Organization

+FK_Organization_Address

«FK»

(tenderingSupplierld = organizationld)

+FK_Tender_Organization| 0..*

ItemType

«columny»
*PK code: NUMBER(8)
* title: VARCHAR2(50)

«PK»
+ PK_ItemType(NUMBER)

+PK_ltemType 1

(con(ractlld = code)

Tender

«column»

* estimatedEndDate: DATE

* offeredPrice: NUMBER(9)

*PK tenderld: NUMBER(8)

*FK tenderingSupplierld: NUMBER(8)
*FK tenderedContractld: NUMBER(8)

«FK»
+ FK_Tender_Contract(NUMBER)

+ FK_Tender_Organization(NUMBER

«PK»
+ PK_Tender(NUMBER)

+FK_Tender_Contract

+FK_Item_Contract

0.*

+PK_Contract

«columny»

* legalName: VARCHAR2(50)
officialNumber: NUMBER(9)
*PK organizationld: NUMBER(8)
1| *FK addressid: NUMBER(@8)

0..*

+PK_Organization

1

«FK»

«PK»

«uniq

+ UQ_Organization_offici

+ FK_Organization_AddressNUMBER)

+ PK_Organization(NUMBER)

ue»

(addressid =|addressld)
«FK»

+PK_Address \[/1

Address

be(NUMBER) pRli

= organizationld

+PK_Organizalion/P 1

+FK_Contract_Organization|0..*

(awardedSupplierld = organizationld)
«FK»

Contract

*

K»

«F 1
(tenderedContractld = contractld) FK

+PK_Contract

“F

Fi
Fi

A

=

«column»
*

referenceNumber: NUMBER(8
title: VARCHAR2(50)
description: CLOB

startDate: DATE

endDate: DATE
estimatedPrice: NUMBER(9)
agreedPrice: NUMBER(9)
actualPrice: NUMBER(9)
numberOfTenders: NUMBER(2)

*PK contractld: NUMBER(8)

contractingAuthorityld: NUMBER(8)
ded lierld: NUI (8)
mainAddressid: NUMBER(8)
tenderAddressld: NUMBER(8)
parentContractid: NUMBER(8)

«column»
streetName: VARCHAR2(50)
) streetNumber: VARCHAR2(50)
city: VARCHAR2(50)
country: VARCHAR2(50)
*PK addressld: NUMBER(8)

«PK»
+FK_Contract_Organization + PK_AddressstNUMBER)
1
o +PK_Address +PK_Address 1
(tenderAddress}d = addressld)

+FK_Contract_Address

«FK»
«FK»

0..*
+FK_Contract_Address

0..*

+PK_Contract

+

+

0.%

«FK»
(contractld = contractld)

«FK»
0.*
- +FK_Item_ItemType
Item
«column»
* code: NUMBER(8)
FK contractld: NUI (8)
«FK»

+ FK_Item_Contract(NUMBER)
+ FK_ltem_ItemType(NUMBER)

+
+

+

+

«FK»

FK_Contract_Address(NUMBER)
FK_Contract_Address(NUMBER)
FK_Contract_Contract(NUMBER)
FK_Contract_Organization(NUMBER)
FK_Contract_Organization(NUMBER)|

«PK»

PK_Contract(NUMBER)

«unique»

UQ_Contract_referenceNumber()

1

(parentContractlld = contractld)

«FK»

+FK_Contract_Contract

0..*

(tenderAddressld = addressid)

Practical Example

* Platform-specific schema: relational model

" Notes to the previous UML diagram

— Itis a UML class diagram

* But enhanced with features for modeling logical schemas in
(object-)relational model

— Stereotypes allow us to add specific semantics to basic
constructs (class, attribute, association), e.g.,
* <<table>> specifies that a class models a table
* <<PK>> specifies that an attribute models a primary key

» <<FK>> specifies that an attribute/association models a
foreign key

° etc.

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015

21

Practical Example

* Code level: SQL (snippet)

CREATE TABLE Contract (
referenceNumber NUMBER(8) NOT NULL,
title VARCHARZ2 (50) NOT NULL,
description CLOB,
startDate DATE NOT NULL,
endDate DATE NOT NULL,
estimatedPrice NUMBER(9) NOT NULL,

) ;

ALTER TABLE Contract ADD CONSTRAINT PK Contract

PRIMARY KEY (contractId);
ALTER TABLE Contract ADD CONSTRAINT FK Contract Address
FOREIGN KEY (mainAddressId) REFERENCES Address (addressId);

CREATE TABLE Organization(...);

Practical Example

* Code level: SQL (snippet)

" The previous code was generated fully automatically
— from a platform-specific diagram
* It has to contain all the necessary information
— using a CASE tool (Computer-Aided Software Engineering)

* Which can detect errors and
* helps with the specification

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015

23

Practical Example

<?xml verszion="1.0" encoding="UIF-8"?>
«!-- edited with XMLSpy v2012 spl (htcp://www.altova.com) by IM (Charles 1

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLEchema™>
. <xs:complexType name="addressType">
S <KZ:seguence>

<xs:element name="streetName"/>
<xs:element name="streetNumber"/>
<xs:element name="city"/>
<xs:element name="country"/>
</x3:sequence>
</zxs:complexType>
<xs:complexType name="objectType">
<XS:sequence>
<xz:element name="code" Cype="zs:inc"/>
<xz:ielement name="title" type="xs:string"/>
«/x3:sequence>
</rz:complexTyper>
«xs:complexType name="contractType">
<XS:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element name="description"™ type="xs:string"/>
<xs:element name="mainCbject™ type="objectTyvpe"/>
<xs:element name="additionalCbject™ type="objectT:
<xs:element name="mainfAddress" type="addressType".
<xz:element name="tenderlhddress" type="addressTyp
<xz:element name="starcDate" type="zs:date"/>
<xz:element name="endDate" type="x=:date"/>
<xsz:element name="estimatedPrice" type="xs:float",
<xs:element name="agreedPrice" type="xs:float"/>
<xs:element name="actualPrice" type="xs:float"/>
<xs:element name="numberOfTenders" type="x=z:int"/:
<xs:element name="subContracts" type="contractTyp
. </x3:sequence>
+issuedContract <xs:attribute name="referencellumber” type="xs:int"/>
:dContract +suppliedContract n </xs:complexType>
E—— Contract ~ numberOfTenders q <xs:complexType name="tenderedContractType">

0.~
- referenceNumber T e
- title
- description 0.1
- mainObject

- additionalObject [0..
0.%]. startDate

- endDate

- estimatedPrice +lot0..*
- agreedPrice

- actualPrice

- numberOfTenders

+parentContract 1

Relational Model

Relational Model

e Relational model

= Model for storage of objects ———— L L
and their relationships in r
relations (tables)

" Founded by E. F. Codd in 1970
e Relations vs. tables

= Relation
= Table = structure with rows and columns

— Tables are more intuitive,
but hide important mathematical background!

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10.2015

26

Relational Model

e Definitions

= Relation schema
— Description of a relation structure (everything except data)
- S(Al:Tl’ Az:Tz, Y An:Tn)
* Sisaschemaname

* A are attributes and T, their types (attribute domains)
 Specification of types can be omitted

= Schema of a relational database
— Set of relation schemas (+ integrity constraints, ...)

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015

27

Relational Model

e Definitions

= Relation = data

— Subset of the Cartesian product of attribute domains T,
* l.e. relation is a set!

— ltems are called tuples

= Relational database
— Set of relations

Relational Model

* Basic requirements (consequences?)
= Atomicity of attributes

— Only simple types can be used for domains of attributes
" Unique identification
— Relation is a set, and so two identical tuples cannot exist

" Undefined ordering
— Once again, relation is a set, and so tuples are not ordered

= Completeness of tuples

— There are no holes in tuples, i.e. all values are specified

* However, NULL values (well-known from relational databases)
can be added to attribute domains as special metavalues

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015

29

Integrity Constraints

* |dentification

— Every tuple is identified by one or more attributes

= Superkey = set of such attributes
— Trivial and special example: all the relation attributes

= Key = superkey with a minimal number of attributes

— More precisely: no attribute can be removed so that the
identification ability would still be preserved

— There can be more keys
* Even with different numbers of attributes

— Notation: keys are underlined
* Relation(Key, CompositeKeyPartl, CompositeKeyPart2, ...)

* Note the difference between simple and composite keys!

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015

30

Integrity Constraints

* Referential integrity

= Foreign key = set of attributes of the referencing

relation which corresponds to a (super)key of the
referenced relation

— It is usually not a (super)key in the referencing relation

— Notation
* ReferencingTable.foreignKey € ReferencedTable.Key

* foreignKey € ReferencedTable.Key

Sample Relational Database

* Schema

Course(Code, Name, ...)
Schedule(ld, Event, Day, Time, ...), Event € Course.Code

e Data

nm-n

A7B36DBS | THU 11:00

2 A7B36DBS | THU 12:45]
“code | Name |
3 A7B36DBS | THU 14:30
A7B36DBS | Database systems
4 A7B36XML| FRI 09:15

A7B36XML| XML technologies

A7B36PSI | Computer networks
At

Relations vs. Tables

e Tables
= Table header ~ relation schema

" Row ~ tuple
= Column ~ attribute
e However...

= Tables are not sets, and so...
— there can be duplicate rows in tables
— rows in tables can be ordered

= |.e. SQL and the existing RDBMS do not follow the
relational model strictly

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015

33

Object vs. (Object-)Relational Model

* Object model

= Data stored as graphs of objects

= Suitable for individual navigational access to entities
* Relational model

= Data stored in flat tables

= Suitable for data-intensive batch operations
* Object-Relational model

= Relational model enriched by object elements
— Attributes may be of complex types
— Methods can be defined on attribute types

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10.2015 34

Transformation of UML / ER to RM

Conceptual Schema Transformation

e Basicidea

= What we have

— ER: entity types, attributes, identifiers, relationship types,
ISA hierarchies

— UML: classes, attributes, associations

* What we need
— Relation schemas with attributes and keys and foreign keys

= How to do it
— Classes with attributes — relation schemas

— Associations — separate relation schemas or together with
classes (depending on cardinalities...)

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10.2015 36

Classes

e Class — :

[] Separ‘ate table - personalNumber

- address
- age

— Person(personalNumber, address, age)

= Artificial keys
— Artificially introduced integer identifiers
* with no correspondence in the real world
* but with several efficiency and also design advantages
* and usually automatically generated and assigned

— Person(personld, personNumber, address, age)

Attributes

e Multivalued attribute —

Person

- personalNumber
- phone: String [1..%]

= Separate table

— Person(personalNumber)
Phone(personalNumber, phone)

Phone.personalNumber € Person.personalNumber

Attributes

 Composite attribute — S——

Person

address

street (ﬁ\o country

= Separate table %y

— Person(personalNumber)
Address(personalNumber, street, city, country)
Address.personalNumber € Person.personalNumber

= Sub-attributes can also be inlined
— But only in case of (1,1) cardinality
— Person(personNumber, street, city, country)

Binary Associations

* Multiplicity (1,1):(1,1) -

Person Mobile
- personalNumber - serialNumber
- address 1 1] color
- age
= Single table

— Person(personalNumber, address, age, serialNumber, color)

Binary Associations

e Multiplicity (1,1):(0,1) —

Person Mobile

- personalNumber - serialNumber
- address 1. color

- age

= Two tables

— Person(personalNumber, address, age, serialNumber)
Person.serialNumber € Mobile.serialNumber
Mobile(serialNumber, color)

— Why not just 1 table?

* Because a mobile phone can exist independently of a person

Binary Associations

* Multiplicity (0,1):(0,1) —

Person Mobile

- personalNumber - serialNumber
|
- address - color

- age

= Three tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber € Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

— Note that a personal number and serial number are both
independent keys in the Ownership table

Binary Associations

e Multiplicity (1,n)/(0,n):(1,1) —

Person Mobile

- personalNumber - serialNumber
*
- address @ - color

- age

= Two tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color, personalNumber)
Mobile.personalNumber € Person.personalNumber

— Why a personal number is not a key in the Mobile table?
* Because a person can own more mobile phones

Binary Associations

e Multiplicity (1,n)/(0,n):(0,1) —

Person Mobile

- personalNumber - serialNumber
*
- address L.*- color

- age

= Three tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber € Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

— Why a personal number is not a key in the Ownership table?
* Because a person can own more mobile phones

Binary Associations

* Multiplicity (1,n)/(0,n):(1,n)/(0,n) —

Person Mobile

- personalNumber - serialNumber
- address @ @ color

- age

= Three tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber € Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

— Note that there is a composite key in the Ownership table

Attributes of Associations

o Attribute of an association —

Person

- personNumber
- name

= Stored together with T emben
a given association table e
— Person(personNumber, name) _ _Team
Team(name, url) - name

Member(personNumber, name, from, to)
Member.personNumber € Person.personNumber
Member.name € Team.name

= Multivalued and composite attributes are transformed
analogously to attributes of ordinary classes

General Associations

Person

* N-ary association — -_pemniuni]

0.*

0.*

= Universal solution: o <
N tables for classes + e B

0.1

1 association table

— Person(personNumber)
Project(projectNumber)
Team(name)
Worker(personNumber, projectNumber, name)
Worker.personNumber € Person.personNumber
Worker.projectNumber € Project.projectNumber
Worker.name € Team.name

= Less tables? Yes, in case of (1,1) cardinalities...

Team

= name

Hierarchies

* |ISA hierarchy —

- personalNumber
- name

= Universal solution: /4 b\
separate table for each type

- phone - studiesFrom

— Person(personalNumber, name)
Professor(personalNumber, phone)
Student(personalNumber, studiesFrom)
Professor.personalNumber € Person.personalNumber
Student.personalNumber € Person.personalNumber

— Applicable in any case (w.r.t. covering / overlap constraints)

— Pros: flexibility (when altering attributes)
— Cons: joins (when reconstructing entire persons)

Hierarchies

* ISA hierarchy —

= Only one table for a hierarchy source

— Person(personalNumber, name, phone, studiesFrom, type)

— Universal once again, but not always suitable
* Types of instances are distinguished by an artificial attribute
* Should this attribute simulate an enumeration or even a set?
* Depends on the overlap constraint

— Pros: no joins

— Cons: NULL values required (and so it is not a nice solution)

Hierarchies

* ISA hierarchy —

= Separate table for each leaf type

— Professor(personalNumber, name, phone)
Student(personalNumber, name, studiesFrom)

— This solution is not always applicable!

* In particular when the covering constraint is false
— Pros: no joins
— Cons:

* Redundancies (when the overlap constraint is false)
* Integrity considerations (uniqueness of a personal number)

Weak Entity Types

* Weak entity type — code

O

.—_
= Separate table .

— Institution(name) netitution
Team(code, name) e @
Team.name C Institution.name

— Recall that the cardinality is always (1,1)

— Key of the weak entity type involves also a key from the
entity type it depends on

