
Faculty of Electrical Engineering, Czech Technical University in Prague

Course A7B36DBS: Database Systems

Relational Model

Martin Svoboda

Irena Holubová

Tomáš Skopal

Lecture 02:

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 2

Outline

• Logical database models

 Short introduction

 Model-Driven Development

• Relational model

 Description and features

 Transformation of ER / UML conceptual schemas

Logical Database Models

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 4

Layers of Database Modeling

• Conceptual layer
 Models a part of the structured real world (entities,

their characteristics and relationships between them)
relevant for applications built on top of our database

• Logical layer
 Specifies how conceptual components are represented

in logical data structures interpretable by machines

• Physical layer
 Specifies how logical database structures are

implemented in a specific technical environment

Abstraction

Implementation

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 5

Logical Data Structures

• What are actually these structures?

 Formally…

‒ Sets, relations, functions, graphs, trees, …

• I.e. traditional and well-defined mathematical structures

 Or in a more friendly way…

‒ Tables, objects, pointers, collections, …

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 6

Overview of Logical Models

• Models based on tables

 Structure

‒ Rows for entities

‒ Columns for attributes

 Operations

‒ Selection, projection, joins, …

 Examples

‒ Relational model

‒ … and various derived table models such as:

• SQL (as it is standardized)

• and particular implementations like Oracle, MySQL, …

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 7

Overview of Logical Models

• Models based on objects

 Structure

‒ Objects with attributes

‒ Pointers between objects

 Motivation

‒ Object-oriented programming (OOP)

‒ Encapsulation, inheritance, …

 Operations

‒ Navigation

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 8

Overview of Logical Models

• Models based on trees

 Structure

‒ Vertices with attributes

‒ Edges between vertices

 Motivation

‒ Hierarchies, categorization

 Examples

‒ Hierarchical model (one of the very first database models)

‒ XML documents

‒ JSON documents

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 9

Overview of Logical Models

• Models based on graphs

 Structure

‒ Vertices, edges, attributes

 Operations

‒ Navigation

 Examples

‒ Network model (one of the very first database models)

‒ Resource Description Framework (RDF)

‒ Neo4j, InfiniteGraph, OrientDB, FlockDB, …

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 10

Overview of Logical Models

• There are plenty of (different / similar) models
‒ The previous overview was intended just as an insight into

some of the basic ideas and models

 Hierarchical, network, relational, object, object-
relational, XML, key-value, document-oriented,
graph, ...

 Note that

‒ They are suitable for different purposes

‒ Standards are often not strictly followed

‒ Proprietary extensions are often available

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 11

Process of Logical Modeling

• Problem 1: Choosing the right logical model/s

• Note that…

 Relational model is not always the best solution!

Conceptual schema

Relational model
XML model

RDF model

… … ?

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 12

Process of Logical Modeling

• Problem 1: Choosing the right logical model/s

 According to…

‒ Data features

• True nature of real-world entities and their relationships

‒ Intended usage

• Storage (JSON data in document-oriented databases, …)

• Exchange (XML documents sent by Web Service, …)

• Publication (RDF triples forming the Web of Data, …)

• …

‒ Query possibilities – available expressive power

‒ Requirements of stakeholders

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 13

Process of Logical Modeling

• Problem 2: Designing logical schema/s

Conceptual schema

Relational schema XML schema OWL ontology

… …

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 14

Process of Logical Modeling

• Problem 2: Designing logical schema/s
‒ Having a given conceptual schema

‒ Working with different logical models

‒ Covering different parts of the reality

‒ Serving for different purposes

 Challenge: can this be achieved automatically?
• Or at least semi-automatically?

‒ Answer: Model-Driven Development

Model-Driven Development (MDD)

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 16

Model-Driven Development

• MDD

 Software development approach

‒ Can be used as a database design methodology as well

 It enables us to create executable schemas instead of
executable code

‒ I.e. to create schemas that can be automatically (or at least
semi-automatically) converted to executable code

‒ Unfortunately, just in theory… recent ideas, not yet
applicable in practice today (lack of suitable tools)

‒ But we will show how to apply its principles in order to deal
with multiple and different logical schemas we need to apply
in our database system

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 17

MDD for Logical Database Schemas

• Levels of abstraction

 Platform-Independent Level

‒ Hides particular platform-specific details

 Platform-Specific Level

‒ Maps the conceptual schema (or its part)
to a given logical model

‒ Adds platform-specific details

 Code Level

‒ Expresses the schema in a selected
machine-interpretable logical language

‒ SQL, XML Schema, OWL, …

Conceptual
layer

Logical
layer

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 18

Practical Example

• Information System for Public Procurement

 http://www.isvzus.cz/

 There are many logical models to deal with:

‒ Relational data model

• for data storage

‒ XML data model

• for exchanging data with information systems of public
authorities which issue public contracts

‒ RDF data model

• for publishing data on the Web of Linked Data in a machine-
readable form (at least this is a goal…)

http://www.isvzus.cz/
http://www.isvzus.cz/

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 19

Practical Example

• Platform-independent schema
 class P...

Contract

- referenceNumber

- title

- description

- mainObject

- additionalObject [0..*]

- startDate

- endDate

- estimatedPrice

- agreedPrice

- actualPrice

- numberOfTenders

Organization

- legalName

- officialNumber

ItemType

- code

- title

Address

- streetName

- streetNumber

- city

- countryTender

- estimatedEndDate

- offeredPrice

+issuedContract 0..*

+contractingAuthority 1

+parentContract 1

+lot 0..*

+tenderingSupplier

0..*

+tenderedContract

0..*

+suppliedContract

0..*

+awardedSupplier

0..1

0..*0..*

0..1 1

0..1

+mainAddress 1

0..1

+tenderAddress

0..1

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 20

Practical Example

• Platform-specific schema: relational model
 class PSM_RELATIONAL

Contract

«column»

* referenceNumber: NUMBER(8)

* title: VARCHAR2(50)

 description: CLOB

* startDate: DATE

* endDate: DATE

* estimatedPrice: NUMBER(9)

 agreedPrice: NUMBER(9)

 actualPrice: NUMBER(9)

 numberOfTenders: NUMBER(2)

*PK contractId: NUMBER(8)

*FK contractingAuthorityId: NUMBER(8)

 FK awardedSupplierId: NUMBER(8)

*FK mainAddressId: NUMBER(8)

 FK tenderAddressId: NUMBER(8)

 FK parentContractId: NUMBER(8)

«FK»

+ FK_Contract_Address(NUMBER)

+ FK_Contract_Address(NUMBER)

+ FK_Contract_Contract(NUMBER)

+ FK_Contract_Organization(NUMBER)

+ FK_Contract_Organization(NUMBER)

«PK»

+ PK_Contract(NUMBER)

«unique»

+ UQ_Contract_referenceNumber()

Organization

«column»

* legalName: VARCHAR2(50)

* officialNumber: NUMBER(9)

*PK organizationId: NUMBER(8)

*FK addressId: NUMBER(8)

«FK»

+ FK_Organization_Address(NUMBER)

«PK»

+ PK_Organization(NUMBER)

«unique»

+ UQ_Organization_officialNumbe(NUMBER)
Tender

«column»

* estimatedEndDate: DATE

* offeredPrice: NUMBER(9)

*PK tenderId: NUMBER(8)

*FK tenderingSupplierId: NUMBER(8)

*FK tenderedContractId: NUMBER(8)

«FK»

+ FK_Tender_Contract(NUMBER)

+ FK_Tender_Organization(NUMBER)

«PK»

+ PK_Tender(NUMBER)

Address

«column»

 streetName: VARCHAR2(50)

 streetNumber: VARCHAR2(50)

 city: VARCHAR2(50)

 country: VARCHAR2(50)

*PK addressId: NUMBER(8)

«PK»

+ PK_Address(NUMBER)

ItemType

«column»

*PK code: NUMBER(8)

* title: VARCHAR2(50)

«PK»

+ PK_ItemType(NUMBER)

Item

«column»

* code: NUMBER(8)

 FK contractId: NUMBER(8)

«FK»

+ FK_Item_Contract(NUMBER)

+ FK_Item_ItemType(NUMBER)

+FK_Contract_Organization 0..*

(awardedSupplierId = organizationId)

«FK»

+PK_Organization 1

+FK_Tender_Organization 0..*

(tenderingSupplierId = organizationId)

«FK»

+PK_Organization

1

+FK_Tender_Contract 0..*

(tenderedContractId = contractId)
«FK»

+PK_Contract

1

+FK_Contract_Organization

0..*

(awardedSupplierId = organizationId)

«FK»

+PK_Organization

1

+FK_Contract_Address

0..*

(tenderAddressId = addressId)

«FK»

+PK_Address
1

+FK_Contract_Address

0..*

(tenderAddressId = addressId)

«FK»

+PK_Address 1

+FK_Organization_Address

0..*

(addressId = addressId)

«FK»

+PK_Address 1

+FK_Item_Contract

0..*
(contractId = contractId)

«FK»

+PK_Contract

1

+FK_Item_ItemType
0..*

(contractId = code)

«FK»

+PK_ItemType 1

+FK_Contract_Contract

0..*

(parentContractId = contractId)

«FK»

+PK_Contract

1

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 21

Practical Example

• Platform-specific schema: relational model

 Notes to the previous UML diagram

‒ It is a UML class diagram

• But enhanced with features for modeling logical schemas in
(object-)relational model

‒ Stereotypes allow us to add specific semantics to basic
constructs (class, attribute, association), e.g.,

• <<table>> specifies that a class models a table

• <<PK>> specifies that an attribute models a primary key

• <<FK>> specifies that an attribute/association models a
foreign key

• etc.

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 22

Practical Example

• Code level: SQL (snippet)

CREATE TABLE Contract (

 referenceNumber NUMBER(8) NOT NULL,

 title VARCHAR2(50) NOT NULL,

 description CLOB,

 startDate DATE NOT NULL,

 endDate DATE NOT NULL,

 estimatedPrice NUMBER(9) NOT NULL,

 ...

);

ALTER TABLE Contract ADD CONSTRAINT PK_Contract

 PRIMARY KEY (contractId);

ALTER TABLE Contract ADD CONSTRAINT FK_Contract_Address

 FOREIGN KEY (mainAddressId) REFERENCES Address (addressId);

...

CREATE TABLE Organization(...);

...

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 23

Practical Example

• Code level: SQL (snippet)

 The previous code was generated fully automatically

‒ from a platform-specific diagram

• It has to contain all the necessary information

‒ using a CASE tool (Computer-Aided Software Engineering)

• Which can detect errors and

• helps with the specification

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 24

Practical Example

• XML

Relational Model

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 26

Relational Model

• Relational model

 Model for storage of objects
and their relationships in
relations (tables)

 Founded by E. F. Codd in 1970

• Relations vs. tables

 Relation

 Table = structure with rows and columns

‒ Tables are more intuitive,
but hide important mathematical background!

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 27

Relational Model

• Definitions

 Relation schema

‒ Description of a relation structure (everything except data)

‒ S(A1:T1, A2:T2, ..., An:Tn)

• S is a schema name

• Ai are attributes and Ti their types (attribute domains)

• Specification of types can be omitted

 Schema of a relational database

‒ Set of relation schemas (+ integrity constraints, …)

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 28

Relational Model

• Definitions

 Relation = data

‒ Subset of the Cartesian product of attribute domains Ti

• I.e. relation is a set!

‒ Items are called tuples

 Relational database

‒ Set of relations

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 29

Relational Model

• Basic requirements (consequences?)

 Atomicity of attributes

‒ Only simple types can be used for domains of attributes

 Unique identification

‒ Relation is a set, and so two identical tuples cannot exist

 Undefined ordering

‒ Once again, relation is a set, and so tuples are not ordered

 Completeness of tuples

‒ There are no holes in tuples, i.e. all values are specified

• However, NULL values (well-known from relational databases)
can be added to attribute domains as special metavalues

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 30

Integrity Constraints

• Identification
‒ Every tuple is identified by one or more attributes

 Superkey = set of such attributes

‒ Trivial and special example: all the relation attributes

 Key = superkey with a minimal number of attributes

‒ More precisely: no attribute can be removed so that the
identification ability would still be preserved

‒ There can be more keys

• Even with different numbers of attributes

‒ Notation: keys are underlined

• Relation(Key, CompositeKeyPart1, CompositeKeyPart2, …)

• Note the difference between simple and composite keys!

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 31

Integrity Constraints

• Referential integrity

 Foreign key = set of attributes of the referencing
relation which corresponds to a (super)key of the
referenced relation

‒ It is usually not a (super)key in the referencing relation

‒ Notation

• ReferencingTable.foreignKey ⊆ ReferencedTable.Key

• foreignKey ⊆ ReferencedTable.Key

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 32

Sample Relational Database

• Schema
Course(Code, Name, …)

Schedule(Id, Event, Day, Time, …), Event ⊆ Course.Code

• Data

Id Event Day Time …

1 A7B36DBS THU 11:00

2 A7B36DBS THU 12:45

3 A7B36DBS THU 14:30

4 A7B36XML FRI 09:15

Code Name …

A7B36DBS Database systems

A7B36XML XML technologies

A7B36PSI Computer networks

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 33

Relations vs. Tables

• Tables

 Table header ∼ relation schema

 Row ∼ tuple

 Column ∼ attribute

• However…

 Tables are not sets, and so…

‒ there can be duplicate rows in tables

‒ rows in tables can be ordered

 I.e. SQL and the existing RDBMS do not follow the
relational model strictly

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 34

Object vs. (Object-)Relational Model

• Object model

 Data stored as graphs of objects

 Suitable for individual navigational access to entities

• Relational model

 Data stored in flat tables

 Suitable for data-intensive batch operations

• Object-Relational model

 Relational model enriched by object elements

‒ Attributes may be of complex types

‒ Methods can be defined on attribute types

Transformation of UML / ER to RM

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 36

Conceptual Schema Transformation

• Basic idea

 What we have

‒ ER: entity types, attributes, identifiers, relationship types,
ISA hierarchies

‒ UML: classes, attributes, associations

 What we need

‒ Relation schemas with attributes and keys and foreign keys

 How to do it

‒ Classes with attributes → relation schemas

‒ Associations → separate relation schemas or together with
classes (depending on cardinalities…)

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 37

Classes

• Class →

 Separate table

‒ Person(personalNumber, address, age)

 Artificial keys

‒ Artificially introduced integer identifiers

• with no correspondence in the real world

• but with several efficiency and also design advantages

• and usually automatically generated and assigned

‒ Person(personId, personNumber, address, age)

 class Class

Person

- personalNumber

- address

- age

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 38

Attributes

• Multivalued attribute →

 Separate table

‒ Person(personalNumber)
Phone(personalNumber, phone)
Phone.personalNumber ⊆ Person.personalNumber

 class Class

Person

- personalNumber

- phone: String [1..*]

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 39

Attributes

• Composite attribute →

 Separate table

‒ Person(personalNumber)
Address(personalNumber, street, city, country)
Address.personalNumber ⊆ Person.personalNumber

 Sub-attributes can also be inlined

‒ But only in case of (1,1) cardinality

‒ Person(personNumber, street, city, country)

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 40

Binary Associations

• Multiplicity (1,1):(1,1) →

 Single table

‒ Person(personalNumber, address, age, serialNumber, color)

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color1 1

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 41

Binary Associations

• Multiplicity (1,1):(0,1) →

 Two tables

‒ Person(personalNumber, address, age, serialNumber)
Person.serialNumber ⊆ Mobile.serialNumber
Mobile(serialNumber, color)

‒ Why not just 1 table?

• Because a mobile phone can exist independently of a person

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color0..1 1

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 42

• Multiplicity (0,1):(0,1) →

 Three tables

‒ Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber ⊆ Person.personalNumber
Ownership.serialNumber ⊆ Mobile.serialNumber

‒ Note that a personal number and serial number are both
independent keys in the Ownership table

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color0..1 0..1

Binary Associations

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 43

• Multiplicity (1,n)/(0,n):(1,1) →

 Two tables

‒ Person(personalNumber, address, age)
Mobile(serialNumber, color, personalNumber)
Mobile.personalNumber ⊆ Person.personalNumber

‒ Why a personal number is not a key in the Mobile table?

• Because a person can own more mobile phones

Binary Associations

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color1..1 1..*

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 44

• Multiplicity (1,n)/(0,n):(0,1) →

 Three tables

‒ Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber ⊆ Person.personalNumber
Ownership.serialNumber ⊆ Mobile.serialNumber

‒ Why a personal number is not a key in the Ownership table?

• Because a person can own more mobile phones

Binary Associations

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color0..1 1..*

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 45

• Multiplicity (1,n)/(0,n):(1,n)/(0,n) →

 Three tables

‒ Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber ⊆ Person.personalNumber
Ownership.serialNumber ⊆ Mobile.serialNumber

‒ Note that there is a composite key in the Ownership table

Binary Associations

 class 1_1

Person

- personalNumber

- address

- age

Mobile

- serialNumber

- color1..* 1..*

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 46

• Attribute of an association →

 Stored together with
a given association table

‒ Person(personNumber, name)
Team(name, url)
Member(personNumber, name, from, to)
Member.personNumber ⊆ Person.personNumber
Member.name ⊆ Team.name

 Multivalued and composite attributes are transformed
analogously to attributes of ordinary classes

Attributes of Associations
 class How to model characteristics o...

Person

- personNumber

- name

Team

- name

- url

Member

- from

- to

+has_member 1..*

+is_member_of 0..*

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 47

• N-ary association →

 Universal solution:
N tables for classes +
1 association table

‒ Person(personNumber)
Project(projectNumber)
Team(name)
Worker(personNumber, projectNumber, name)
Worker.personNumber ⊆ Person.personNumber
Worker.projectNumber ⊆ Project.projectNumber
Worker.name ⊆ Team.name

 Less tables? Yes, in case of (1,1) cardinalities…

General Associations
 class Nary associations

Team

- name

Person

- personNumber

Project

- projectNumber

worker

0..*

0..1

1..*

0..*

0..*

0..*

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 48

• ISA hierarchy →

 Universal solution:
separate table for each type

‒ Person(personalNumber, name)
Professor(personalNumber, phone)
Student(personalNumber, studiesFrom)
Professor.personalNumber ⊆ Person.personalNumber
Student.personalNumber ⊆ Person.personalNumber

‒ Applicable in any case (w.r.t. covering / overlap constraints)

‒ Pros: flexibility (when altering attributes)

‒ Cons: joins (when reconstructing entire persons)

Hierarchies
 class ISA

Person

- personalNumber

- name

Professor

- phone

Student

- studiesFrom

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 49

• ISA hierarchy →

 Only one table for a hierarchy source

‒ Person(personalNumber, name, phone, studiesFrom, type)

‒ Universal once again, but not always suitable

• Types of instances are distinguished by an artificial attribute

• Should this attribute simulate an enumeration or even a set?

• Depends on the overlap constraint

‒ Pros: no joins

‒ Cons: NULL values required (and so it is not a nice solution)

Hierarchies

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 50

• ISA hierarchy →

 Separate table for each leaf type

‒ Professor(personalNumber, name, phone)
Student(personalNumber, name, studiesFrom)

‒ This solution is not always applicable!

• In particular when the covering constraint is false

‒ Pros: no joins

‒ Cons:

• Redundancies (when the overlap constraint is false)

• Integrity considerations (uniqueness of a personal number)

Hierarchies

A7B36DBS: Database Systems | Lecture 02: Relational Model | 8. 10. 2015 51

• Weak entity type →

 Separate table

‒ Institution(name)
Team(code, name)
Team.name ⊆ Institution.name

‒ Recall that the cardinality is always (1,1)

‒ Key of the weak entity type involves also a key from the
entity type it depends on

Weak Entity Types

code

