NSWI144 – Linked Data – Lecture 10 – 17 December 2012

Querying and Indexing

Martin Svoboda

Faculty of Mathematics and Physics Charles University in Prague

Outline

- Querying systems
 - General issues
 - Existing approaches
 - Relational databases
 - Native solutions
 - Common practices
 - Open problems

- Issues
 - Data structures
 - Storage
 - Indices
 - Algorithms
 - Query processor
- Problems
 - Data scalability, distribution and dynamicity

Architecture

Local

- Efficient processing
- Independent data
- Storage requirements

Distributed

- Runtime requests
- Up-to-date data
- Network throughput

Use cases

Querying

- Local or distributed data
- Structural queries
- Complete results

Searching

- Global data cloud
- Full text queries
- Imprecise results

Storages

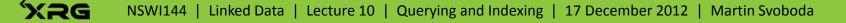
Relational databases

- Decades of research results
- Plenty of implementations
- Usage of standard indices
- Queries translated into SQL

Native approaches

- Novel ideas and approaches
- Based on graph logical model

Approaches


Triple table

- One huge table of all triples
- Binary tables
 - One table for each predicate
- Property tables
 - Set of tables for clustered predicates

• Triple table

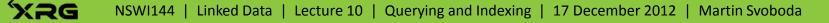
- Idea
 - One huge table with all triples
 - Each triple is represented as one row
- Schema
 - Table(Subject, Predicate, Object)

Subject	Predicate	Object
S1	P1	01
S1	P1	02
S2	P2	02

Triple table

Advantages

- Without NULL values
- Support of multi-value properties
- Symmetric access patterns


Disadvantages

- Inappropriate for less selective queries
- Problematic self joins

• Binary tables

- Idea
 - Separate table for each predicate
- Schema
 - Predicate₁(Subject, Object)

Binary tables

Advantages

- Support of multi-value properties
- Suitable for column storages

Disadvantages

- Queries with unbound predicates
- Large number of tables
- Asymmetric access patterns

Property tables

- Idea
 - Combining all/some properties for a given subject
 - Disjoint or potentially overlapping sets of properties
- Schema
 - Table₁(Subject, Predicate₁, Predicate₂, ...)
 - ...

Subject	P1	P2
S1	01	NULL
S2	NULL	02

Property tables

Advantages

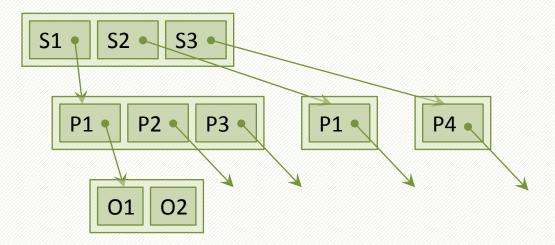
- Fewer join operations
- Follow relational model

Disadvantages

- Clustering is not trivial
- Do not support multi-value properties
- Potentially very sparse
- Asymmetric access patterns

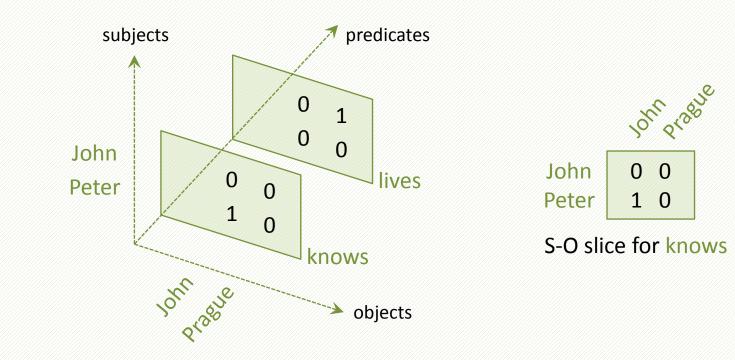
Native solutions

- Approaches
 - Sextuple index
 - Ordered nested lists for local data
 - BitMat index
 - Compressed matrix slices for local data
 - Data summaries
 - Q-trees for distributed data


Sextuple Indexing

- Paper
 - Cathrin Weiss et al.: Hexastore: Sextuple Indexing for Semantic Web Data Management
- Overview
 - Local database of RDF triples
 - Based on ordered nested lists
 - Supports all access patterns

Sextuple Indexing

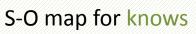

Index model

- SPO, SOP, OSP, OPS, PSO, POS nested lists
- Duplicated lists are shared
 - For example: P lists for corresponding SO and OS

- Paper
 - Medha Atre et al.: Matrix "Bit"loaded: A Scalable
 Lightweight Join Query Processor for RDF Data
- Overview
 - Local database with RDF triples
 - Low selectivity of conjunctive queries
 - Individual patterns and joining as well
 - Low memory requirements
 - Without intermediate result materialization

Index model

Index model


Terms

- Active domains of all subjects, predicates and objects
- Assignment of unique integer identifiers
- Index
 - 3-dimensional matrix with bit values 0 or 1
 - Dimensions for subjects, predicates and objects
- Slices
 - SO and OS for each predicate
 - PO for each subject and PS for each object

- Index implementation
 - Ordinary file
 - Compression
 - Slices are stored per individual rows
 - Rows are compressed using bit runs
 - Query evaluation
 - All operations over compressed bit runs

- Query processing
 - Initialization
 - Loading required index components
 - Optimizations
 - Pruning of loaded index components
 - Joining
 - Stream joining of individual patterns
 - Based on nested loops algorithm
 - Idea from relational databases
 - Starting with the most selective pattern

(Peter knows ?P) (?P lives Prague)

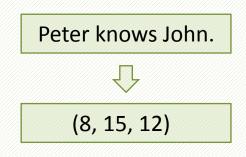
1

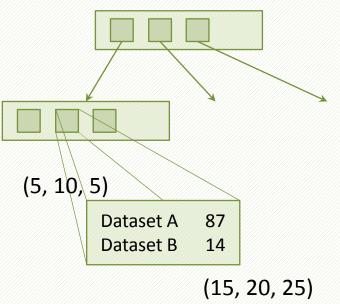
Peter

John Prasue

S-O map for lives

Data Summaries


- Paper
 - Andreas Harth et al.: Data Summaries for On-Demand Queries over Linked Data
- Overview
 - High number of distributed datasets
 - Conjunctive SPARQL queries
 - Source selection algorithm


Data Summaries

Index model

Numeric space

- 3-dimensional numeric space
- Transforming triples to points
- Based on hash functions

Data Summaries

Q-tree

Based on R-trees and histograms

Internal nodes

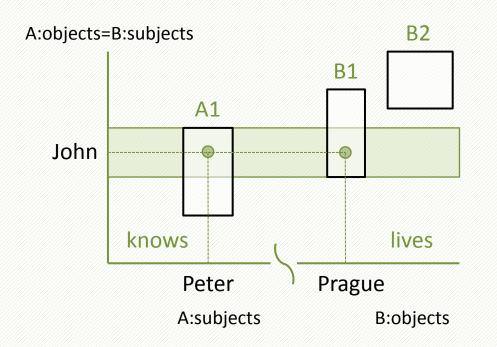
- Set of bounding boxes
 - These boxes may generally overlap themselves

Leaf nodes

- Buckets with summaries
 - For each dataset a number of its corresponding triples

Features

- Fixed (parameterized) size


XRG NSWI144 | Linked Data | Lecture 10 | Querying and Indexing | 17 December 2012 | Martin Svoboda

Data Summaries

- Algorithm
 - Query transformation
 - Intervals for variables
 - Source selection
 - Individual patterns
 - Index traversal
 - Sets of buckets
 - Inductive joins
 - Required overlapping
 - Query processing

(Peter knows ?P) (?P lives Prague)

25

- Approaches
 - Swoogle
 - SWSE
 - Sindice

Swoogle

- http://swoogle.umbc.edu/
- Paper
 - Li Ding et al.: Swoogle: A Search and Metadata Engine for the Semantic Web
- Idea
 - Search engine for semantic documents
 - Data documents / ontologies and schemata
 - Provided functionality
 - Document metadata
 - Based on IR techniques

• SWSE

- Semantic Web Search Engine
- http://swse.deri.org/
- Paper
 - Andreas Harth et al.: SWSE: Answers Before Links
- Idea
 - Search engine for RDF quads (triples with context)
 - Provided functionality
 - Keyword matching
 - Concept filtering

Sindice

- http://sindice.com/
- Paper
 - Eyal Oren et al.: Sindice.com: A Document-oriented
 Lookup Index for Open Linked Data
- Idea
 - Search engine for semantic documents
 - Provided functionality
 - Keyword matching
 - Inverse functional properties

Common Observations

String compression

- Repeating string values
 - URI references and literals

Unique integer identifiers

- Efficient processing
- Space requirements

Translation maps

- Both directions
- Based on B-trees

Common Observations

Data pruning

- Idea
 - Query optimization
 - Relevant data
- Methods
 - Filtered selections
 - Ordering of joins
- Problem
 - We have only incomplete knowledge...

Open Problems

Data distribution

- Motivation
 - Datasets are distributed
- Problems
 - Network drawbacks
 - Independent datasets
 - Space requirements

Open Problems

Data scalability

- Motivation
 - Web of Data size explosion
 - September 2011:
 - 295 datasets, 31 billion triples, 504 million links
- Problems
 - All so far discussed issues...
 - ... and questions of quality, provenance or trust

Open Problems

Data dynamicity

- Motivation
 - Data often change through time
 - New triples are added, existing ones are modified, ...
- Problems
 - Management of updates
 - Dynamic structures

Conclusion

- Querying systems
 - Local / distributed approaches
 - Relational databases / native approaches
 - Common practices
 - Open problems