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Outline

* SPARQL 1.1
"= Query

— Negation
— Property paths

— Aggregates
= Update




SPARQL Query

* SPARQL 1.1 Query Language
— Query language for RDF graphs
" Proposed recommendation

— 8 November 2012
— http://www.w3.0org/TR/spargl11-query/

= Motivation
— Extension of SPARQL 1.0
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Negation

e EXISTS constraint

— ... when existence of solutions should be tested

= Syntax
— Pattern1 FILTER [NOT | EXISTS { Pattern2 }

= Notes

— Does not generate any additional bindings
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Negation

* MINUS graph pattern
- ... when compatible solutions should be removed
= Syntax
— Pattern1 MINUS { Pattern2 }

* |dea

— Solutions of the left-hand pattern are preserved if and
only if they are not compatible with any solution of the
right-hand pattern

— Corresponds to minus_4 operation

GXRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda



Assighnment 7.1

* Find other equivalent query statements for
the problem from Assighnment 6.7.

= |.e. select all courses that are not taught on
Mondays and nor on Fridays

= Assume only courses in winter semester 2011/12
= Return course references and codes
= Use NOT EXISTS and MINUS
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Assignment 6.7

e Statement with OPTIONAL and BOUND

= PREFIX 1: <http://i1s.cuni.cz/is#>
SELECT DISTINCT ?c ?code

FROM <http://i1s.cuni.cz/teaching/>
WHERE {

?C 1:.code ?code .
OPTIONAL {
?e 1:.course ?c ; 1:day ?day ;
1-term t:termlll12W .
FILTER ( (?day = "MON"™) || (?day = "FRI') )

+
FILTER ( ! bound(?e) )
+




Assignment 7.1

e Statement with NOT EXISTS

= PREFIX 1: <http://i1s.cuni.cz/is#>
SELECT DISTINCT ?c ?code

FROM <http://i1s.cuni.cz/teaching/>
WHERE {

?C 1.code 7?code .
FILTER NOT EXISTS {
?e 1:course ?c ; i1:day ?day ;
1-term t:termlll12W .
FILTER ( (?day = "MON"™) || (?day = "FRI') )

}
}



Assignment 7.1

e Statement with MINUS

» PREFIX 1: <http://is.cuni.cz/is#>
SELECT DISTINCT ?c ?code

FROM <http://i1s.cuni.cz/teaching/>
WHERE {

?C 1:.code ?code .
MINUS {
?e 1:course ?c ; i1:day ?day ;
1-term t:termlll12W .
FILTER ( (?day = "MON"™) || (?day = "FRI') )

}
}



Property Paths

* Motivation
= Describing routes between two nodes in a graph

— ... routes of arbitrary lengths

— ... and even routes satisfying more complex conditions

* Example
= All friends of student s:s4 and their friends

- PREFIX 1: <http://is.cuni.cz/is#>
SELECT DISCTINCT ?friend
FROM <http://i1s.cuni.cz/students/>

WHERE { s:s4 foaf:knows{1l,2} ?friend . }
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Property Paths

* Notes

HRG

= Lengths

— Path of length 1 is an ordinary triple

— Path of length 0 connects a graph node to itself
= Variables

— Variables cannot be used inside paths

* But they can be used at their ends
= Cycles

— Matching of cycles is possible

* But each cycle is considered at most once

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

11



Property Paths

* Syntax
= Edge

— Predicate

= Sequences
— Path1/Path2

= Alternatives
— Path1]Path2

= Groups
— (Path)



Property Paths

* Syntax

= Occurrences... particular number of edges is expected
— Path™
— Path+
— Path?
— Path{n,m}
— Path{n}
— Path{n,}
— Path{,m}




Property Paths

* Syntax

= Inverse... roles of subject and object are swapped
— ~Path

» Negation... any predicate except the specified ones
— YPredicate
— V(Predicatel| Predicate2]...)
— V(™Predicatel | ™Predicate2| ...)
— V(PredicateP1| PredicateP2]...| “PredicateR1 | PredicateR2]...)




Assignment 7.2

* Find all pre-requisites or co-requisites for a
course with code NPRG036

= Search these dependencies recursively
= Return course references and codes
= Order solutions using course codes
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Assignment 7.2

e Statement

= PREFIX 1: <http://is.cuni.cz/is#>
SELECT DISTINCT ?c 7?code

FROM <http://i1s.cuni.cz/teaching/>
WHERE {

?s 1:code "'NPRGO36" .

_prerequisity|i:corequisity)+ ?c .
?c i: code ?code .

A

}
- % 7code
e Solutions t:c3 "'NPRG0O30""
t:c5 “"NSWI1096"*



Aggregates

* Motivation
= Aggregation of groups of solutions

* Example
= Total capacity of all rooms in each building

— PREFIX 1: <http://is.cuni.cz/is#>
SELECT ?b (SUM(?c) AS ?capacity)
FROM <http://is.cuni.cz/faculty/>
WHERE { ?r 1:building ?b ; i1:capacity ?c . }

GROUP BY ?b



Aggregates

* Functions

= COUNT
= SUM, AVG, MIN, MAX

* Syntax
= SELECT ..
FROM ..
WHERE ..
GROUP BY ..
HAVING ..




Assignment 7.3

* Return average results for all students over
their enrolled courses

= Assume only courses in winter semester 2011/12
= |gnore enrollments with undefined results

= Describe students by their full names

= Assume only students with at least 10 courses
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Assignment 7.3

e Statement

= PREFIX 1: <http://i1s.cuni.cz/is#>
PREFIX t: <http://i1s.cuni.cz/teaching/>
SELECT ?first ?last (AVG(?r) AS ?average)
FROM <http://1s.cuni.cz/students/>
WHERE {
?s 1:name [ 1:first ?first ; i1:last ?last ] ;
i:enroll [ 1:course ?c ; i1:result ?r ;

i
1:term t:termlll2w ] .

ks
GROUP BY 7?s ?first ?last

HAVING (COUNT(?c) >= 10)




SPARQL Update

* SPARQL 1.1 Update Language

HRG

— Update language for RDF graphs

" Proposed recommendation
— 8 November 2012
— http://www.w3.org/TR/sparqll1l-update/

= Motivation

— Update, create and remove RDF graphs
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Terminology

* Graph Store

= Mutable container of RDF graphs
— One (unnamed) slot with a default graph

* Used when operations do not specify any particular graph

— Zero or more (named) slots for named graphs

* Functionality
= Updates — addition and removal of triples

= Management — creation and deletion of graphs...
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Terminology

» Updates

= Operation
— Action resulting from a single command

"= Request
— Sequence of requested operations




Updates

* INSERT DATA

MHRG

— Adds triples into a given graph

= Syntax
— INSERT DATA { Triples }
— INSERT DATA { GRAPH Graph { Triples } }

* Notes
— Variables are not allowed in provided triples
— Blank nodes are inserted as new distinct nodes
— Insertion of already existing triples has no effect
— Destination graph should be created if required
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Updates

° DELETE DATA

MHRG

— Removes triples from a given graph

= Syntax
— DELETE DATA { Triples }
—~ DELETE DATA { GRAPH Graph { Triples } }

= Notes
— Variables and blank nodes are not allowed
— Deletion of non-existing triples has no effect
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Updates

° DELETE / INSERT

HRG

— Removes and/or adds triples from/to a given graph

" |dea
— Selection
* Group graph pattern leading to the solution sequence

— Deletion
* Quad pattern of triples to be deleted

— Insertion

* Quad pattern of triples to be inserted
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Updates

° DELETE / INSERT

= Syntax
- WITH Graph
DELETE { QuadPattern }
INSERT { QuadPattern %}
USING Graph
USING NAMED Graph
WHERE GroupGraphPattern




Updates

°» DELETE / INSERT
= Explicit specification of graphs

— Matched graph
» ... those considered in WHERE
 Definitions of graphs via USING / USING NAMED
» They act exactly as standard FROM / FROM NAMED
* Then we can use standard GRAPH graph patterns
— Modified graphs
» ... those considered in DELETE and INSERT
* Quad patterns with specified GRAPH
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Updates

°» DELETE / INSERT
= Universal specification of graphs

— WITH
* Defines one single graph for WHERE, DELETE and INSERT
 WITH G
DELETE { .. } INSERT { .. }
WHERE { .. }

« DELETE { GRAPH 6 { .. } }
INSERT { GRAPH 6 { .. } }
USING G WHERE { .. }

* Explicit definitions locally override this universal one
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Updates

° DELETE / INSERT

MHRG

= Notes

— Deletion and insertion parts are optional

* However at least one of them must be provided
— Solution sequence is evaluated only once
— Deletion always happens before insertion
— lllegal triples (unbound or invalid) are ignored

* Not deleted or not inserted

— Special shortcut DELETE WHERE { .. }

 Removes all matched triples
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Assignment 7.4

o Add full names to all students

= Consider only students having both names
— |.e. those with specified 1 - Firstand 1: last

= Use CONCAT function




Assignment 7.4

» Statement
= PREFIX 1: <http://is.cuni.cz/is#>
WITH <http://is.cuni.cz/students/>
INSERT {
?s 1:fullName CONCAT(?first, " ", ?last) .

}
WHERE {

?s 1:name [ 1:first ?first ; i1:last ?last | .

}




Assignment 7.4

» Solutions
S:s2 "Martin® "*Svoboda'"
s:s4 "Tomas" "Knap"*
S:s6 "Jakub'* “"Klimek""
* |nsertions

= gs:s2 1:FfullName ""Martin Svoboda' .
s:s4 1:fullName "Tomas Knap' .
s:s6 1:fullName "Jakub Klimek" .



Updates

* LOAD

" |nserts triples from a document into a graph
= LOAD Document
= LOAD Document INTO GRAPH Graph

°* CLEAR

HRG

= Removes all triples in the specified graphs
= CLEAR GRAPH Graph
= CLEAR (DEFAULT | NAMED | ALL)
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Management

°* CREATE

= Creates a new empty graph
= CREATE GRAPH Document

* DROP

= Removes the specified graphs
= DROP GRAPH Graph
= DROP (DEFAULT | NAMED | ALL )




Management

* COPY

HRG

= Copies data from a source into a target graph
— First, all triples in the target graph are removed
— All triples from the source are inserted into the target

— The source graph is not affected
= COPY (GRAPH Graph | DEFAULT )

TO (GRAPH Graph | DEFAULT )
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Management

* MOVE

= Moves data from a source into a target graph
— First, all triples in the target graph are removed
— All triples from the source are inserted into the target

— Finally, the source graph is removed
= MOVE (GRAPH Graph | DEFAULT )

TO (GRAPH Graph | DEFAULT )
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Management

* ADD

HRG

= Copies data from a source into a target graph
— All initial triples in the source are kept
— All triples from the source are inserted into the target

— The source graph is not affected
= ADD ( GRAPH Graph | DEFAULT )

TO (GRAPH Graph | DEFAULT )

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

38



Conclusion

* SPARQL1.1

"= Query
— EXISTS constraint
— MINUS pattern
— Property paths
— Aggregates

= Update
— INSERT DATA, DELETE DATA, DELETE / INSERT
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