NSWI1144 — Linked Data — Lecture 7 — 26 November 2012

SPARQL

Martin Svoboda

Faculty of Mathematics and Physics (

Charles University in Prague ‘

4
research group

Outline

* SPARQL 1.1
"= Query

— Negation
— Property paths

— Aggregates
= Update

SPARQL Query

* SPARQL 1.1 Query Language
— Query language for RDF graphs
" Proposed recommendation

— 8 November 2012
— http://www.w3.0org/TR/spargl11-query/

= Motivation
— Extension of SPARQL 1.0

MRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

Negation

e EXISTS constraint

— ... when existence of solutions should be tested

= Syntax
— Pattern1 FILTER [NOT | EXISTS { Pattern2 }

= Notes

— Does not generate any additional bindings

MRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

Negation

* MINUS graph pattern
- ... when compatible solutions should be removed
= Syntax
— Pattern1 MINUS { Pattern2 }

* |dea

— Solutions of the left-hand pattern are preserved if and
only if they are not compatible with any solution of the
right-hand pattern

— Corresponds to minus_4 operation

GXRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

Assighnment 7.1

* Find other equivalent query statements for
the problem from Assighnment 6.7.

= |.e. select all courses that are not taught on
Mondays and nor on Fridays

= Assume only courses in winter semester 2011/12
= Return course references and codes
= Use NOT EXISTS and MINUS

GXRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

Assignment 6.7

e Statement with OPTIONAL and BOUND

= PREFIX 1: <http://i1s.cuni.cz/is#>
SELECT DISTINCT ?c ?code

FROM <http://i1s.cuni.cz/teaching/>
WHERE {

?C 1:.code ?code .
OPTIONAL {
?e 1:.course ?c ; 1:day ?day ;
1-term t:termlll12W .
FILTER ((?day = "MON"™) || (?day = "FRI'))

+
FILTER (! bound(?e))
+

Assignment 7.1

e Statement with NOT EXISTS

= PREFIX 1: <http://i1s.cuni.cz/is#>
SELECT DISTINCT ?c ?code

FROM <http://i1s.cuni.cz/teaching/>
WHERE {

?C 1.code 7?code .
FILTER NOT EXISTS {
?e 1:course ?c ; i1:day ?day ;
1-term t:termlll12W .
FILTER ((?day = "MON"™) || (?day = "FRI'))

}
}

Assignment 7.1

e Statement with MINUS

» PREFIX 1: <http://is.cuni.cz/is#>
SELECT DISTINCT ?c ?code

FROM <http://i1s.cuni.cz/teaching/>
WHERE {

?C 1:.code ?code .
MINUS {
?e 1:course ?c ; i1:day ?day ;
1-term t:termlll12W .
FILTER ((?day = "MON"™) || (?day = "FRI'))

}
}

Property Paths

* Motivation
= Describing routes between two nodes in a graph

— ... routes of arbitrary lengths

— ... and even routes satisfying more complex conditions

* Example
= All friends of student s:s4 and their friends

- PREFIX 1: <http://is.cuni.cz/is#>
SELECT DISCTINCT ?friend
FROM <http://i1s.cuni.cz/students/>

WHERE { s:s4 foaf:knows{1l,2} ?friend . }

MRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

10

Property Paths

* Notes

HRG

= Lengths

— Path of length 1 is an ordinary triple

— Path of length 0 connects a graph node to itself
= Variables

— Variables cannot be used inside paths

* But they can be used at their ends
= Cycles

— Matching of cycles is possible

* But each cycle is considered at most once

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

11

Property Paths

* Syntax
= Edge

— Predicate

= Sequences
— Path1/Path2

= Alternatives
— Path1]Path2

= Groups
— (Path)

Property Paths

* Syntax

= Occurrences... particular number of edges is expected
— Path™
— Path+
— Path?
— Path{n,m}
— Path{n}
— Path{n,}
— Path{,m}

Property Paths

* Syntax

= Inverse... roles of subject and object are swapped
— ~Path

» Negation... any predicate except the specified ones
— YPredicate
— V(Predicatel| Predicate2]...)
— V(™Predicatel | ™Predicate2| ...)
— V(PredicateP1| PredicateP2]...| “PredicateR1 | PredicateR2]...)

Assignment 7.2

* Find all pre-requisites or co-requisites for a
course with code NPRG036

= Search these dependencies recursively
= Return course references and codes
= Order solutions using course codes

MRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

15

Assignment 7.2

e Statement

= PREFIX 1: <http://is.cuni.cz/is#>
SELECT DISTINCT ?c 7?code

FROM <http://i1s.cuni.cz/teaching/>
WHERE {

?s 1:code "'NPRGO36" .

_prerequisity|i:corequisity)+ ?c .
?c i: code ?code .

A

}
- % 7code
e Solutions t:c3 "'NPRG0O30""
t:c5 “"NSWI1096"*

Aggregates

* Motivation
= Aggregation of groups of solutions

* Example
= Total capacity of all rooms in each building

— PREFIX 1: <http://is.cuni.cz/is#>
SELECT ?b (SUM(?c) AS ?capacity)
FROM <http://is.cuni.cz/faculty/>
WHERE { ?r 1:building ?b ; i1:capacity ?c . }

GROUP BY ?b

Aggregates

* Functions

= COUNT
= SUM, AVG, MIN, MAX

* Syntax
= SELECT ..
FROM ..
WHERE ..
GROUP BY ..
HAVING ..

Assignment 7.3

* Return average results for all students over
their enrolled courses

= Assume only courses in winter semester 2011/12
= |gnore enrollments with undefined results

= Describe students by their full names

= Assume only students with at least 10 courses

MRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

19

Assignment 7.3

e Statement

= PREFIX 1: <http://i1s.cuni.cz/is#>
PREFIX t: <http://i1s.cuni.cz/teaching/>
SELECT ?first ?last (AVG(?r) AS ?average)
FROM <http://1s.cuni.cz/students/>
WHERE {
?s 1:name [1:first ?first ; i1:last ?last] ;
i:enroll [1:course ?c ; i1:result ?r ;

i
1:term t:termlll2w] .

ks
GROUP BY 7?s ?first ?last

HAVING (COUNT(?c) >= 10)

SPARQL Update

* SPARQL 1.1 Update Language

HRG

— Update language for RDF graphs

" Proposed recommendation
— 8 November 2012
— http://www.w3.org/TR/sparqll1l-update/

= Motivation

— Update, create and remove RDF graphs

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

21

Terminology

* Graph Store

= Mutable container of RDF graphs
— One (unnamed) slot with a default graph

* Used when operations do not specify any particular graph

— Zero or more (named) slots for named graphs

* Functionality
= Updates — addition and removal of triples

= Management — creation and deletion of graphs...

GXRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

22

Terminology

» Updates

= Operation
— Action resulting from a single command

"= Request
— Sequence of requested operations

Updates

* INSERT DATA

MHRG

— Adds triples into a given graph

= Syntax
— INSERT DATA { Triples }
— INSERT DATA { GRAPH Graph { Triples } }

* Notes
— Variables are not allowed in provided triples
— Blank nodes are inserted as new distinct nodes
— Insertion of already existing triples has no effect
— Destination graph should be created if required

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

24

Updates

° DELETE DATA

MHRG

— Removes triples from a given graph

= Syntax
— DELETE DATA { Triples }
—~ DELETE DATA { GRAPH Graph { Triples } }

= Notes
— Variables and blank nodes are not allowed
— Deletion of non-existing triples has no effect

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

25

Updates

° DELETE / INSERT

HRG

— Removes and/or adds triples from/to a given graph

" |dea
— Selection
* Group graph pattern leading to the solution sequence

— Deletion
* Quad pattern of triples to be deleted

— Insertion

* Quad pattern of triples to be inserted

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

26

Updates

° DELETE / INSERT

= Syntax
- WITH Graph
DELETE { QuadPattern }
INSERT { QuadPattern %}
USING Graph
USING NAMED Graph
WHERE GroupGraphPattern

Updates

°» DELETE / INSERT
= Explicit specification of graphs

— Matched graph
» ... those considered in WHERE
 Definitions of graphs via USING / USING NAMED
» They act exactly as standard FROM / FROM NAMED
* Then we can use standard GRAPH graph patterns
— Modified graphs
» ... those considered in DELETE and INSERT
* Quad patterns with specified GRAPH

GXRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

28

Updates

°» DELETE / INSERT
= Universal specification of graphs

— WITH
* Defines one single graph for WHERE, DELETE and INSERT
 WITH G
DELETE { .. } INSERT { .. }
WHERE { .. }

« DELETE { GRAPH 6 { .. } }
INSERT { GRAPH 6 { .. } }
USING G WHERE { .. }

* Explicit definitions locally override this universal one

GXRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

29

Updates

° DELETE / INSERT

MHRG

= Notes

— Deletion and insertion parts are optional

* However at least one of them must be provided
— Solution sequence is evaluated only once
— Deletion always happens before insertion
— lllegal triples (unbound or invalid) are ignored

* Not deleted or not inserted

— Special shortcut DELETE WHERE { .. }

 Removes all matched triples

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

30

Assignment 7.4

o Add full names to all students

= Consider only students having both names
— |.e. those with specified 1 - Firstand 1: last

= Use CONCAT function

Assignment 7.4

» Statement
= PREFIX 1: <http://is.cuni.cz/is#>
WITH <http://is.cuni.cz/students/>
INSERT {
?s 1:fullName CONCAT(?first, " ", ?last) .

}
WHERE {

?s 1:name [1:first ?first ; i1:last ?last | .

}

Assignment 7.4

» Solutions
S:s2 "Martin® "*Svoboda'"
s:s4 "Tomas" "Knap"*
S:s6 "Jakub'* “"Klimek""
* |nsertions

= gs:s2 1:FfullName ""Martin Svoboda' .
s:s4 1:fullName "Tomas Knap' .
s:s6 1:fullName "Jakub Klimek" .

Updates

* LOAD

" |nserts triples from a document into a graph
= LOAD Document
= LOAD Document INTO GRAPH Graph

°* CLEAR

HRG

= Removes all triples in the specified graphs
= CLEAR GRAPH Graph
= CLEAR (DEFAULT | NAMED | ALL)

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

34

Management

°* CREATE

= Creates a new empty graph
= CREATE GRAPH Document

* DROP

= Removes the specified graphs
= DROP GRAPH Graph
= DROP (DEFAULT | NAMED | ALL)

Management

* COPY

HRG

= Copies data from a source into a target graph
— First, all triples in the target graph are removed
— All triples from the source are inserted into the target

— The source graph is not affected
= COPY (GRAPH Graph | DEFAULT)

TO (GRAPH Graph | DEFAULT)

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

36

Management

* MOVE

= Moves data from a source into a target graph
— First, all triples in the target graph are removed
— All triples from the source are inserted into the target

— Finally, the source graph is removed
= MOVE (GRAPH Graph | DEFAULT)

TO (GRAPH Graph | DEFAULT)

MRG NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

37

Management

* ADD

HRG

= Copies data from a source into a target graph
— All initial triples in the source are kept
— All triples from the source are inserted into the target

— The source graph is not affected
= ADD (GRAPH Graph | DEFAULT)

TO (GRAPH Graph | DEFAULT)

NSWI144 | Linked Data | Lecture7 | SPARQL | 26 November 2012 | Martin Svoboda

38

Conclusion

* SPARQL1.1

"= Query
— EXISTS constraint
— MINUS pattern
— Property paths
— Aggregates

= Update
— INSERT DATA, DELETE DATA, DELETE / INSERT

	SPARQL
	Outline
	SPARQL Query
	Negation
	Negation
	Assignment 7.1
	Assignment 6.7
	Assignment 7.1
	Assignment 7.1
	Property Paths
	Property Paths
	Property Paths
	Property Paths
	Property Paths
	Assignment 7.2
	Assignment 7.2
	Aggregates
	Aggregates
	Assignment 7.3
	Assignment 7.3
	SPARQL Update
	Terminology
	Terminology
	Updates
	Updates
	Updates
	Updates
	Updates
	Updates
	Updates
	Assignment 7.4
	Assignment 7.4
	Assignment 7.4
	Updates
	Management
	Management
	Management
	Management
	Conclusion

