NSWI1144 — Linked Data — Lecture 5 — 5 November 2012

SPARQL

Martin Svoboda

Faculty of Mathematics and Physics (

Charles University in Prague ‘

4
research group

Outline

e SPARQL
= |ntroduction

= Constructs
— Graph patterns
— Term constraints
— Solution modifiers

— Query forms

SPARQL

* SPARQL
= SPARQL = Query Language for RDF
= W3C

= Versions
— 1.0 — accepted standard (2008)

* Language, protocol and result serialization
* http://www.w3.org/TR/2008/REC-rdf-spargl-query-20080115/

— 1.1 — working draft (2012)

MRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

Introduction

e Data
» @prefix 1s: <http://is.cuni.cz/studium/is#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
1s:sl rdf:type i1s:Student ;
iIs:name "'Thomas' ; 1s:age ''26" .
1S:s2 rdf:type i1s:Student ;
Is:name "'Peter' .
1s:s3 rdf:type i1s:Student ;
Is:name "John" ; i1s:age ''30" .
i1s:sl1 foaf:knows 1s:s2 .
1s:s2 foaf:knows 1s:s3 .

Introduction

* Query
» PREFIX 1s: <http://is.cuni.cz/studium/is#>
SELECT ?n ?a
WHERE {
?s rdf:type i1s:Student ;
Is:name ?n ;

Is:age ?a .
¥
* Result _-
"Thomas"'*
"*John™ 30"

Querying ldea

* Graph patterns
= Based on ordinary triples

— Subject, predicate and object

— URI references, blank nodes, literals and variables
- ?name or $name

= We are attempting to find subgraphs of the data
graph that are matched by the query patterns
— This matching is based on substitution of variables
— However, SPARQL is not just a simple graph matching!

GXRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

Querying ldea

rdf:type S

Q:Student

rdf:type

foaf:knows

foaf:knows

Graph patterns
Triple pattern as a triple with variables
Basic graph pattern as a set of triple patterns
... and other more complex patterns

How the matching works?

Basic graph pattern matches a subgraph of the
RDF data graph when terms from that subgraph
may be substituted for the variables and the
result is RDF graph equivalent to the subgraph

G)(RG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

Matching

* Equivalency of literals
= Language tags

— Evaluated as different literals!
* "Praha™
« "Praha''@cs
* "Prague''@en

= Typed literals

— Shortcuts available for common typed literals...

« 1 = "1"Mxsd:iInteger
e« 1.5 = "1._5""xsd:decimal
« true = "true'"xsd:boolean

MRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

Matching

* Equivalency of blank nodes
= ...in a data graph

— Distinct nodes within the document scope

= ...In a query pattern

— Blank nodes act as non-selectable variables

* Blank node labels in the query cannot be expected to
correspond to blank nodes in the source data graph!

= ...inaquery result

— Distinct nodes within the result scope

* Blank node labels in the query result may not correspond to
blank nodes from the source graph and nor the query!

GXRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

10

Query Results

e Results

MHRG

= Variable binding

- (?n, "Thomas')

= Solution = set of variable bindings

— Represents one possible way of variables substitution

* Note that not all variables need to be bound!

— Corresponds to one row of the result table
-4 (?n, "Thomas"), (?a, '26") }

= Solution sequence = ordered multiset of solutions
-4 (?n, "Thomas"), (?a, '"26") },
{ (?n, ""John'"), (?a, "30") }

NSWI1144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

11

Query Structure

* Syntax
= PREFIX ..
SELECT ..
FROM ..
WHERE { .. }
ORDER BY .. LIMIT .. OFFSET ..

Prologue

°* PREFIX

= Definition of prefix labels for URIs

= Example
— PREFIX my: <http://www.my.cz/>
— ...then my:X correspondsto <http://www.my.cz/x>

* BASE

= Usage of relative URIs

= Example
- BASE <http://www.my.cz/>
— ...then <Xx> correspondsto <http://www.my.cz/x>

MRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

13

Graph Patterns

* WHERE

= Graph patterns
— Triple
— Basic
— Group
— Optional
— Alternative
— Named graphs

= Inductive construction
— Combining smaller patterns into more complex ones

Graph Patterns

* Basic graph pattern
- ... when a set of triple patterns must all match

= Syntax
— Ordinary triple patterns...

— ... and abbreviated forms inspired by Turtle
* Object lists using , and predicate-object lists using ;
 Blank nodes using [] and collections using ()

= Examples
-splol . splo2 . s p2 03 .
-s pl ol , 02 ; p2 03 .

MRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

15

Graph Patterns

* Basic graph pattern

= |nterpretation
— All involved triple patterns must match
— |.e. we combine them using conjunction

— Note that all variables need to be bound

Graph Patterns

* Group graph pattern

- ... when a set of graph patterns must all match

= Syntax
— { Patternl Pattern2 .. }

— Empty group patterns are also allowed

= |nterpretation
— All involved graph patterns must match
— |.e. we combine them using conjunction

MRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

17

Graph Patterns

* Optional graph pattern

HRG

- ... when additional patterns may extend the solution

= Syntax
— Pattern1 OPTIONAL { Pattern2 }

= |nterpretation

— If the optional part does not match, it creates no
bindings but does not eliminate the solution

NSWI1144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

18

Graph Patterns

* Optional graph pattern

= Example
- PREFIX 1s: <http://is.cuni.cz/studium/is#>
SELECT ?n ?a
WHERE {
?s rdf:type i1s:Student ; i1s:name ?n .
OPTIONAL { ?s 1s:age ?a . }

ks
"Thomas"" ""26""
"Peter"
IIJOhnIl ll30ll

Graph Patterns

* Optional graph pattern

= Left-associativity
- { OPTIONAL { P1 } }
{ { } OPTIONAL { P1 } }
- P1 OPTIONAL { P2 } OPTIONAL { P3 }
{ P1 OPTIONAL { P2 } } OPTIONAL { P3 }

Graph Patterns

* Alternative graph pattern

HRG

- ... when two or more possible patterns are tried

= Syntax
— { Patternl } UNION { Pattern2 }

= |nterpretation

— Traditional union of sets of solutions

NSWI1144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

21

Graph Patterns

* Named graphs

HRG

= Motivation

— Dataset = collection of...

* ...one default graph

* ...and zero or more named graphs

* Each of these graphs is indentified by a URI
— Active graph = graph used for evaluation

* We can switch the default graph to another named graph

= Syntax
- FROM <http://...>
~ FROM NAMED <http://...>

NSWI1144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

22

Graph Patterns

* Named graphs
= Default graph

— If there are more FROM definitions...

* We use merge of all these graphs
— If these is no FROM definition...
* We use an empty graph
= Usage
— GRAPH <http://...> { .. }

* Sets the specified named graph as the active one
-~ GRAPH ?g { .. }

e Ranges over all named graphs defined in the dataset

MRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

23

Term Constraints

e FILTER
= Motivation

— Impose constraints on variables and their values

— Cause filtering of solutions when not satisfied

= Example
- FILTER (?age < 20)

= Usage
— Expressions with operators and functions
— Filters are applied on entire group graph patterns

MRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda 24

Term Constraints

* Functions

= Arithmetic operators
— Unary + —
— Binary+ — * /
*= Term accessors
— STR — lexical form of URI or literal

— LANG - language tag of a literal
— DATATYPE — type of a literal

Term Constraints

* Predicates

. Comparison operators
Lo L
* Unbound variable < blank node < URI < literal

= Variable tests

— BOUND — whether a variable is assigned a value
— 1SURI, 1SBLANK, 1sLITERAL

Term Constraints

e Connectives
= Logical connectives
-1 && ||
* Semantics

= 3 value logic
— True, false, error

Solution Modifiers

* Query structure

« PREFIX ..
SELECT DISTINCT | REDUCED ..
FROM ..

WHERE { .. }

ORDER BY .. LIMIT .. OFFSET ..

e Motivation

= Modify the entire sequence of solutions
— Only allowed in SELECT queries

MRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

28

Solution Modifiers

* DISTINCT
= Removes duplicates from the solution sequence

* REDUCED

= Permits elimination of some non-unique solutions

Solution Modifiers

* ORDER BY

HRG

= Motivation
— Orders solutions in the solutions sequence
— This ordering can be hierarchical

= Behavior
— ASC = ascending (default), DESC = descending
— Unbound variable < blank node < URI < literal

= Example
— ORDER BY ?name, DESC(?age)

NSWI1144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

30

Solution Modifiers

° LIMIT

= Limits the number of solutions in the result
— (Always) should be preceded by ORDER BY modifier
— Otherwise the order of solutions is not defined

= Example
- ORDER BY ?name LIMIT 10

* OFFSET

" Index of the first reported item from the sequence

= Example
- ORDER BY ?name LIMIT 10 OFFSET 20

MRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda 31

Query Forms

* Query structure

= PREFIX ..
SELECT | DESCRIBE | ASK | CONSTRUCT ..
FROM ..
WHERE { .. }

ORDER BY .. LIMIT .. OFFSET ..

Query Forms

o SELECT
— SPARQL querying considered so far...

= Result

— Solutions sequence as an ordered multiset of solutions
= Syntax

— SELECT variables ...

* Variables are separated by spaces

* Asterisk * selects all variables

Query Forms

* ASK

— Checks whether at least one solution exists

= Result
—true or false

Query Forms

* DESCRIBE

HRG

= Result
— RDF graph with data about resources
— Non-deterministic behavior
= Examples
— DESCRIBE <http://www.my.cz/>
— DESCRIBE 7s

FROM <http://i1s.cuni.cz/studium>
WHERE { ?s rdf:type i1s:Student .

NSWI1144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

}

35

Query Forms

* CONSTRUCT

— Construction of new graphs from solutions

= Result
— RDF graph constructed from a template
— lllegal triples (unbound or invalid) are thrown away

= Example
— CONSTRUCT
{ ?s 1s:name concat(?nl, " ", ?n2) . }
FROM <http://i1s.cuni.cz/studium>
WHERE

{ ?s 1s:firstName ?nl ; i1s:lastName ?n2 .

MRG NSWI144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

36

Conclusion

* SPARQL

MHRG

= Model
— Matching subgraphs and substitution of variables
— Result as an ordered multiset of solutions
— Solution as a set of variable bindings
= Syntax
- PREFIX ..
SELECT ..
FROM ..

WHERE { .. }
ORDER BY .. LIMIT .. OFFSET ..

NSWI1144 | Linked Data | Lecture5 | SPARQL | 5 November 2012 | Martin Svoboda

37

	SPARQL
	Outline
	SPARQL
	Introduction
	Introduction
	Querying Idea
	Querying Idea
	Matching
	Matching
	Matching
	Query Results
	Query Structure
	Prologue
	Graph Patterns
	Graph Patterns
	Graph Patterns
	Graph Patterns
	Graph Patterns
	Graph Patterns
	Graph Patterns
	Graph Patterns
	Graph Patterns
	Graph Patterns
	Term Constraints
	Term Constraints
	Term Constraints
	Term Constraints
	Solution Modifiers
	Solution Modifiers
	Solution Modifiers
	Solution Modifiers
	Query Forms
	Query Forms
	Query Forms
	Query Forms
	Query Forms
	Conclusion

