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SPARQL

* SPARQL
= SPARQL = Query Language for RDF
= W3C

= Versions
— 1.0 — accepted standard (2008)

* Language, protocol and result serialization
* http://www.w3.org/TR/2008/REC-rdf-spargl-query-20080115/

— 1.1 — working draft (2012)
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Introduction

e Data
» @prefix 1s: <http://is.cuni.cz/studium/is#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
1s:sl rdf:type i1s:Student ;
iIs:name "'Thomas' ; 1s:age ''26" .
1S:s2 rdf:type i1s:Student ;
Is:name "'Peter' .
1s:s3 rdf:type i1s:Student ;
Is:name "John" ; i1s:age ''30" .
i1s:sl1 foaf:knows 1s:s2 .
1s:s2 foaf:knows 1s:s3 .



Introduction

* Query
» PREFIX 1s: <http://is.cuni.cz/studium/is#>
SELECT ?n ?a
WHERE {
?s rdf:type i1s:Student ;
Is:name ?n ;

Is:age ?a .
¥
* Result _-
"Thomas"'*
"*John™ 30"



Querying ldea

* Graph patterns
= Based on ordinary triples

— Subject, predicate and object

— URI references, blank nodes, literals and variables
- ?name or $name

= We are attempting to find subgraphs of the data
graph that are matched by the query patterns
— This matching is based on substitution of variables
— However, SPARQL is not just a simple graph matching!
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Querying ldea

rdf:type S

Q:Student

rdf:type

foaf:knows

foaf:knows




Graph patterns
Triple pattern as a triple with variables
Basic graph pattern as a set of triple patterns
... and other more complex patterns

How the matching works?

Basic graph pattern matches a subgraph of the
RDF data graph when terms from that subgraph
may be substituted for the variables and the
result is RDF graph equivalent to the subgraph
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Matching

* Equivalency of literals
= Language tags

— Evaluated as different literals!
* "Praha™
« "Praha''@cs
* "Prague''@en

= Typed literals

— Shortcuts available for common typed literals...

« 1 = "1"Mxsd:iInteger
e« 1.5 = "1._5""xsd:decimal
« true = "true'"xsd:boolean
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Matching

* Equivalency of blank nodes
= ...in a data graph

— Distinct nodes within the document scope

= ...In a query pattern

— Blank nodes act as non-selectable variables

* Blank node labels in the query cannot be expected to
correspond to blank nodes in the source data graph!

= ...inaquery result

— Distinct nodes within the result scope

* Blank node labels in the query result may not correspond to
blank nodes from the source graph and nor the query!
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Query Results

e Results

MHRG

= Variable binding

- (?n, "Thomas')

= Solution = set of variable bindings

— Represents one possible way of variables substitution

* Note that not all variables need to be bound!

— Corresponds to one row of the result table
-4 (?n, "Thomas"), (?a, '26") }

= Solution sequence = ordered multiset of solutions
-4 (?n, "Thomas"), (?a, '"26") },
{ (?n, ""John'"), (?a, "30") }
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Query Structure

* Syntax
= PREFIX ..
SELECT ..
FROM ..
WHERE { .. }
ORDER BY .. LIMIT .. OFFSET ..




Prologue

°* PREFIX

= Definition of prefix labels for URIs

= Example
— PREFIX my: <http://www.my.cz/>
— ...then my:X correspondsto <http://www.my.cz/x>

* BASE

= Usage of relative URIs

= Example
- BASE <http://www.my.cz/>
— ...then <Xx> correspondsto <http://www.my.cz/x>
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Graph Patterns

* WHERE

= Graph patterns
— Triple
— Basic
— Group
— Optional
— Alternative
— Named graphs

= Inductive construction
— Combining smaller patterns into more complex ones



Graph Patterns

* Basic graph pattern
- ... when a set of triple patterns must all match

= Syntax
— Ordinary triple patterns...

— ... and abbreviated forms inspired by Turtle
* Object lists using , and predicate-object lists using ;
 Blank nodes using [ ] and collections using ()

= Examples
-splol . splo2 . s p2 03 .
-s pl ol , 02 ; p2 03 .
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Graph Patterns

* Basic graph pattern

= |nterpretation
— All involved triple patterns must match
— |.e. we combine them using conjunction

— Note that all variables need to be bound




Graph Patterns

* Group graph pattern

- ... when a set of graph patterns must all match

= Syntax
— { Patternl Pattern2 .. }

— Empty group patterns are also allowed

= |nterpretation
— All involved graph patterns must match
— |.e. we combine them using conjunction
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Graph Patterns

* Optional graph pattern

HRG

- ... when additional patterns may extend the solution

= Syntax
— Pattern1 OPTIONAL { Pattern2 }

= |nterpretation

— If the optional part does not match, it creates no
bindings but does not eliminate the solution
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Graph Patterns

* Optional graph pattern

= Example
- PREFIX 1s: <http://is.cuni.cz/studium/is#>
SELECT ?n ?a
WHERE {
?s rdf:type i1s:Student ; i1s:name ?n .
OPTIONAL { ?s 1s:age ?a . }

ks
"Thomas"" ""26""
"Peter"
IIJOhnIl ll30ll



Graph Patterns

* Optional graph pattern

= Left-associativity
- { OPTIONAL { P1 } }
{ { } OPTIONAL { P1 } }
- P1 OPTIONAL { P2 } OPTIONAL { P3 }
{ P1 OPTIONAL { P2 } } OPTIONAL { P3 }




Graph Patterns

* Alternative graph pattern

HRG

- ... when two or more possible patterns are tried

= Syntax
— { Patternl } UNION { Pattern2 }

= |nterpretation

— Traditional union of sets of solutions
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Graph Patterns

* Named graphs

HRG

= Motivation

— Dataset = collection of...

* ...one default graph

* ...and zero or more named graphs

* Each of these graphs is indentified by a URI
— Active graph = graph used for evaluation

* We can switch the default graph to another named graph

= Syntax
- FROM <http://...>
~ FROM NAMED <http://...>
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Graph Patterns

* Named graphs
= Default graph

— If there are more FROM definitions...

* We use merge of all these graphs
— If these is no FROM definition...
* We use an empty graph
= Usage
— GRAPH <http://...> { .. }

* Sets the specified named graph as the active one
-~ GRAPH ?g { .. }

e Ranges over all named graphs defined in the dataset
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Term Constraints

e FILTER
= Motivation

— Impose constraints on variables and their values

— Cause filtering of solutions when not satisfied

= Example
- FILTER (?age < 20)

= Usage
— Expressions with operators and functions
— Filters are applied on entire group graph patterns
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Term Constraints

* Functions

= Arithmetic operators
— Unary + —
— Binary+ — * /
*= Term accessors
— STR — lexical form of URI or literal

— LANG - language tag of a literal
— DATATYPE — type of a literal



Term Constraints

* Predicates

. Comparison operators
Lo L
* Unbound variable < blank node < URI < literal

= Variable tests

— BOUND — whether a variable is assigned a value
— 1SURI, 1SBLANK, 1sLITERAL




Term Constraints

e Connectives
= Logical connectives
-1 && ||
* Semantics

= 3 value logic
— True, false, error




Solution Modifiers

* Query structure

« PREFIX ..
SELECT DISTINCT | REDUCED ..
FROM ..

WHERE { .. }

ORDER BY .. LIMIT .. OFFSET ..

e Motivation

= Modify the entire sequence of solutions
— Only allowed in SELECT queries
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Solution Modifiers

* DISTINCT
= Removes duplicates from the solution sequence

* REDUCED

= Permits elimination of some non-unique solutions




Solution Modifiers

* ORDER BY

HRG

= Motivation
— Orders solutions in the solutions sequence
— This ordering can be hierarchical

= Behavior
— ASC = ascending (default), DESC = descending
— Unbound variable < blank node < URI < literal

= Example
— ORDER BY ?name, DESC(?age)
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Solution Modifiers

° LIMIT

= Limits the number of solutions in the result
— (Always) should be preceded by ORDER BY modifier
— Otherwise the order of solutions is not defined

= Example
- ORDER BY ?name LIMIT 10

* OFFSET

" Index of the first reported item from the sequence

= Example
- ORDER BY ?name LIMIT 10 OFFSET 20
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Query Forms

* Query structure

= PREFIX ..
SELECT | DESCRIBE | ASK | CONSTRUCT ..
FROM ..
WHERE { .. }

ORDER BY .. LIMIT .. OFFSET ..




Query Forms

o SELECT
— SPARQL querying considered so far...

= Result

— Solutions sequence as an ordered multiset of solutions
= Syntax

— SELECT variables ...

* Variables are separated by spaces

* Asterisk * selects all variables




Query Forms

* ASK

— Checks whether at least one solution exists

= Result
—true or false




Query Forms

* DESCRIBE

HRG

= Result
— RDF graph with data about resources
— Non-deterministic behavior
= Examples
— DESCRIBE <http://www.my.cz/>
— DESCRIBE 7s

FROM <http://i1s.cuni.cz/studium>
WHERE { ?s rdf:type i1s:Student .
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Query Forms

* CONSTRUCT

— Construction of new graphs from solutions

= Result
— RDF graph constructed from a template
— lllegal triples (unbound or invalid) are thrown away

= Example
— CONSTRUCT
{ ?s 1s:name concat(?nl, " ", ?n2) . }
FROM <http://i1s.cuni.cz/studium>
WHERE

{ ?s 1s:firstName ?nl ; i1s:lastName ?n2 .
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Conclusion

* SPARQL

MHRG

= Model
— Matching subgraphs and substitution of variables
— Result as an ordered multiset of solutions
— Solution as a set of variable bindings
= Syntax
- PREFIX ..
SELECT ..
FROM ..

WHERE { .. }
ORDER BY .. LIMIT .. OFFSET ..
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