NSWI144 – Linked Data – Lecture 3 – 22 October 2012

RDFS, OWL

Martin Svoboda

Faculty of Mathematics and Physics Charles University in Prague

Outline

- Schema languages
 - RDFS
 - OWL
- Vocabularies
 - FOAF, DC, SKOS

Motivation

Vocabulary = set of terms + usage descriptions

- I.e. what resources we want to use in statements...

... and how exactly we want to use them

- Questions
 - Model

- What descriptions should we provide?

Language

- How should we express these descriptions?

Descriptions

In theory

- Intended real-world meaning of terms
 - E.g. classes are used to represent types of resources

Intended positions of terms in triples

• E.g. properties are usually expected to act as predicates

… in practice

– RDFS, OWL

Schema languages

- RDFS classes and properties
- OWL much more expressive descriptions

Vocabularies

- RDF, RDFS, OWL
 - RDFS and OWL schema languages are based on RDF, therefore we can view them as ordinary vocabularies
 - Analogy: XML Schema language for XML documents
- DC, FOAF, ...

- Schemata in general
 - Relational databases
 - Tables, integrity constraints, ...
 - XML documents
 - DTD, XML Schema, Relax NG, ...
 - RDF
 - RDFS, OWL, ...
 - Different interpretation:
 - They can also provide **knowledge for new data inference** rather than standard restrictions on data only!

RDF Schema

RDFS

RDF Vocabulary Description Language

RDFS schemata are expressed as RDF graphs

• W3C

– http://www.w3.org/TR/rdf-schema/

- Constructs
 - Definition of classes and properties
 - Domains and ranges of properties

Motivation

- Determine type of things we want to describe
 - Do not confuse types and data types for literals
- Resources belonging to a class are its instances
- Class vs. class extension (set of its instances)
- Terms
 - Classes rdfs:Resource, rdfs:Class
 - Properties rdf:type, rdfs:subClassOf

Type assignment

- Property rdf:Type
- InstanceRef rdf:type ClassName .
 - Resource can be associated with multiple types
 - *ClassName* is usually an explicitly defined class

Class definition

- Class rdfs:Class
- ClassName rdf:type rdfs:Class .
 - Class names are written with an initial uppercase letter

Class hierarchy

- Class rdfs:Resource
 - Class for all resources = things we want to talk about
 - Therefore, any resource is an instance of rdfs:Resource

Class relations

- Property rdfs:subClassOf
- SubClass rdfs:subClassOf BaseClass .
 - Any SubClass instance is also an instance of BaseClass
 - This property is transitive

- Motivation
 - Description of terms to be used as predicates
- Terms
 - Class rdfs:Property
 - Property rdfs:subPropertyOf
 - Properties rdfs:range, rdfs:domain

Property definition

- Class rdfs:Property
- propertyName rdf:type rdfs:Property .
 - Properties are written with an initial lowercase letter

Property relations

- Property rdfs:subPropertyOf
- subProperty rdfs:subPropertyOf baseProperty .
 - All items related by subProperty are also related by baseProperty
 - This property is transitive

Property ranges

- Property rdfs:range
- propertyName rdfs:range ClassName .
 - Values of property propertyName are instances of class
 ClassName
 - There can be multiple different classes

- Property domains
 - Property rdfs:domain
 - Definition
 - propertyName rdfs:domain ClassName .
 - Meaning
 - Any resource that has property propertyName is an instance of class ClassName
 - There can be multiple different classes

- Different idea
 - The RDFS class and property system is similar to object-oriented programming languages
 - However:
 - Instead of defining a class in terms of the properties its instances may have, we describe properties in terms of the classes of resource to which they apply
 - I.e. types of objects in case of property ranges and types of subjects in case of property domains

Definition of classes

- OOP
 - Class is a collection of explicitly specified attributes
 - Attributes of different classes are different attributes
 - Despite they may have the same name
 - -class ClassName { ... }
- RDFS
 - Properties are not directly bound to classes
 - We may only associate them using domains and ranges
 - ClassName rdfs:type rdfs:Class .

- Scope of properties
 - OOP
 - Attributes are directly associated with classes
 - -class ClassName { ... type AttributeName; ... }
 - RDFS
 - Global scope of property descriptions
 - One property may be used across different classes
 - We also cannot define locally-different property ranges depending on types of objects
 - PropertyName rdf:type rdfs:Property.

Structure of instances

- OOP
 - Instances must have exactly the required structure
 - All defined attributes and also of the given types
 - No additional unknown attributes are allowed
 - ClassName Instance = new ClassName();
- RDFS
 - Schema descriptions are not necessarily prescriptive
 - Instance rdf:type ClassName .

Conclusion using an example

- OOP
 - Class Book with an attribute author of type Person
- RDFS
 - Property author with domain Book and range Person
- And there are also other tricky aspects...
 - Class can be an instance of itself
 - ClassName rdf:type ClassName .

RDFS Vocabulary

- Other schema information
 - Property rdfs:comment
 - Human-readable description of a resource
 - Property rdfs:label
 - Human-readable version of a resource's name
 - Property rdfs:seeAlso
 - Resource that might provide additional information about the subject resource

Schema Interpretation

- Different strategies
 - Prescription of constraints
 - We require that data follow schema descriptions
 - E.g. that instances of a given class have defined all properties introduced by descriptions of their domains
 - This conformance can be tested and errors reported
 - Inference of information
 - We use descriptions and data to infer new data
 - E.g. if we know that a given property has range *C*, we can infer that a particular value of this property is an instance of class *C*

Assignment 3.1

- Extend the RDF graph from Assignment 2.1 by an appropriate RDFS schema...
 - Use all introduced constructs
 - Classes and properties, type assignments, class and property relations, ranges and domains, ...

OWL

Web Ontology Language

Specifications

- http://www.w3.org/TR/2009/ REC-owl2-overview-20091027/
- http://www.w3.org/TR/2009/ REC-owl2-primer-20091027/
- http://www.w3.org/TR/2009/ REC-owl2-quick-reference-20091027/

- ...

- Ontologies
 - Classes, properties and individuals
 - Class restrictions, property cardinalities

- ..

OWL

Ontology

- Ontology is a set of precise descriptive statements about some part of the world...
 - This part is usually referred as the domain of interest
 - Descriptions...
 - ... prevent misunderstandings in human communication
 - ... ensure uniform and predictable software behavior
 - ... are presented in a formal way with precise semantics
- Ontology is nothing else then a vocabulary
 - But we have more mechanisms for data inference

Class model

- Analogy to RDFS
 - Individuals = instances of a class
- Terms
 - Classes owl:Class, owl:Thing, owl:Nothing
 - Properties owl:equivalentClass, owl:intersectionOf, owl:unionOf, owl:ComplementOf, owl:oneOf
- Class hierarchy
 - Class owl: Thing class of everything
 - Class owl:Nothing empty class

Class constructors

- ... how can we define new classes?

Definition

- ClassName rdf:type owl:Class .

Hierarchy

- Property rdfs:subClassOf
- OneClass rdfs:subClassOf AnotherClass .

Equivalency

- Property owl:equivalentClass
- OneClass owl:equivalentClass AnotherClass .

- Class constructors
 - Intersection using property owl:intersectionOf
 - Class of individuals which are instances of both classes
 - MyClass owl:equivalentClass [

```
rdf:type owl:Class ;
owl:intersectionOf (C1 C2 ...)
.
```

- Union using property owl:unionOf
- Complement using property owl:ComplementOf
- Enumeration using property owl:oneOf

Object property restrictions

- Class owl:Restriction
- Universal using property owl:allValuesFrom
 - MyRestriction rdf:type owl:Restriction .
 MyRestriction owl:onProperty PropertyName .
 MyRestriction owl:allValuesFrom ClassName .
- Existential using property owl:someValuesFrom
- Individual value using property owl:hasValue
- Cardinalities using owl:cardinality, owl:minCardinality, owl:maxCardinality, owl:qualifiedCardinality, ...

... and using owl:onClass in case of qualified forms

- Property types
 - Object property
 - Relates individuals of two classes
 - Class owl:ObjectProperty
 - Datatype property
 - Relates individuals of classes to literal values
 - Class owl:DatatypeProperty

- Property constructors
 - ... how can we define new properties?
 - Definition
 - Hierarchy
 - Property rdfs:subPropertyOf
 - Equivalency
 - Property owl:equivalentProperty
 - OneProp owl:equivalentProperty AnotherProp .

- Property constructors
 - Class owl:ReflexiveProperty
 - Class owl:SymmetricProperty
 - Class owl:AsymmetricProperty
 - Class owl:TransitiveProperty
 - Class owl:FunctionalProperty
 - Class owl:InverseFunctionalProperty

Individuals

- Comparison of individuals
 - Equality of individuals
 - Property owl:sameAs
 - Individual1 owl:sameAs Individual2 .
 - Inequality of individuals
 - Property owl:differentFrom for two individuals
 - Individual1 owl:differentFrom Individual2 .

OWL

Semantics

- There are two (nearly the same) approaches
 - Model-theoretic direct semantics in Description Logic
 - OWL 2 DL
 - RDF-based ontologies are viewed as RDF graphs
 - OWL 2 Full
- However, OWL 2 is a very expressive language!
 - ... computationally it is difficult to implement it
 - ... and for users it is difficult to work with it
 - Therefore it is useful to introduced easier profiles...

- Well-known vocabularies
 - FOAF = Friend of a friend
 - DC = Dublin Core
 - SKOS = Simple Knowledge Organization System

• FOAF

- FOAF = Friend of a friend
- Linking people and information using the Web
- Specification
 - http://xmlns.com/foaf/spec/
- Vocabulary
 - Prefix foaf:
 - Classes Agent, Person, Group, Project, ...
 - Properties name, knows, member, homepage, ...

Dublin Core

- Metadata for generic description of resources
- Specification
 - http://dublincore.org/documents/
- Vocabulary

...

- Prefixes Dublin Core Terms dct:, ...
- Properties creator, created, abstract, description, subject, valid, references, replaces, hasVersion, ...

SKOS

- SKOS = Simple Knowledge Organization System
- Sharing and linking knowledge systems
 - Thesauri, taxonomies, classification schemes, ...
- Specification
 - http://www.w3.org/TR/2009/REC-skos-reference-20090818/

Conclusion

• RDFS

- Classes rdfs:Resource, rdfs:Class, rdfs:Property
- Properties rdfs:subClassOf, rdfs:subPropertyOf
- Properties rdfs:range, rdfs:domain
- Properties rdfs:comment, rdfs:label, rdfs:seeAlso

Conclusion

• OWL

- Classes
 - Classes owl:Thing, owl:Nothing, owl:Class
 - Properties owl:equivalentClass, owl:intersectionOf, owl:unionOf, owl:ComplementOf, owl:oneOf
 - Properties owl:allValuesFrom, owl:someValuesFrom, owl:hasValue, owl:cardinality, owl:minCardinality, owl:maxCardinality, owl:qualifiedCardinality, ...
 - Properties owl:onProperty, owl:onClass

Conclusion

• OWL

- Properties
 - Classes owl:ObjectProperty, owl:DatatypeProperty
 - Property owl:equivalentProperty
 - Classes owl:ReflexiveProperty, owl:SymmetricProperty, owl:AsymmetricProperty, owl:TransitiveProperty, owl:FunctionalProperty, owl:InverseFunctionalProperty
- Individuals
 - Properties owl:sameAs, owl:differentFrom