NSWI144 – Linked Data – Lecture 7 – 29th November 2011

Querying and Indexing

Martin Svoboda

Faculty of Mathematics and Physics Charles University in Prague

Querying Systems

- Issues
 - Physical storage
 - Index structures
 - Query processor
- Problems
 - Data scalability, distribution and dynamicity

Querying Systems

- Architecture
 - Local
 - Efficient processing
 - Independent data
 - Storage requirements
 - Distributed
 - Runtime requests
 - Up-to-date data
 - Network throughput

Querying Systems

- Approach categories
 - Querying systems
 - Local or distributed data
 - Structural queries
 - Complete results
 - Searching engines
 - Global data cloud
 - Full text queries
 - Imprecise results

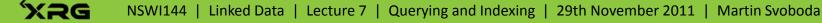
Storage Solutions

- Storages for RDF triples
 - Relational databases
 - Decades of research
 - Implemented systems
 - Native approaches
 - Novel approaches
 - Appropriate logical model

- Triple table
 - Schema
 - Table(Subject, Predicate, Object)

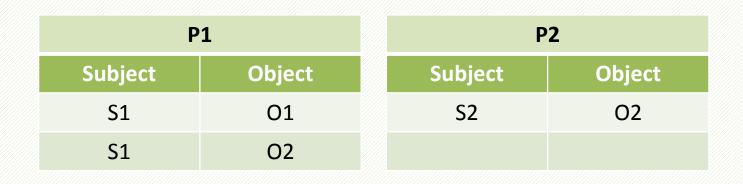
Subject	Predicate	Object
S1	P1	01
S1	P1	02
S2	P2	02

Indices


Standard relational indices over selected columns

- Triple table
 - Advantages
 - Without NULL values
 - Multi-value properties
 - Symmetric access patterns
 - Disadvantages
 - Less selective queries
 - Problematic self joins

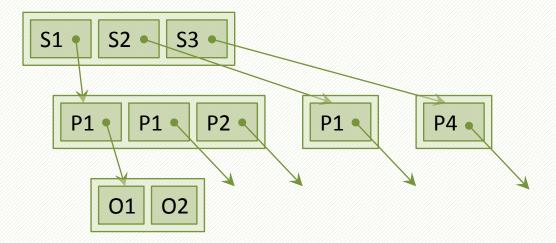
- Property tables
 - Idea
 - Combining all/some properties for a given subject
 - Disjoint or potentially overlapping sets of properties
 - Schema
 - Table₁(Subject, P₁, P₂, ...)


- ...

Subject	P1	P2
S1	01	NULL
S2	NULL	02

- Property tables
 - Advantages
 - Fewer join operations
 - Follows relational model
 - Disadvantages
 - Clustering is not trivial
 - Multi-value properties
 - Potentially very sparse
 - Asymmetric access patterns

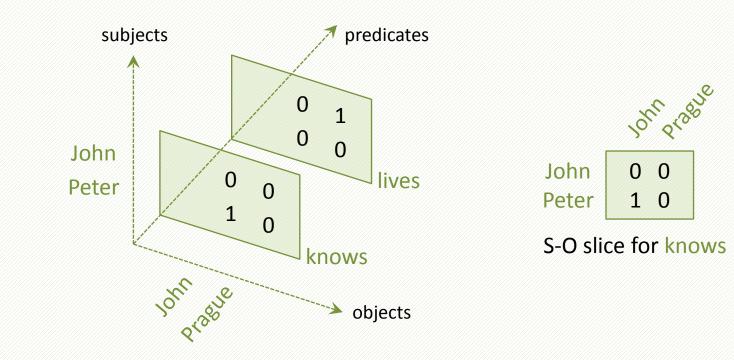
- Binary tables (vertical partitioning)
 - Idea
 - Separate table for each predicate
 - Schema
 - P₁(Subject, Object)


- Binary tables
 - Advantages
 - Multi-value properties
 - Efficient column storages
 - Disadvantages
 - Unbound query predicates
 - Large number of tables
 - Asymmetric access patterns

Sextuple Indexing

- Paper
 - Cathrin Weiss et al.: Hexastore: Sextuple Indexing for Semantic Web Data Management
- Index
 - Local database of RDF triples
 - Based on ordered nested lists
 - Supports all access patterns

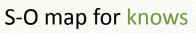
Sextuple Indexing


- Index model
 - SPO, SOP, OSP, OPS, PSO, POS nested lists
 - Duplicated lists are shared
 - For example: P lists for corresponding SO and OS

- Paper
 - Medha Atre et al.: Matrix "Bit"loaded: A Scalable Lightweight Join Query Processor for RDF Data
- Problem
 - Local database with RDF triples
 - Conjunctive SPARQL queries

- Queries
 - Conjunctive queries
 - A few patterns with joining variables
 - Query selectivity
 - Low selectivity of both patterns and joining
- Objectives
 - Low memory requirements
 - Without intermediate result materialization

Index model

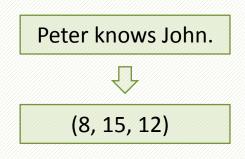

Index model

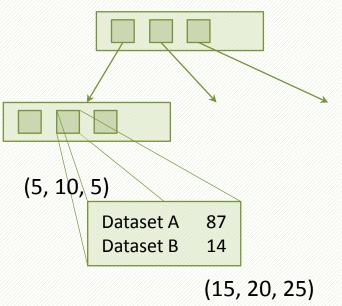
- Terms
 - Active domains of all subjects, predicates and objects
 - Assignment of unique integer identifiers
- Index
 - 3-dimensional matrix with bit values 0 or 1
 - Dimensions for subjects, predicates and objects
- Slices
 - SO and OS for each predicate
 - PO for each subject and PS for each object

- Index implementation
 - Ordinary file
 - Compression
 - Slices are stored per individual rows
 - Rows are compressed using bit runs
 - Query evaluation
 - All operations over compressed bit runs

- Query processing
 - Initialization
 - Loading required index components
 - Optimizations
 - Pruning loaded index components
 - Joining
 - Stream joining of individual patterns
 - Based on nested loops algorithm
 - Idea from relational databases
 - Starting with the most selective pattern

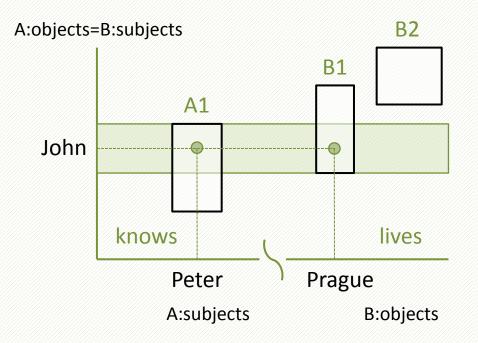
(Peter knows ?P) (?P lives Prague)


Peter


John Prasue

- Paper
 - Andreas Harth et al.: Data Summaries for On-Demand Queries over Linked Data
- Problem
 - High number of distributed datasets
 - Conjunctive SPARQL queries
 - Source selection algorithm

- Index model
 - Numeric space
 - 3-dimensional numeric space
 - Transforming triples to points
 - Based on hash functions



- Q-tree
 - Based on R-trees and histograms
 - Internal nodes
 - Set of bounding boxes
 - These boxes may generally overlap themselves
 - Leaf nodes
 - Buckets with summaries
 - For each dataset a number of its corresponding triples
 - Features
 - Fixed (parameterized) size

- Selection algorithm
 - Query transformation
 - Intervals for variables
 - Source selection
 - Individual patterns
 - Index traversal
 - Sets of buckets
 - Inductive joins
 - Required overlapping
 - Query processing

(Peter knows ?P) (?P lives Prague)

Search Engines

- Swoogle
 - Paper
 - Li Ding et al.: Swoogle: A Search and Metadata Engine for the Semantic Web
 - Idea
 - Search engine for semantic documents
 - Data documents / ontologies and schemata
 - Provided functionality
 - Document metadata
 - Based on IR techniques

Search Engines

- SWSE
 - Paper
 - Andreas Harth et al.: SWSE: Answers Before Links
 - Idea
 - Search engine for RDF triples with context
 - Provided functionality
 - Keyword matching
 - Concept filtering

Search Engines

- Sindice
 - Paper
 - Eyal Oren et al.: Sindice.com: A Document-oriented
 Lookup Index for Open Linked Data
 - Idea
 - Search engine for semantic documents
 - Provided functionality
 - Keyword matching
 - Inverse functional properties

Common Observations

- String compression
 - Repeating string values
 - URIs and literals
 - Unique integer identifiers
 - Efficient processing
 - Space requirements
 - Translation maps
 - Both directions
 - Based on B-trees

Common Observations

Data pruning

- Idea
 - Query optimization
 - Relevant data
- Methods
 - Filtering selections
 - Join ordering
- Problem
 - Partial knowledge

Open Problems

- Data distribution
 - Motivation
 - Datasets are distributed
 - Appropriate compromise
 - Problems
 - Network drawbacks
 - Space requirements
 - Independent datasets

Open Problems

- Data scalability
 - Motivation
 - Web of Data size explosion
 - September 2011:
 - 295 datasets, 31 billion triples, 504 million links
 - Problems
 - Scalable storages and indices
 - Efficient query evaluation
 - Quality, provenance and trust

Open Problems

- Data dynamicity
 - Motivation
 - Data tend to ageing
 - Problems
 - Continuous updates
 - Dynamic structures

Conclusion

- Querying systems
 - Local / distributed approaches
- Storage solutions
 - Relational databases / native approaches
- Indexing methods
 - Existing techniques
 - Common practices
 - Open problems