MIE-PDB.16: Advanced Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/201-MIE-PDB/

Lecture 5

XML Databases: XPath, XQuery

Martin Svoboda
martin.svoboda@fit.cvut.cz

20. 10. 2020

Charles University, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Information Technology

http://www.ksi.mff.cuni.cz/~svoboda/courses/201-MIE-PDB/
mailto:martin.svoboda@fit.cvut.cz

Lecture Outline

XQuery and XPath
¢ Data model

e Query expressions

= Paths

= Comparisons

= Constructors
FLWOR expressions
Conditions
Quantifiers

Introduction

XPath = XML Path Language

¢ Navigation in an XML tree,
selection of nodes by a variety of criteria

* Versions: 1.0 (1999), 2.0 (2010), 3.0 (2014), 3.1 (March 2017)
* W3C recommendation
= https://www.w3.org/TR/xpath-31/
XQuery = XML Query Language
* Complex functional query language
¢ Contains XPath
* Versions: 1.0 (2007), 3.0 (2014), 3.1 (March 2017)

* W3C recommendation
= https://www.w3.org/TR/xquery-31/

https://www.w3.org/TR/xpath-31/
https://www.w3.org/TR/xquery-31/

Sample Data

<?xml version="1.1" encoding="UTF-8"7>
<movies>
<movie year="2006" rating="76" director="Jan Svérak">
<title>Vratné lahve</title>
<actor>Zdenék Svérak</actor>
<actor>Jifi Machacek</actor>
</movie>
<movie year="2000" rating="84">
<title>Samotari</title>
<actor>Jitka Schneiderova</actor>
<actor>Ivan Trojan</actor>
<actor>Jifi Machacek</actor>
</movie>
<movie year="2007" rating="53" director="Jan Hrebejk">
<title>Medvidek</title>
<actor>Jifi Machacek</actor>
<actor>Ivan Trojan</actor>
</movie>
</movies>

Sample Data

Jan
Svérak

Vratné Zdenék Jiti
lahve Svérak Machécek

Data Model

XDM = XQuery and XPath Data Model
e XML tree consisting of nodes of different kinds
= Document, element, attribute, text, ...

* Document order / reverse document order
= The order in which nodes appear in the XML file
— lLe. nodes are numbered using a pre-order depth-first traversal

Query result

e Each query expression is evaluated to a sequence

Data Model

Sequence = ordered collection of nodes and/or atomic values
e Can be empty
* Eg: O
Automatically flattened
" Eg: (1, O, (2,3), W) & U, 2, 3, 4)
Standalone items are treated as singleton sequences
" Eg:l e (1)
Can be mixed
= But usually just nodes, or just atomic values

Duplicate items are allowed
= More precisely...

— Duplicate nodes are removed
— Duplicate atomic values are preserved

Path Expressions

Path expression
* Describes navigation within an XML tree
* Consists of individual navigational steps

o

* Absolute paths = path expressions starting with /
= Navigation starts at the document node
* Relative paths
= Navigation starts at an explicitly specified node / nodes

Path Expressions

Examples

Absolute paths

/

/movies

/movies/movie/title/text ()

|
|
/movies/movie ‘
|
/movies/movie/@year ‘

Relative paths

actor/text () ‘

’ @director ‘

Path Expressions

Evaluation of path expressions
e Let P be a path expression
* Let C'be an initial context set

= If Pis absolute, then (' contains just the document node
= Otherwise (i.e. Pis relative) C'is given by the user or context

» If Pdoes not contain any step
= Then C'is the final result
* Otherwise (i.e when P contains at least one step)

= Let S be the first step, P’ the remaining steps (if any)
= Let ' ={}
= For each node u € C:

evaluate S with respect to « and add the result to C’
= Evaluate P’ with respect to C’

MIE-PDB.16: Advanced Database Systems | Lecture 5: XML Databases: XPath, XQuery | 20. 10. 2020

10

Path Expressions

Step
* Each step consists of (up to) 3 components

@ -[noseest .

e Axis

= Specifies the relation of nodes to be selected for a given node «
¢ Node test

= Basic condition the selected nodes must further satisfy
e Predicates

= Advanced conditions the selected nodes must further satisfy

Path Expressions: Axes

Axis

* Specifies the relation of nodes to be selected for a given node
Forward axes

e self, child, descendant(-or-self), following(-sibling)

e The order of the nodes corresponds to the document order
Reverse axes

° parent, ancestor(-or-self), preceding(-sibling)

e The order of the nodes is reversed
Attribute axis

* attribute — the only axis that selects attributes

Path Expressions: Axes

ancestor-or-self
ancestor

——-—___—-— —-—__‘_‘——._
_——-____-__- —__-—‘———_

parent
\ following-sibling
‘\-____

preceding-sibling /

self
attribute

preceding following

O\O\]
wl

b&
W

E ! ! ! 2 descendant

descendant-or-self

Path Expressions: Axes

Available axes

self
descendant-or-self
following-sibling

folluwmg

an cestor

ancestor-or- self
precedlng sibling

precedmg

\> attrlbute "

Path Expressions

Examples

Axes

’/child::movies

’/child::movies/child::movie/child::title/child::text()

’/child::movies/child::movie/attribute::year

’/descendant::movie/child::title

’/descendant::movie/child::title/following—sibling::actor

Path Expressions: Node Tests

Node test
* Filters the nodes selected by the axis using basic tests

texto

¢ name — all elements / attributes with a given name

Available node tests

e *x —all elements / attributes
* node() —all nodes (i.e. no filtering takes place)

* text () — all text nodes

Path Expressions

Examples

Node tests

’/movies

/child: :movies

’/descendant::movie/title/text()

’/movies/*

’/movies/movie/attribute::*

Path Expressions: Predicates

Predicate
e Further filters the nodes based on advanced conditions

H@» expression @»o

* When more predicates are provided, they must all be satisfied
Commonly used conditions
e Comparisons
* Path expressions
= Treated as true when evaluated to a non-empty sequence
e Position tests
= Based on the order as defined by the axis, starting with 1

* Logical expressions: and, or, not connectives

MIE-PDB.16: Advanced Database Systems | Lecture 5: XML Databases: XPath, XQuery | 20. 10. 2020

18

Path Expressions

Examples

Predicates

’/movies/movie[actor]

’/movies/movie[actor]/title/text()

’/descendant::movie[count(actor) >= 3]/title

’/descendant::movie[@year > 2000 and @director]

’/descendant::movie[@director][@year > 2000]

’/descendant::movie/actor[position() = last()]

Path Expressions: Abbreviations

Multiple (mostly syntax) abbreviations are provided

e ../..(i.e. no axis is specified) < ../child: :..

/0. & . /attribute: ..

wl ee &> /self::node()..

wl /parent: :node()..

wl/..& ../descendant-or-self: :node()/..
wf/..[number].. & ../..[position() = number]..

Path Expressions

Examples

Abbreviations

’/movie/title ‘

/child: :movie/child::title ‘

/movie/Qyear

/child: :movie/attribute: :year

’/movie/actor[?]

/child: :movie/child: :actor[position() = 2]

’//actor

’/descendant—or—self::node()/child::actor

Path Expressions: Conclusion

Path expressions
e Absolute / relative
Step components
e Axis
* Node test
e Predicates
Path expression result
e Evaluated from left to right, step by step
* Result of the entire path expression is the result of its last step
* Nodes are ordered in the document order
* Duplicate nodes are removed (based on the identity of nodes)

Comparison Expressions

Comparisons

* General comparisons
= Two sequences of values are expected to be compared
== =L <K= 0=, >
= Eg.: (0,1) = (1,2)

¢ Value comparisons
= Two standalone values (singleton sequences) are compared
" eq,ne, 1t, le, ge, gt
* Eg:1 1t 3

* Node comparisons
= is —tests identity of nodes
= <<, >> —test positions of nodes (preceding, following)
= Similar behavior as in case of value comparisons

Comparison Expressions

General comparison (existentially quantified comparisons)

* Both the operands can be evaluated to sequences of values
of any length

e The result is true if and only if there exists at least one pair of
individual values satisfying the given relationship

o>| value expression @ value expression o

®
©
&

Comparison Expressions

General comparison: examples
o [(1) < (2)] =true
e [1 < (2)] =true
o [(1) < (1,2)] =true
e [(1) < O] =false
e [(0,1) = (1,2)] =true
e [(0,1) '= (1,2)] =true

Comparison Expressions

Value comparison
* Both the operands are expected to be evaluated to
singleton sequences
= Then these values are mutually compared in a standard way
* Empty sequence () is returned...
= when at least one operand is evaluated to an empty sequence
e Type error is raised...
= when at least one operand is evaluated to a longer sequence

o> value expression value expression [>o

@

Comparison Expressions

Value comparison: examples
e [(1) le (2)] =true
e [1 1le (2)] =true
e (1) 1e O]=0
e [(1) le (1,2)] = error
e [O 1e (1,22]=0

Comparison Expressions

Value and general comparisons
e Atomization of values — takes place automatically

= Atomic values are preserved untouched
= Nodes are transformed to atomic values

e In particular...
= Element node is transformed to a string with concatenated
text values it contains (even indirectly)
— E.g.: <movie year="2006">Vratné lahve</movie>
is atomized to a string Vratné lahve
— Note that attribute values are not included!

= Attribute node is transformed to its value
= Text node is transformed to its value

Comparison Expressions

Value and general comparisons: examples
o [<a>5 eq 5] = true
e [<a>12 = <a>12] = true
o [5 1t 3] = false

Expressions

XQuery expressions
* Path expressions (traditional XPath)
= Selection of nodes of an XML tree
* FLWOR expressions

= for .. let .. where .. order by .. return ..

¢ Conditional expressions
= if .. then .. else ..

* Quantified expressions

" somel|every .. satisfies ..

Expressions

XQuery expressions
* Boolean expressions
= and, or, not logical connectives
¢ Primary expressions
= Literals, variable references, function calls, constructors, ...

boolean expression
primary expression

Constructors

Constructors
¢ Allow us to create new nodes for elements, attributes, ...
¢ Direct constructor
= Well-formed XML fragment with nested query expressions
— E.g.: <movies>{ count(//movie) }</movies>
= Names of elements and attributes must be fixed,
their content can be dynamic
¢ Computed constructor
= Special syntax
— E.g.: element movies { count(//movie) }

= Both names and content can be dynamic

Constructors

Direct constructor

T@»- . ~0-®
@D . QW

iH_G}Q)*.*G)

* Both attribute value and element content may contain
an arbitrary number of nested query expressions

= Enclosed by curly braces {}
= Escaping sequences: {{ and }}

Constructors

Direct constructor
o Attribute

»@»@»@TT@%

¢ Element content

=

Constructors

Example: Direct Constructor

Create a summary of all movies

<movies>
<count>{ count(//movie) }</count>
{
for $m in //movie
return
<movie year="{ data($m/@year) }">{ $m/title/text() }</movie>
}
</movies>
<movies>
<count>3</count>

<movie year="2006">Vratné lahve</movie>

<movie year="2000">Samotafi</movie>

<movie year="2007">Medvidek</movie>
</movies>

Constructors

Computed constructor

expressmn .
expressmn

—®Jo'o

@" expressmn

Constructors

Example: Computed Constructor

Create a summary of all movies

element movies {
element count { count(//movie) 1},
for $m in //movie
return
element movie {
attribute year { data($m/@year) 7},
text { $m/title/text() }
}
}

<movies>
<count>3</count>
<movie year="2006">Vratné lahve</movie>
<movie year="2000">Samotafi</movie>
<movie year="2007">Medvidek</movie>
</movies>

FLWOR Expressions

FLWOR expression

Versatile construct allowing for iterations over sequences

‘ for clause where clause ‘ﬁ order by clause }7—>‘ return clause }—»o

Iet clause

Clauses

for — selection of items to be iterated over

let — bindings of auxiliary variables

where — conditions to be satisfied (by a given item)
order by —order in which the items are processed
return — result to be constructed (for a given item)

MIE-PDB.16: Advanced Database Systems | Lecture 5: XML Databases: XPath, XQuery | 20. 10. 2020 38

FLWOR Expressions

Example

Find titles of movies with rating 75 and more

for $m in //movie

let $r := $m/Qrating
where $r >= 75

order by $m/@year
return $m/title/text()

Samotari
Vratné lahve

FLWOR Clauses

For clause
* Specifies a sequence of values or nodes to be iterated over

* Multiple sequences can be specified at once

= Then the behavior is identical as when more single-variable
for clauses would be provided

D - o) -
P

o/

Let clause
* Defines one or more auxiliary variable assignments

- - D)@
()
o/

FLWOR Clauses

Where clause
* Allows to describe complex filtering conditions
* Items not satisfying the conditions are skipped

0+-—> expression [>o

Order by clause
* Defines the order in which the items are processed

o> expression |
t ascending
descendlng

FLWOR Clauses

Return clause
* Defines how the result sequence is constructed
* Evaluated once for each suitable item

H.> expression [>o

Various supported use cases

e Querying, joining, grouping, aggregation, integration,
transformation, validation, ...

FLWOR Examples

Find titles of movies filmed in 2000 or later such that they have at
most 3 actors and a rating above the overall average

let $r := avg(//movie/@rating)

for $m in //movie[@rating >= $r]

let $a := count($m/actor)

where ($a <= 3) and ($m/@year >= 2000)
order by $a ascending, $m/title descending
return $m/title

<title>Vratné lahve</title>
<title>Samotari</title>

FLWOR Examples

Find movies in which each individual actor stared

for $a in distinct-values(//actor)
return <actor name="{ $a }">
{
for $m in //movielactor[text() = $al]
return <movie>{ $m/title/text() }</movie>
¥

</actor>

<actor name="Zdenék Svérak">
<movie>Vratné lahve</movie>

</actor>

<actor name="Jiri Machacek">
<movie>Vratné lahve</movie>
<movie>Samotafri</movie>
<movie>Medvidek</movie>

</actor>

FLWOR Examples

Construct an HTML table with data about movies

<table>
<tr><th>Title</th><th>Year</th><th>Actors</th></tr>
{
for $m in //movie
return
<tr>
<td>{ $m/title/text() }</td>
<td>{ data($m/Qyear) }</td>
<td>{ count($m/actor) }</td>
</tr>
}
</table>

FLWOR Examples

Construct an HTML table with data about movies

<table>
<tr><th>Title</th><th>Year</th><th>Actors</th></tr>
<tr><td>Vratné lahve</td><td>2006</td><td>2</td></tr>
<tr><td>Samotari</td><td>2000</td><td>3</td></tr>
<tr><td>Medvidek</td><td>2007</td><td>2</td></tr>
</table>

Conditional Expressions

Conditional expression

H.—»@ expression G)».—> expression }—».—» expression }—»0

* Note that the else branch is compulsory
= Empty sequence () can be returned if needed

Example

if (count(//movie) > 0)
then <movies>{ string-join(//movie/title, ", ") }</movies>
else ()

<movies>Vratné lahve, Samota¥i, Medvidek</movies>

Quantified Expressions

Quantifier
e Returns true if and only if...

= in case of some at least one item
= in case of every all the items

« ...of a given sequence/s satisfy the provided condition
T:-@ Gatisfies) [expression o
(every) ®)

Quantified Expressions

Examples

Find titles of movies in which Ivan Trojan played

for $m in //movie

where
some $a in $m/actor satisfies $a = "Ivan Trojan"

return $m/title/text ()

Samotari
Medvidek

Find names of actors who played in all movies

for $a in distinct-values(//actor)

where
every $m in //movie satisfies $m/actor[text() = $a]

return $a

Jiri Machéacek ‘

Primary Expressions

Primary expression

numeric literal 7
®> string literal @
->~(_string literal @
(8~ variable name) 4

-+ Coneion name) ~(0) o
expression
b=

RO 0 -
\ZJ

direct constructor 4

computed constructor
] o

Final Observations

XQuery
* Keywords must always be in lowercase
e XQuery is a functional query language

* Whenever expression is mentioned in any diagram,
expression of any kind can be used (without any limitations)

Lecture Conclusion

XPath expressions
* Absolute / relative paths
* Axes, node tests, predicates
XQuery expressions
e Constructors: direct, computed
* FLWOR expressions

* Conditional, quantified, comparison, ...

	Outline
	XQuery and XPath
	Data Model
	Paths
	Comparisons
	Expressions
	Constructors
	FLWOR
	Conditions
	Quantifiers
	Primary Expressions
	Final Observations

	Conclusion

