
B4M36DS2, BE4M36DS2: Database Systems 2
hƩp://www.ksi.mff.cuni.cz/~svoboda/courses/201-B4M36DS2/

Lecture 13

Advanced Aspects
Lecturer: MarƟn Svoboda, author: Irena Holubová
marƟn.svoboda@fel.cvut.cz

4. 1. 2021

Charles University, Faculty of MathemaƟcs and Physics
Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/201-B4M36DS2/
mailto:martin.svoboda@fel.cvut.cz

Graph Databases
A bit of theory

◼ Data: a set of entities and their relationships
 e.g., social networks, travelling routes, …

 We need to efficiently represent graphs

◼ Basic operations: finding the neighbours of a node,
checking if two nodes are connected by an edge,
updating the graph structure, …
 We need efficient graph operations

◼ G = (V, E) is commonly modelled as
 set of nodes (vertices) V

 set of edges E

 n = |V|, m = |E|

◼ Which data structure should be used?

Adjacency Matrix

◼ Bi-dimensional array A of n x n Boolean values

 Indexes of the array = node identifiers of the graph

 The Boolean junction Aij of the two indices indicates

whether the two nodes are connected

◼ Variants:

 Directed graphs

 Weighted graphs

 …

Adjacency Matrix

◼ Pros:
 Adding/removing edges

 Checking if two nodes are
connected

◼ Cons:
 Quadratic space with respect to n

◼ We usually have sparse graphs →
lots of 0 values

 Addition of nodes is expensive

 Retrieval of all the neighbouring
nodes takes linear time with
respect to n

Adjacency List

◼ A set of lists where each accounts for the
neighbours of one node
 A vector of n pointers to adjacency lists

◼ Undirected graph:
 An edge connects nodes i and j => the list of

neighbours of i contains the node j and vice versa

◼ Often compressed
 Exploitation of regularities in graphs, difference from

other nodes, …

Adjacency List

◼ Pros:
 Obtaining the neighbours of a

node

 Cheap addition of nodes to the
structure

 More compact representation of
sparse matrices

◼ Cons:
 Checking if there is an edge

between two nodes
◼ Optimization: sorted lists =>

logarithmic scan, but also logarithmic
insertion

Incidence Matrix

◼ Bi-dimensional Boolean matrix of n rows

and m columns

A column represents an edge

◼ Nodes that are connected by a certain edge

A row represents a node

◼ All edges that are connected to the node

Incidence Matrix

◼ pros:

For representing

hypergraphs, where one

edge connects an arbitrary

number of nodes

◼ Cons:

Requires n x m bits

Laplacian Matrix

◼ Bi-dimensional array of n x n integers

Diagonal of the Laplacian matrix indicates the

degree of the node

The rest of positions are set to -1 if the two

vertices are connected, 0 otherwise

Laplacian Matrix

◼ Pros:

Allows analyzing the graph

structure by means of

spectral analysis

◼ Calculates the eigenvalues

Improving Data Locality

◼ Idea: take into account computer architecture in the data
structures to reach a good performance
 The way data is laid out physically in memory determines the

locality to be obtained

 Spatial locality = once a certain data item has been accessed,
the nearby data items are likely to be accessed in the following
computations
◼ e.g., graph traversal

◼ Strategy: in graph adjacency matrix representation,
exchange rows and columns to improve the cache hit
ratio

Breadth First Search Layout

(BFSL)

◼ Trivial algorithm

◼ Input: sequence of vertices of a graph

◼ Output: a permutation of the vertices which obtains
better cache performance for graph traversals

◼ BFSL algorithm:
1. Selects a node (at random) that is the origin of the traversal

2. Traverses the graph following a breadth first search algorithm,
generating a list of vertex identifiers in the order they are visited

3. Takes the generated list and assigns the node identifiers
sequentially

◼ Pros: optimal when starting from the selected node

◼ Cons: starting from other nodes

Bandwidth of a Matrix

◼ Graphs  matrices

◼ Locality problem = minimum bandwidth problem
 Bandwidth of a row in a matrix = the maximum distance between

nonzero elements, with the condition that one is on the left of the
diagonal and the other on the right of the diagonal

 Bandwidth of a matrix = maximum of the bandwidth of its rows

◼ Matrices with low bandwidths are more cache friendly
 Non zero elements (edges) are clustered across the diagonal

◼ Bandwidth minimization problem (BMP) is NP hard
 For large matrices (graphs) the solutions are only approximated

Cuthill-McKee (1969)

◼ Popular bandwidth minimization

technique for sparse matrices

◼ Re-labels the vertices of a matrix according to a
sequence, with the aim of a heuristically guided
traversal

◼ Algorithm:
1. Node with the first identifier (where the traversal starts) is the

node with the smallest degree in the whole graph

2. Other nodes are labeled sequentially as they are visited by BFS
traversal
 In addition, the heuristic prefers those nodes that have the

smallest degree

Graph Partitioning

◼ Some graphs are too large to be fully loaded into
the main memory of a single computer
 Usage of secondary storage degrades the

performance of graph applications

 Scalable solution distributes the graph on multiple
computers

◼ We need to partition the graph reasonably
 Usually for particular (set of) operation(s)

 The shortest path, finding frequent patterns, BFS,
spanning tree search, …

One and Two Dimensional

Graph Partitioning

◼ Aim: partitioning the graph to solve BFS more
efficiently
 Distributed into shared-nothing parallel system

 Partitioning of the adjacency matrix

◼ 1D partitioning
 Matrix rows are randomly assigned to the P nodes

(processors) in the system

 Each vertex and the edges emanating from it are
owned by one processor

One and Two Dimensional

Graph Partitioning

◼ BFS with 1D partitioning
◼ Input: starting node s having level 0

◼ Output: every vertex v becomes labeled with its level, denoting its
distance from the starting node

1. Each processor has a set of frontier vertices F

◼ At the beginning it is node s where the BFS starts

2. The edge lists of the vertices in F are merged to form a set of
neighbouring vertices N

◼ Some owned by the current processor, some by others

3. Messages are sent to all other processors to (potentially) add
these vertices to their frontier set F for the next level

◼ A processor may have marked some vertices in a previous
iteration => ignores messages regarding them

One and Two Dimensional

Graph Partitioning

◼ 2D partitioning
 Processors are logically arranged in an R x C processor mesh

 Adjacency matrix is divided C block columns and R x C block rows

 Each processor owns C blocks

◼ Note: 1D partitioning = 2D partitioning with C = 1 (or R = 1)

◼ Consequence: each node communicates with at most R +
C nodes instead of all P nodes
 In step 2 a message is sent to all processors in the same row

 In step 3 a message is sent to all processors in the same column

= block owned by processor (i,j)

Partitioning of vertices:

Processor (i, j) owns vertices
corresponding to block row
(j−1) x R + i

Transactional Graph Databases
Types of Queries

◼ Sub-graph queries
 Searches for a specific pattern in the graph database

 A small graph or a graph, where some parts are uncertain
◼ e.g., vertices with wildcard labels

 More general type: sub-graph isomorphism

◼ Super-graph queries
 Searches for the graph database members of which their whole

structures are contained in the input query

◼ Similarity (approximate matching) queries
 Finds graphs which are similar, but not necessarily isomorphic to

a given query graph

 Key question: how to measure the similarity

sub-graph:

q1: g1, g2

q2: 

super-graph:

q1: 

q2: g3

Performance Tuning
Goals

◼ MapReduce creates a bottleneck-free way of scaling out

◼ To reduce latency
 Latency:

◼ Non-parallel systems: time taken to execute the entire program

◼ Parallel systems: time taken to execute the smallest atomic sub-task

 Strategies:
◼ Reducing the execution time of a program

◼ Choosing the most optimal algorithms for producing the output

◼ Parallelizing the execution of sub-tasks

◼ To increase throughput
 Throughput = the amount of input that can be manipulated to generate

output within a process

 Non-parallel systems:
◼ Constrained by the available resources (amount of RAM, number of CPUs)

 Parallel systems:
◼ “No” constraints

◼ Parallelization allows for any amount of commodity hardware

Example from 2010: Tweets

add up to 12 Terabytes per day.

This amount of data needs

around 48 hours to be written to

a disk at a speed of about 80

Mbps.

Performance Tuning
Linear Scalability

◼ Typical horizontally scaled MapReduce-based model:
linear scalability
 “One node of a cluster can process x MBs of data every second
→ n nodes can process x  n amounts of data every second.”

◼ Time taken to process y amounts of data on a single node = t
seconds

◼ Time taken to process y amounts of data on n nodes = t / n seconds

◼ Assumption: tasks can be parallelized into equally
balanced units

Performance Tuning
Amdahl’s Law

◼ Formula for finding the maximum improvement in performance of a
system when a part is improved
 P = the proportion of the program that is parallelized

 1 – P = the proportion of the program that cannot be parallelized

 N = the times the parallelized part performs as compared to the non-
parallelized one
◼ i.e., how many times faster it is

 e.g., the number of processors

◼ Tends to infinity in the limit

◼ Example: a process that runs for 5 hours (300 minutes); all but a
small part of the program that takes 25 minutes to run can be
parallelized
 Percentage of the overall program that can be parallelized: 91.6%

 Percentage that cannot be parallelized: 8.4%

 Maximum increase in speed: 1 / (1 – 0.916) = ~11.9 times faster
◼ N tends to infinity

Performance Tuning
Little’s Law

◼ Origins in economics and queuing theory (mathematics)

◼ Analyzing the load on stable systems
 Customer joins the queue and is served (in a finite time)

◼ “The average number of customers (L) in a stable system is the
product of the average arrival rate (k) and the time each customer
spends in the system (W).”
 Intuitive but remarkable result

 i.e., the relationship is not influenced by the arrival process distribution,
the service distribution, the service order, or practically anything else

◼ Example: a gas station with cash-only payments over a single
counter
 4 customers arrive every hour

 Each customer spends about 15 minutes (0.25 hours) at the gas station

 There should be on average 1 customer at any point in time

 If more than 4 customers arrive at the same station, it would lead to a
bottleneck

L = kW

Performance Tuning
Message Cost Model

◼ Breaks down the cost of sending a message from one end to the
other in terms of its fixed and variable costs
 C = cost of sending the message from one end to the other

 a = the upfront cost for sending the message

 b = the cost per byte of the message

 N = number of bytes of the message

◼ Example: gigabit Ethernet
 a is about 300 microseconds = 0.3 milliseconds

 b is 1 second per 125 MB
◼ Implies a transmission rate of 125 MBps.

 100 messages of 10 KB => take 100  (0.3 + 10/125) ms = 38 ms

 10 messages of 100 KB => take 10  (0.3 + 100/125) ms = 11 ms

 A way to optimize message cost is to send as big

packet as possible each time

C = a + bN

0,08

0,8

initialization

linear dependence

on size

Polyglot Persistence

◼ Different databases are designed to solve different
kinds of problems

◼ Using a single database engine for all of the
requirements usually leads to partially non-performant
solutions

◼ Example: e-commerce
 Many types of data

◼ Business transactions,

session management data,

reporting, data warehousing,

logging information, …

 Do not need the same

properties of availability,

consistency, or backup

requirements

Polyglot Persistence

◼ Polyglot programming (2006)
 Applications should be written in a mix of languages

 Different languages are suitable for tackling different problems

◼ Polyglot persistence
 Hybrid approach to

persistence

 e.g., a data store for the

shopping cart which is

highly available vs.

finding products bought

by the customers’ friends

Polyglot Persistence

◼ There may be other applications in the enterprise
 e.g., the graph data store can serve data to applications that

need to understand which products are being bought by a
certain segment of the customer base

 Instead of each application talking independently to the
graph database, we can wrap the graph database into a
service
 Assumption:

◼ Nodes can be saved in one place

◼ Queried by all the applications

 Allows for the databases inside the services to evolve without
having to change the dependent applications

