B4M36DS2, BE4M36DS2: Database Systems 2

http://www.ksi.mff.cuni.cz/~svoboda/courses/201-B4M36DS2/

Lecture 13

### **Advanced Aspects**

Lecturer: Martin Svoboda, author: Irena Holubová martin.svoboda@fel.cvut.cz

4. 1. 2021

**Charles University**, Faculty of Mathematics and Physics **Czech Technical University in Prague**, Faculty of Electrical Engineering

# **Graph Databases**

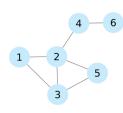
### A bit of theory

- Data: a set of entities and their relationships
  - □ e.g., social networks, travelling routes, ...
  - □ We need to efficiently represent graphs
- Basic operations: finding the neighbours of a node, checking if two nodes are connected by an edge, updating the graph structure, ...
  - ☐ We need efficient graph operations
- $\blacksquare$  G = (V, E) is commonly modelled as
  - □ set of nodes (vertices) V
  - □ set of edges E
  - $\square$  n = |V|, m = |E|
- Which data structure should be used?

## **Adjacency Matrix**

- Bi-dimensional array A of n x n Boolean values
  - □ Indexes of the array = node identifiers of the graph
  - $\Box$  The Boolean junction  $A_{ij}$  of the two indices indicates whether the two nodes are connected
- Variants:
  - □ Directed graphs
  - □ Weighted graphs
  - □ ...

## **Adjacency Matrix**



| /0  | 1 | 1 | 0 | 0 | 0\                    |
|-----|---|---|---|---|-----------------------|
| 1   | 0 | 1 | 1 | 1 | 0 \                   |
| 1   | 1 | 0 | 0 | 1 | 0<br>0<br>0<br>1<br>0 |
| 0   | 1 | 0 | 0 | 0 | 1                     |
| 0 / | 1 | 1 | 0 | 0 | 0 /                   |
| \o  | 0 | 0 | 1 | 0 | 0/                    |

#### Pros:

- □ Adding/removing edges
- ☐ Checking if two nodes are connected

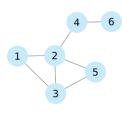
#### Cons:

- □ Quadratic space with respect to *n* 
  - We usually have sparse graphs → lots of 0 values
- □ Addition of nodes is expensive
- Retrieval of all the neighbouring nodes takes linear time with respect to n

## Adjacency List

- A set of lists where each accounts for the neighbours of one node
  - ☐ A vector of *n* pointers to adjacency lists
- Undirected graph:
  - □ An edge connects nodes i and j => the list of neighbours of i contains the node j and vice versa
- Often compressed
  - Exploitation of regularities in graphs, difference from other nodes, ...

# Adjacency List



 $N1 \rightarrow \{N2, N3\}$   $N2 \rightarrow \{N1, N3, N5\}$   $N3 \rightarrow \{N1, N2, N5\}$   $N4 \rightarrow \{N2, N6\}$   $N5 \rightarrow \{N2, N3\}$  $N6 \rightarrow \{N4\}$ 

#### Pros:

- Obtaining the neighbours of a node
- Cheap addition of nodes to the structure
- More compact representation of sparse matrices

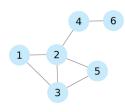
#### Cons:

- □ Checking if there is an edge between two nodes
  - Optimization: sorted lists => logarithmic scan, but also logarithmic insertion

### **Incidence Matrix**

- Bi-dimensional Boolean matrix of *n* rows and *m* columns
  - □ A column represents an edge
    - Nodes that are connected by a certain edge
  - □ A row represents a node
    - All edges that are connected to the node

### **Incidence Matrix**





### pros:

□ For representing hypergraphs, where one edge connects an arbitrary number of nodes

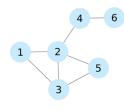
#### Cons:

□ Requires *n x m* bits

## Laplacian Matrix

- Bi-dimensional array of n x n integers
  - □ Diagonal of the Laplacian matrix indicates the degree of the node
  - ☐ The rest of positions are set to -1 if the two vertices are connected, 0 otherwise

## Laplacian Matrix



#### Pros:

- Allows analyzing the graph structure by means of spectral analysis
  - Calculates the eigenvalues

$$\begin{pmatrix} 2 & -1 & -1 & 0 & 0 & 0 \\ -1 & 4 & -1 & -1 & -1 & 0 \\ -1 & -1 & 3 & 0 & -1 & 0 \\ 0 & -1 & 0 & 2 & 0 & -1 \\ 0 & -1 & -1 & 0 & 2 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$$

## Improving Data Locality

- Idea: take into account computer architecture in the data structures to reach a good performance
  - The way data is laid out physically in memory determines the locality to be obtained
  - Spatial locality = once a certain data item has been accessed, the nearby data items are likely to be accessed in the following computations
    - e.g., graph traversal
- Strategy: in graph adjacency matrix representation, exchange rows and columns to improve the cache hit ratio

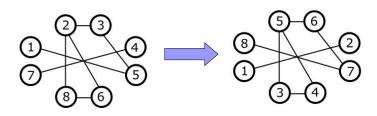
# Breadth First Search Layout (BFSL)

- Trivial algorithm
- Input: sequence of vertices of a graph
- Output: a permutation of the vertices which obtains better cache performance for graph traversals
- BFSL algorithm:
  - 1. Selects a node (at random) that is the origin of the traversal
  - Traverses the graph following a breadth first search algorithm, generating a list of vertex identifiers in the order they are visited
  - Takes the generated list and assigns the node identifiers sequentially
- Pros: optimal when starting from the selected node
- Cons: starting from other nodes

### Bandwidth of a Matrix

- Graphs ↔ matrices
- Locality problem = minimum bandwidth problem
  - □ Bandwidth of a row in a matrix = the maximum distance between nonzero elements, with the condition that one is on the left of the diagonal and the other on the right of the diagonal
  - ☐ Bandwidth of a matrix = maximum of the bandwidth of its rows
- Matrices with low bandwidths are more cache friendly
  - □ Non zero elements (edges) are clustered across the diagonal
- Bandwidth minimization problem (BMP) is NP hard
  - □ For large matrices (graphs) the solutions are only approximated





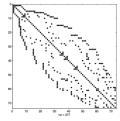
| (1 | 0<br>1<br>1<br>0<br>0 | 0 | 0 | 1 | 0 | 0 | 0 |
|----|-----------------------|---|---|---|---|---|---|
| 0  | 1                     | 1 | 0 | 0 | 1 | 0 | 1 |
| 0  | 1                     | 1 | 0 | 1 | 0 | 0 | 0 |
| 0  | 0                     | 0 | 1 | 0 | 0 | 1 | 0 |
| 1  | 0                     | 1 | 0 | 1 | 0 | 0 | 0 |
| 0  | 1                     | 0 | 0 | 0 | 1 | 0 | 1 |
| 0  | 0                     | 0 | 1 | 0 | 0 | 1 | 0 |
| 0  | 1                     | 0 | 0 | 0 | 1 | 0 | 1 |



| $\begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
|----------------------------------------------------------------------|---|---|---|---|---|---|---|
| 1                                                                    | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0                                                                    | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0                                                                    | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
| 0                                                                    | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
| 0                                                                    | 0 | 0 | 0 | 1 | 1 | 1 | 0 |
| 0                                                                    | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0                                                                    | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
|                                                                      |   |   |   |   |   |   |   |

## Cuthill-McKee (1969)

- Popular bandwidth minimization technique for sparse matrices
- Re-labels the vertices of a matrix according to a sequence, with the aim of a heuristically guided traversal
- Algorithm:
  - Node with the first identifier (where the traversal starts) is the node with the smallest degree in the whole graph
  - Other nodes are labeled sequentially as they are visited by BFS traversal
    - In addition, the heuristic prefers those nodes that have the smallest degree



## **Graph Partitioning**

- Some graphs are too large to be fully loaded into the main memory of a single computer
  - Usage of secondary storage degrades the performance of graph applications
  - □ Scalable solution <u>distributes</u> the graph on multiple computers
- We need to partition the graph reasonably
  - ☐ Usually for particular (set of) operation(s)
  - ☐ The shortest path, finding frequent patterns, BFS, spanning tree search, ...

# One and Two Dimensional Graph Partitioning

- Aim: partitioning the graph to solve <u>BFS</u> more efficiently
  - ☐ Distributed into shared-nothing parallel system
  - □ Partitioning of the <u>adjacency matrix</u>
- 1D partitioning
  - □ Matrix rows are randomly assigned to the P nodes (processors) in the system
  - □ Each vertex and the edges emanating from it are owned by one processor

# One and Two Dimensional Graph Partitioning

- BFS with 1D partitioning
  - Input: starting node s having level 0
  - Output: every vertex v becomes labeled with its level, denoting its distance from the starting node
  - Each processor has a set of frontier vertices F
    - At the beginning it is node s where the BFS starts
  - The edge lists of the vertices in F are merged to form a set of neighbouring vertices N
    - Some owned by the current processor, some by others
  - Messages are sent to all other processors to (potentially) add these vertices to their frontier set F for the next level
    - A processor may have marked some vertices in a previous iteration => ignores messages regarding them

# One and Two Dimensional Graph Partitioning

- 2D partitioning
  - □ Processors are logically arranged in an R x C processor mesh
  - □ Adjacency matrix is divided C block columns and R x C block rows
  - □ Each processor owns C blocks
- Note: 1D partitioning = 2D partitioning with C = 1 (or R = 1)
- Consequence: each node communicates with at most R +
   C nodes instead of all P nodes
  - ☐ In step 2 a message is sent to all processors in the same row
  - □ In step 3 a message is sent to all processors in the same column



|    | 1 | 2 | 3 | 4 | 5   | 6 | 7      | 8 | 9 | 10 | 11 | 12 |
|----|---|---|---|---|-----|---|--------|---|---|----|----|----|
| 1  | 0 | 0 | 0 | 0 | 0   | 0 | 0      | 0 | 0 | 1  | 1  | 0  |
| 2  | 0 | 0 | 1 | 0 | 0   | - | 0      | 1 | 0 | 0  | 0  | 0  |
| 3  | 0 | 1 | 0 | 0 | 0   | 0 | 1      | 1 | 0 | 0  | 0  | 0  |
| 4  | 0 | 0 | 0 | 0 | =.= | 0 | - 1111 | 0 | 0 | 0  | 0  | 1  |
| 5  | 0 | 0 | 0 | 1 | 0   | 0 | 0      | 0 | 0 | 0  | 0  | 1  |
| 6  | 0 | 0 | 0 | 0 | 0   | 0 | 1      | 0 | 0 | 0  | 1  | 0  |
| 7  | 0 | 0 | 1 | 0 | 0   | 1 | 0      | 1 | 0 | 1  | 1  | 0  |
| 8  | 0 | 1 | 1 | 0 | 0   | - | 1      | 0 | 0 | 0  | 0  | 0  |
| 9  | 0 | 0 | 0 | 0 | 0   | 0 | 0      | 0 | 0 | 0  | 1  | 1  |
| 10 | 1 | 0 | Ö | 0 | 0   | 0 | 1      | 0 | 0 | 0  | 1  | 0  |
| 11 | 1 | 0 | 0 | 0 | 0   | 1 | 1      | 0 | 1 | 1  | 0  | 0  |
| 12 | 0 | 0 | 0 | 1 | 1   | 0 | 0      | 0 | 1 | 0  | 0  | 0  |
|    |   |   |   |   |     |   |        |   |   |    |    |    |

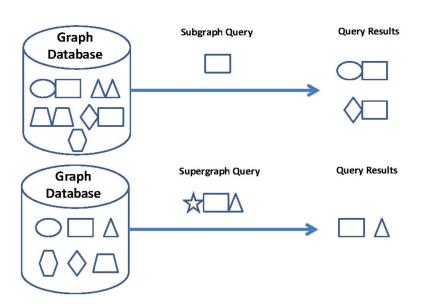
Partitioning of vertices: Processor (i, j) owns vertices corresponding to block row  $(j-1) \times R + i$   $A_{i,j}^{(*)}$ 

= block owned by processor (i,j)

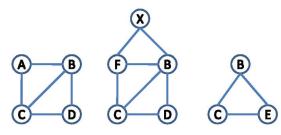
| $A_{1,1}^{(1)}$                          | $A_{1,2}^{(1)}$                 |     | $A_{1,C}^{(1)}$                                                                                   |
|------------------------------------------|---------------------------------|-----|---------------------------------------------------------------------------------------------------|
| $A_{2,1}^{(1)}$                          | $A_{2,2}^{(1)}$                 |     | $A_{2,C}^{(1)}$                                                                                   |
| <u> </u>                                 | <u> </u>                        | ٠٠. | :                                                                                                 |
| $A_{R,1}^{(1)}$                          | $A_{R,2}^{(1)}$                 |     | $A_{R,C}^{(1)}$                                                                                   |
|                                          | :                               |     |                                                                                                   |
|                                          | ((0)                            |     | .(C)                                                                                              |
| $A_{11}^{(C)}$                           | $A_{1,2}^{(C)}$                 |     | $A_{1,C}^{(C)}$                                                                                   |
| $A_{1,1}^{(C)}$ $A_{2,1}^{(C)}$          | $A_{1,2}^{(C)}$ $A_{2,2}^{(C)}$ |     | $A_{1,C}^{(C)} = A_{2,C}^{(C)}$                                                                   |
| $A_{1,1}^{(C)}$ $A_{2,1}^{(C)}$ $\vdots$ | $A_{1,2}^{(C)}$ $A_{2,2}^{(C)}$ | ··· | $\begin{array}{c c} A_{1,C}^{(C)} \\ \hline A_{2,C}^{(C)} \\ \vdots \\ A_{R,C}^{(C)} \end{array}$ |

# Transactional Graph Databases Types of Queries

- Sub-graph queries
  - □ Searches for a specific pattern in the graph database
  - A small graph or a graph, where some parts are uncertain
    - e.g., vertices with wildcard labels
  - □ More general type: sub-graph isomorphism
- Super-graph queries
  - Searches for the graph database members of which their whole structures are <u>contained</u> in the input query
- Similarity (approximate matching) queries
  - □ Finds graphs which are <u>similar</u>, but not necessarily isomorphic to a given query graph
  - Key question: how to measure the similarity







sub-graph:

 $q_1: g_1, g_2$  $q_2: \emptyset$   $\mathsf{g_1}$ 

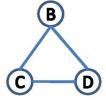
 $\mathsf{g}_{\mathsf{2}}$ 

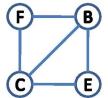
 $g_3$ 

super-graph:

 $q_1: \emptyset$ 

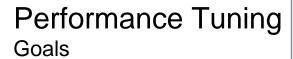
q<sub>2</sub>: g<sub>3</sub>





 $\mathsf{q_1}$ 

 $q_2$ 



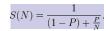
Example from 2010: Tweets add up to 12 Terabytes per day. This amount of data needs around 48 hours to be written to a disk at a speed of about 80 Mbps.

- MapReduce creates a bottleneck-free way of scaling out
- To reduce latency
  - Latency:
    - Non-parallel systems: time taken to execute the entire program
    - Parallel systems: time taken to execute the smallest atomic sub-task
  - Strategies:
    - Reducing the execution time of a program
    - Choosing the most optimal algorithms for producing the output
    - Parallelizing the execution of sub-tasks
- To increase throughput
  - Throughput = the amount of input that can be manipulated to generate output within a process
  - □ Non-parallel systems:
    - Constrained by the available resources (amount of RAM, number of CPUs)
  - □ Parallel systems:
    - "No" constraints
    - Parallelization allows for any amount of commodity hardware

# Performance Tuning Linear Scalability

- Typical horizontally scaled MapReduce-based model: linear scalability
  - □ "One node of a cluster can process x MBs of data every second
    - $\rightarrow$  *n* nodes can process  $x \times n$  amounts of data every second."
      - Time taken to process y amounts of data on a single node = t seconds
      - Time taken to process y amounts of data on n nodes = t/n seconds
- Assumption: tasks can be parallelized into equally balanced units

### Performance Tuning



### Amdahl's Law

- Formula for <u>finding the maximum improvement</u> in performance of a system when a part is improved
  - $\square$  P = the proportion of the program that is parallelized
  - $\Box$  1 P = the proportion of the program that cannot be parallelized
  - $\hfill \ensuremath{\square}$   $\ensuremath{\mathcal{N}}$  = the times the parallelized part performs as compared to the non-parallelized one
    - i.e., how many times faster it is
      - e.g., the number of processors
    - Tends to infinity in the limit
- Example: a process that runs for 5 hours (300 minutes); all but a small part of the program that takes 25 minutes to run can be parallelized
  - □ Percentage of the overall program that can be parallelized: 91.6%
  - □ Percentage that cannot be parallelized: 8.4%
  - □ Maximum increase in speed:  $1/(1-0.916) = \sim 11.9$  times faster
    - N tends to infinity



L = kW

### Little's Law

- Origins in economics and queuing theory (mathematics)
- Analyzing the load on stable systems
  - □ Customer joins the queue and is served (in a finite time)
- "The average number of customers (∠) in a stable system is the product of the average arrival rate (k) and the time each customer spends in the system (W)."
  - Intuitive but remarkable result
  - i.e., the relationship is not influenced by the arrival process distribution, the service distribution, the service order, or practically anything else
- Example: a gas station with cash-only payments over a <u>single</u> counter
  - 4 customers arrive every hour
  - □ Each customer spends about 15 minutes (0.25 hours) at the gas station
  - ⇒ There should be on average 1 customer at any point in time
  - ⇒ If more than 4 customers arrive at the same station, it would lead to a bottleneck

### Performance Tuning

### C = a + bN

### Message Cost Model

linear dependence on size

initialization

- Breaks down the cost of sending a message from one end to the other in terms of its fixed and variable costs
  - $\Box$  C = cost of sending the message from one end to the other
  - $\Box$  a = the upfront cost for sending the message
  - $\Box$  b = the cost per byte of the message
  - $\square$  N = number of bytes of the message
- Example: gigabit Ethernet
  - a is about 300 microseconds = 0.3 milliseconds
  - b is 1 second per 125 MB
    - Implies a transmission rate of 125 MBps.

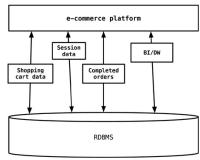
- 0,08
- $\square$  100 messages of 10 KB => take 100 × (0.3 + 10/125) ms = 38 ms
- $\square$  10 messages of 100 KB => take 10 × (0.3 + 100/125) ms = 11 ms
- A way to optimize message cost is to send as big packet as possible each time

0,8



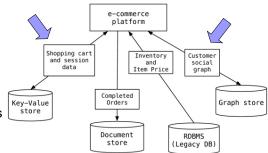
### Polyglot Persistence

- Different databases are designed to solve different kinds of problems
- Using a single database engine for all of the requirements usually leads to partially non-performant solutions
- Example: e-commerce
  - □ Many types of data
    - Business transactions, session management data, reporting, data warehousing, logging information, ...
  - Do not need the same properties of availability, consistency, or backup requirements





- Polyglot programming (2006)
  - ☐ Applications should be written in a mix of languages
  - □ Different languages are suitable for tackling different problems
- Polyglot persistence
  - Hybrid approach to persistence
  - e.g., a data store for the shopping cart which is highly available vs. finding products bought by the customers' friends



### Polyglot Persistence

- There may be other applications in the enterprise
  - e.g., the graph data store can serve data to applications that need to understand which products are being bought by a certain segment of the customer base
- ⇒ Instead of each application talking independently to the graph database, we can wrap the graph database into a service
  - Assumption:
    - Nodes can be saved in one place
    - Queried by all the applications
  - Allows for the databases inside the services to evolve without having to change the dependent applications

