
NPRG036

XML Technologies

Lectures 11 and 12

XML Databases

4. and 11. 5. 2020

Author: Irena Holubová

Lecturer: Martin Svoboda

http://www.ksi.mff.cuni.cz/~svoboda/courses/192-NPRG036/

Lecture Outline

 XML persistence
◼ Introduction

◼ XML databases

◼ Numbering schemes

◼ Mapping techniques

Why XML Database?

 Motivation: requirements of applications

◼ Processing of external data

 Web pages, other textual data, structured data

◼ E-commerce

 Lists of goods, personalized views of the lists, orders, invoices, …

◼ Integration of heterogeneous information resources

 Integrated processing of data from Web pages and from relational
databases

 Main reason: storing XML data into databases means
management of huge volumes of XML data in an efficient way

World of documents

▪ many small documents

▪ usually static

▪ implicit structure

▪ tagging

▪ suitable for humans

World of databases

▪ several huge databases

▪ usually dynamic

▪ explicit structure

▪ schema

▪ suitable for machines

Documents vs. Databases

Documents vs. Databases

Documents

 editing

 printing

 lexical checking

 word count

 information retrieval

 searching

Databases

 updating

 data cleaning

 querying

 storing/transforming

Documents and Structured Data

 The border between the world of documents and world
of databases is not exact
◼ In some proposals both kinds of access are possible

◼ Somewhere in the middle we can find formatting languages
and semi-structured data

 Semi-structured data are defined as data which are
not sorted (have arbitrary order), which are not
complete (have optional parts) and whose structure
can "unpredictably" change
◼ Web data, HTML pages, Bibtex files, biological and

chemical data

◼ XML data are a kind of semi-structured data

Classification of XML Documents

 The basic classification of XML documents

results from their origin and the way they

were created

◼ data-oriented

◼ document-oriented

◼ hybrid

 For the particular classes different ways of

implementations are suitable

Data-oriented XML Documents

 Usually created and processed by machines

 Regular, deep structure
◼ Fully structured data

 They do not contain
◼ Mixed-content elements

◼ CDATA sections

◼ Comments

◼ Processing instructions

 The order of sibling elements is often unimportant

 Example: database exports, catalogues, …

Data-oriented XML Documents

<book id="12345">

<title>All I Really Need To Know I Learned in

Kindergarten</title>

<author>

<name>Robert</name>

<surname>Fulghum</surname>

</author>

<edition title="Argo">

<year>2003</year>

<ISBN>80-7203-538-X</ISBN>

</edition>

<edition title="Argo">

<year>1996</year>

<ISBN>80-7203-028-0</ISBN>

</edition>

</book>

Document-oriented XML Documents

 Usually created and processed by humans

 Irregular, less structured
◼ Semi-structured data

 Often contain
◼ Mixed-content elements

◼ CDATA sections

◼ Comments

◼ Processing instructions

 The order of sibling elements is crucial

 Example: XHTML web pages

Document-oriented XML Documents

<book id="12345">

<title>All I Really Need To Know I Learned in

Kindergarten</title>

<author>Robert Fulghum</author>

<description>A new, edited and extended publication

published on the occasion of the fifteen anniversary of

the first edition</description>

<Text>

<p>Fifteen years after publishing of <q>his</q>

<i>Kindergarten</i> Robert Fulghum has decided to read it

once again, now in <i>2003</i>.</p>

<p>He wanted to find out whether and, if so, to what

extent his opinions have changed and why. Finally, he

modified and extended his book to...</p>

<Text>

</book>

Implementation Approaches

 Differ according to the type of documents

◼ Exploit typical features

◼ Problem: hybrid documents

 Ambiguous classification

 Document-oriented techniques

vs.

 Data-oriented techniques

Document-oriented Techniques (1)

 We need to preserve the document as whole
◼ Order of sibling elements

◼ Comments, CDATA sections, ...

◼ Even whitespaces

 For legal documents

 Round tripping – storing a document into a
database and its retrieval
◼ The level of round tripping says to what extent the

documents are similar

 The higher level, the higher similarity

◼ In the optimal case they are equivalent

Document-oriented Techniques (2)

 LOB

◼ Storing of the whole document into a BLOB / CLOB column

 Possible in all known database systems

(+) The highest level of round tripping, fast retrieval of the whole
document, extending of XML data with database features

(–) No XML operations

 The data need to be extracted from the DB and pre-processed

 XML data type

◼ Like a LOB with the support for XML operations

 XML querying, XML full-text search

 Requires special indices (numbering schemas)

◼ SQL/XML

Document-oriented Techniques (3)

 Native XML databases (NXD)
◼ Natural support for XML operations

 XML query languages, XML update operations, DOM/SAX
interfaces, …

 Focus on document-oriented aspects
◼ Comments, CDATA sections, …

◼ The logical model is based on XML
 i.e. we work with trees

◼ The physical model can be, e.g., relational
 i.e. we can physically store the trees, e.g., into relations

(+) Good level of round tripping

(–) The index (numbering schema) is (used to be) several times
bigger than the data, necessity to start from scratch
(transactions, replication, multi-user access, query
optimization, …)

Data-oriented Techniques (1)

 Idea: The data are stored in a relational database
management system (RDBMS)

◼ Mapping method – transforms the data into relations (and
back)

◼ XML queries over XML data → SQL queries over relations

◼ The result of SQL query → XML document

 Exploit data-oriented aspects (low level of round tripping)

◼ It is not necessary to preserve the document as a whole

 Order of sibling elements is ignored, document-oriented
constructs (comments, whitespaces, …) are ignored, …

◼ No (little) support for mixed-content elements

Data-oriented Techniques (2)

 Middleware

◼ A separate software which ensures transformation of XML
data between XML documents and relations

 XML-enabled database

◼ RDBMS with functions and extensions for XML data support

 Special related approach: XML data binding

◼ Methods for binding of XML data and objects

◼ For each element type a separate class

 Its attributes and subelements form properties of the class

 I.e. it is not a DOM tree of objects!

Numbering Schemas

A numbering schema of a tree model of a document is
a function which assigns each node a unique
identifier that serves as a reference to that node for
indexing and query evaluation

 Enable fast evaluation of selected relationships
among nodes of XML document
◼ Ancestor-descendant

◼ Parent-child

◼ Element-attribute

◼ …

◼ Depth of the node

◼ Order among siblings

◼ …

Numbering Schemas

 Sequential numbering schema

◼ The identifiers are assigned to the nodes as soon as

they are added to the system sequentially, starting from

1

 Structural numbering schema

◼ Enables to preserve and evaluate a selected

relationship among any two nodes of the document

◼ Often it is expected to enable fast searching for all

occurrences of such a relationship in the document

Numbering Schemas

 Stable numbering schema

◼ A schema which does not have to be modified (except for
preserving its local features) when the structure of the
respective data changes

 i.e., on insertion/deletion of nodes

 A schema of a structural numbering schema

◼ Is an ordered pair (p, L), where p is a binary predicate and L
is an invertible function which for the given XML tree model T
= (N, E) assigns each node v ∈ N a binary sequence L(v).

◼ For each pair of nodes u, v ∈ N predicate p(L(u), L(v)) is
satisfied if v is in a particular relationship with u.

 e.g. v is a descendant of u

◼ Particular numbering schema: particular p and L

Dietz Numbering

<?xml version="1.0"?>

<contact>

<name>B. Pitt</name>

<phone>

<cell>6091234</cell>

<home>41983</home>

</phone>

</contact>

(1,8)

contact

(2,2)

name

(3,1)

"B. Pitt"

(4,7)

phone

(5,4)

cell

(7,6)

home

(6,3)

"6091234"

(8,5)

"41983"

Dietz Numbering

 Preorder traversal

◼ Child nodes of a node follow their parent node

 Postorder traversal

◼ Parent node follows its child nodes

 Construction of a numbering schema

◼ Each node v ∈ N is assigned with a pair (x,y) denoting
preorder and postorder order

◼ Node v ∈ N having L(v) = (x,y) is a descendant node of node u

having L(u) = (x',y') if x' < x & y' > y

Depth-first (DF) Numbering

(1,43)

contact

(2,5)

name

(3,4)

"B. Pitt"

(33,42)

phone

(34,37)

cell

(38,41)

home

(35,36)

"13727"

(39,40)

"41983"

preorder traversal +

◼ assigning (umin, umax),
where

◼ umin is the time of
visiting a node

◼ umax is the time of
leaving a node

◼ Predicate is the same
as in the previous case

ORDPATH

 New level of
tree = new level
of numbering

 We use only
odd numbers

 The predicate
corresponds to
searching a
substring

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

ORDPATH – Insert

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.7

phone

 At the end directly

ORDPATH – Insert

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.-1

title

1.7

phone

 At the beginning using
negative numbers

ORDPATH – Insert

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.-1

title

1.7

phone

1.3.2

1.3.2.1

home

1.3.2.1.1

"1234"

1.3.2.3

home

1.3.2.3.1

"56789"

 In the middle using an
auxiliary node with
even number

XML Databases

 What we want: persistent storage of XML data

 General classification:
◼ Based on a file system

◼ Based on an object model

◼ Based on (object-)relational databases

 XML-enabled databases

 Exploit a mapping method between XML data and
relations

◼ Native XML databases

 Exploit a suitable data structure for hierarchical tree data

 Usually a set of numbering schemas

XML Databases

 The most efficient approaches are the native ones
◼ Reason: From the beginning they target the XML data

structure

 They are based on it

◼ Disadvantage: We need to start from scratch

 The databases are not only about storing the data,
but also transactions, versioning, multi-user access,
replication, …

 An alternative intuitive idea: Exploitation of a
mature and verified technology of (object-)
relational databases

Mapping Methods

 Methods for transformation between XML

data and relations

 Further classification:

A. Generic – mapping regardless XML schema of

the stored XML data

B. Schema-driven – mapping based on XML

schema of the stored XML data

 DTD, XML Schema

C. User-defined – mapping provided by the user

A. Generic Methods

 Do not exploit XML schema of the stored data
◼ Idea: Not all data have a schema

 Approaches:
1. A relational schema for a particular type of (collection

of) XML data

 e.g. Table-based mapping

2. A general relational schema for any type of (collection
of) XML data

 View XML data as a general tree

◼ We store the tree

 e.g. Generic-tree mapping, Structure-centred mapping,
Simple-path mapping

Table-based Mapping (1)

<Tables>

<Table_1>

<Row>

<Column_1>...</Column_1>

...

<Column_n>...</Column_n>

</Row>

...

</Table_1>

...

<Table_n>

<Row>

<Column_1>...</Column_1>

...

<Column_m>...</Column_m>

</Row>

...

</Table_n>

</Tables>

Table-based Mapping (2)

 Trivial case

 The schema is an implicit part of the data

◼ Only a limited set of documents can be stored

 Typical usage: data transfer among multiple

databases

 There exist also more complex schemas, but the

idea is the same

◼ Basically again usage of (an implicit) schema

Generic-tree Mapping (1)

 The target relational schema enables to store any

kind of XML data

◼ Regardless their XML schema

 XML document directed tree

◼ Inner nodes have an ID

◼ Leaves carry values of attributes or text nodes

◼ Outgoing edges of a node represent

subelements/attributes of the element represented by

ingoing edge of the same node

◼ Edges are labeled with element/attribute names

Generic-tree Mapping (2)

...

<person id=1 age=23>

 <name>Irena</name>

 <surname>Mlýnková</surname>

 <address id=2>

 <street>Podlesí 4943</street>

 <city>Zlín</city>

 </address>

</person>

<person id=3 age=30>

 <name>Jim</name>

 <surname>Beam</surname>

</person>

...

person person

1

2

age

3

23

age

30

name

Jim

surname

Beam

address

street
city

Podlesí 4943 Zlín

name

surname

Irena Mlýnková

Generic-tree Mapping (3)

 Edge mapping
◼ Edge (sourceID, order, label, type, targetID)

 Type: inner edge, element/attribute edge, …

Edge (..., (1, 2, "name", element, -1), ...

(1, 4, "address", inner, 2), ...)

 Attribute mapping
◼ Attribute = name of the edge
◼ Edgeattribute (sourceID, order, type, targetID)

Edgename(..., (1, 2, element, -1), ...

(3, 2, element, -1), ...)

!

Generic-tree Mapping (4)

 Universal mapping

◼ Uni (sourceID, ordera1, typea1, targetIDa1, ...

orderak, typeak, targetIDak)

 Outer join of tables from attribute mapping

 a1, ... ak are all the attribute names in the XML document

◼ Too many null values

 Normalized universal mapping

◼ The universal table contains for each name just one record

◼ Others (i.e. multi-value attributes) are stored in overflow
tables

 From edge mapping

Generic-tree Mapping (5)

 How do we store the leaf values?

1. Special value tables, each for each data type used

2. Value columns in the previous tables

 Many null values (for each data type an extra column)

 Or we ignore data types

 Other options

◼ Combination of previous approaches

◼ E.g. attribute mapping for frequent attributes and edge

mapping for other

Structure-centred Mapping (1)

 XML document directed tree

◼ All nodes have the same structure:

N = (t, l, c, n), where

 t is the type of node (i.e. ELEM, ATTR, TXT, ...)

 l is the label of node (if exists)

 c is text content of node (if exists)

 n = {N1, ... Nm} is (possibly empty) list of child nodes

 Variants of the algorithm = variants of storing the

list of child nodes

◼ Aim: efficient operations

Structure-centred Mapping (2)

1. Keys and foreign keys

◼ Each node is assigned with an ID (key) and ID

of its parent node (foreign key)

(+) Simple, efficient updates

(–) Inefficient queries (joins of many tables)

2. DF values

◼ Node ID = pair (DFmin, DFmax)

 DFmin = the time of visiting a node

 DFmax = the time of leaving a node

Structure-centred

Mapping (3)

(+) Efficient querying and reconstruction of a node

 E.g. v is a descendant of u, if umin < vmin and vmax < umax

 The nodes can be ordered totally

(–) Inefficient updates

 In the worst case we need to re-number the whole

tree

Node3 (29,30)

Node1 (27,40)

Node4 (32,33)Node2 (28,31) Node5 (34,39)

Node6 (35,36) Node7 (37,38)

...

Structure-centred

Mapping (4)

3. SICF (simple continued fraction) values

◼ SICF node identifier = , where qi N (i = 1, ... k)

 Sequence <q1, ... qk> identifies the node

◼ For root node: SICF ID = <s>, s > 1

◼ For all other nodes:

If node u has SICF ID = <q1, ... qm> and n child nodes u1, ... un,
then SICF ID of i-th child node is <q1, ... qm, i>

 Resembles to ORDPATH

 Does not have its advantages

◼ We do not use the “trick” with odd and even numbers

(+) we have a more precise structural information

(–) like in the previous case

Simple-path Mapping (1)

 Assumption: XPath queries

 Idea: We can store all paths to all nodes in the documents

◼ So-called simple paths

<SimpleAbsolutePathUnit> ::= <PathOp> <SimplePathUnit> |

<PathOp> <SimplePathUnit> ’@’ <AttName>

<PathOp> ::= ’/’

<SimplePathUnit> ::= <ElementType> |

<ElementType> <PathOp> <SimplePathUnit>

 Just a simple path is not sufficient information

◼ It does not contain information about position/order of node in
the document

Simple-path Mapping (2)

 Relational schema:

◼ Element (IDdoc, IDpath, Order, Position)

◼ Attribute (IDdoc, IDpath, Value, Position)

◼ Text (IDdoc, IDpath, Value, Position)

◼ Path (IDpath, Value)

 Order of an element within its sibling nodes

 Position of a word in a text is an integer value

 Position of a tag is a real number

◼ integral part = position of the closest preceding word

◼ decimal fraction = position within tags following the closest preceding
word

(+) Efficient processing of XPath queries

◼ Implementation of ‘//’ using SQL LIKE

B. Schema-driven Mapping (1)

 Based on existence of an XML schema
◼ Usually DTD or XML Schema

 Algorithm:
1. XML schema is mapped to relational schema

2. XML data valid against the XML schema are stored into
relations
◼ i.e., for data with different structure (XML schema) we

have a different relational schema

 Aim: We want to create an optimal schema with
"reasonable" amount of tables and null values
and which corresponds to the source XML
schema

B. Schema-driven Mapping (2)

 General characteristics of the algorithms:

1. For each element we create a relation consisting of its
attributes

2. Subelements with maximum occurrence of one are (instead
of to separate tables) mapped to tables of parent elements

 so-called inlining

3. Elements with optional occurrence → nullable columns

4. Subelements with multiple-occurrence → separate tables

 Element-subelement relationships are mapped using keys
and foreign keys

5. Alternative subelements →

 separate tables (analogous to the previous case) or

 one universal table (with many nullable fields)

B. Schema-driven Mapping (3)

5. Order of sibling elements (if necessary) → special column

6. Mixed-content elements usually not supported

 Would require many columns with nullable fields

7. Despite the previous optimizations a reconstruction of an

element requires joining several tables.

 Most of the techniques use an auxiliary graph

 Classification:

◼ Fixed methods – exploit information only from schema

 Basic, Shared and Hybrid

◼ Flexible methods – exploit other information

 LegoDB mapping, Hybrid object-relational mapping

Algorithms Basic, Shared and Hybrid (1)

 Continuous improvements of mapping a DTD to
relational schema
◼ One of the first approaches

 DTD graph – auxiliary structure for creation of a
relational schema
◼ Nodes = elements (occur 1x) / attributes / operators

◼ Directed edges = relationships element-subelement /
element-attribute / element-operator / operator-element

 Note: DTD is first "flattened" and simplified
◼ Contains only operators * and ? (+ → *, a|b → a?,b?)

◼ A classical trick

Algorithms Basic, Shared and Hybrid (2)

<!ELEMENT author(name?,surname)>

<!ELEMENT name(#PCDATA)>

<!ELEMENT surname(#PCDATA)>

<!ELEMENT book(author*,title)>

<!ATTLIST book published CDATA>

<!ELEMENT title(#PCDATA)>

<!ELEMENT article(author)>

<!ATTLIST article paper CDATA>

author

?

name

surname

book

title* published

article

paper

Algorithm Basic

 Naïve approach

 Rules:

1. For each element in the document create a separate relation

 Motivation: The root element can be any element in the DTD

2. For each element inline as many child nodes as possible

 We do not inline only child nodes of operator ‘*’ and recursive

subelements – they are stored in separate relations

(–) Too many relations

◼ E.g. for our sample element author we would create two

relations corresponding to two places of its usage within
book and article

!

Algorithm Shared

 Idea: We want to map each element only once

 Rules:
1. Nodes with an in-degree of one are inlined to parent relations.

2. Nodes with an in-degree of zero are stored in separate relations
◼ They are not reachable from any other node

3. Repeated elements are stored in separate relations.

4. Of all mutually recursive elements having an in-degree one, one of them is
stored in a separate relation.

5. The problem of inlined elements, which can become roots of an instance
XML document, is solved using a flag for each element that indicates this
situation.

 E.g. For our sample DTD graph we would create 3 relations
author, book, article

(–) The number of relations can be further reduced in some cases

Algorithm Hybrid

 Combination of maximum inlining of Basic and sharing in Shared

 Rules:

1. - 5. Same as in Shared

6. In addition, we inline elements with an in-degree greater than one,
that are neither recursive nor reached through a "*" node.

 E.g. in our sample DTD graph it does not have any effect, but if
book has only one author, it does

 Further extension:

◼ Storing of order of elements

 Into special columns

◼ Mapping of integrity constraints

 ?, list of values, ID, IDREF, IDREFS, ...

 [NOT] NULL, CHECK, UNIQUE, PRIMARY/FOREIGN KEY, ...

LegoDB Mapping (1)

 Idea: For the given XML schema we create a space of
possible mappings and we select the optimal one for the
given application

 Application:
◼ Sample XML documents

◼ Sample XML queries + their significance

 One step:
1. We apply a selected transformation on the given XML

schema Sold

◼ We get a new XML schema Snew

2. XML schema Snew is mapped (using a fixed method) to
relational schema Srel

3. Sample queries are evaluated with regard to Srel

4. Sold = Snew

LegoDB Mapping (2)

 The space of possible XML transformations is
infinite
◼ Heuristics, greedy search strategies, …

 XML transformations
◼ Inlining / outlining

◼ (a,(b|c)) = (a,b|a,c)

◼ (a+) = (a,a*)

◼ (a|b) (a?,b?)

◼ ~ = (a|(~!a)), where ~ means any element and ~!a any
element except for a

 The static mapping is similar to Hybrid algorithm

LegoDB Mapping (3)

(+) The most efficient mapping for the specified

application

(–) If the application changes (the user starts to

specify different queries)

◼ Efficiency can be worse than in case of a fixed mapping

◼ Modification of a schema is not an easy task

Hybrid Object-relational Mapping (1)

 Motivation: Data in XML documents are semi-structured →
classical decomposition of unstructured parts leads to
inefficient queries
◼ i.e., we create many tables which we have to join to retrieve the

data

 Solution
◼ Structured parts of the data are mapped into relations

◼ Unstructured parts are stored into special XML data types
 Data type for XML fragments

 Support for XML operations

 Motivation for SQL/XML data type XML

◼ or BLOB if we do not need XML operations

 Core problem of the algorithm: Which parts of the document
are unstructured?

Hybrid Object-relational Mapping (2)

 Approach:
1. Creating of DTD graph G1

2. For each node we evaluate the measure of
significance

3. Subgraphs denoted with unstructured nodes are
replaced with an auxiliary attribute for XML type →
DTD graph G2

1. The node is not a leaf

2. The node and its descendants have < LOD
◼ Level of detail

3. The node dose not have a parent node that would
satisfy the conditions

4. Graph G2 is statically mapped to a relational schema

Hybrid Object-relational Mapping (3)

 Meaning of the variables:

◼ S (weight derived from the DTD structure)

 The combination of values expressing the position of the

element/attribute in the graph

◼ D (weight derived from the existing XML data)

 The ratio of the number of documents containing the

element/attribute and the absolute number of documents

◼ Q (weight derived from the queries)

 The ratio of the number of queries containing the

element/attribute and the absolute number of queries

(+) and (–) like in the previous case

C. User-defined Mapping

 The whole mapping process is defined by the user

 Algorithm:

1. The user creates the target relational schema

2. The user specifies the required mapping (using a system-
dependent interface)

 Usually a declarative interface, annotations in XML
schemas, special query languages, ...

(+) The most flexible approach

◼ The user knows what (s)he wants

(–) The user must know several advanced technologies, the
definition of an optimal relational schema is not an easy task

User-driven Mapping (1)

 An attempt to solve the disadvantages of user-

defined mapping

 Idea: an implicit method + user-defined local

changes

◼ Annotation of schema = user denotes fragments

(subtrees) whose storage strategy should be modified

◼ Pre-defined set of allowed changes of mapping

 Usually a set of attributes and their values

 Example – system XCacheDB

User-driven Mapping – XCacheDB (2)

 INLINE – inline the fragment into parent table

 TABLE – store the fragment into a separate table

 BLOB_ONLY – store the fragment into a BLOB

column

 STORE_BLOB – store the fragment implicitly +

into a BLOB column

 RENAME – change the name of table of column

 DATATYPE – change the data type of the column

Current State of the Art of XML

Databases

 Native databases vs. XML-enabled databases

◼ The difference is fading away

 Oracle DB, IBM DB2, MS SQL Server – the storage is defined
by the user

◼ BLOB

◼ Native XML storage (typically parsed XML data + ORDPATH
numbering schema)

◼ Decomposition into relations – fixed schema-driven or user-
driven

 Currently user-driven annotations often denoted as obsolete

 Standard bridge between XML and relational world: SQL/XML

