MDK: Modern Database Concepts
http://www.ksi.mff.cuni.cz/~svoboda/courses/192-MDK/

Lecture 12

Graph Databases: Neodj: Cypher

Martin Svoboda
svoboda@ksi.mff.cuni.cz

6. 6. 2020

Charles University, Faculty of Mathematics and Physics
OTH Regensburg, Faculty of Computer Science and Mathematics

http://www.ksi.mff.cuni.cz/~svoboda/courses/192-MDK/
mailto:svoboda@ksi.mff.cuni.cz

Lecture Outline

Graph databases
* Introduction
Neodj
e Data model: property graphs

¢ Traversal framework
* Cypher query language
= Read, write, and general clauses

Neodj Graph Database

@yneoy)

Sample Data

Sample graph with movies and actors

(m1:MOVIE { id: "vratnelahve", title: "Vratné lahve", year: 2006 })
(m2:MOVIE { id: "samotari", title: "Samotafi", year: 2000 })
(m3:MOVIE { id: "medvidek", title: "Medvidek", year: 2007 })
(m4:MOVIE { id: "stesti", title: "Stésti", year: 2005 })

(a1:ACTOR { id: "trojan", name: "Ivan Trojan", year: 1964 })

(a2:ACTOR { id: "machacek", name: "Ji¥i Machaéek", year: 1966 })
(a3:ACTOR { id: "schneiderova", name: "Jitka Schneiderova", year: 1973 })
(a4:ACTOR { id: "sverak", name: "Zden&k Svérak", year: 1936 1})

(m1)-[c1:PLAY
(m1)-[c2:PLAY
(m2)-[c3:PLAY
(m2)-[c4:PLAY

role: "Robert Landa" }]->(a2)

role: "Josef Tkaloun" }]->(a4)

role: "Ondfej" }1->(al)

role: "Jakub" }]1->(a2)

(m2)-[c5:PLAY { role: "Hanka" }]->(a3)

(m3)-[c6:PLAY { role: "Ivan" }]->(al)

(m3)-[c7:PLAY { role: "Jirka", award: "Czech Lion" }]->(a2)

{
{
{
{
{
{

Cypher

Cypher
* Declarative graph query language
= Allows for expressive and efficient querying and updates
= Inspired by SQL (query clauses) and SPARQL (pattern matching)

* OpenCypher

= Ongoing project aiming at Cypher standardization
» http://www.opencypher.org/

Clauses
e E.g. MATCH, RETURN, CREATE, ...

* Clauses can be (almost arbitrarily) chained together
= Intermediate result of one clause is passed to a subsequent one

MDK: Modern Database Concepts | Lecture 12: Graph Databases: Neo4j: Cypher | 6. 6. 2020

http://www.opencypher.org/

Sample Query

Find names of actors who played in Medvidek movie

MATCH (m:MOVIE)-[r:PLAY]->(a:ACTOR)
WHERE m.title = "Medvidek"
RETURN a.name, a.year
ORDER BY a.year

Ivan Trojan 1964
Jiti Machacek 1966

Clauses

Read clauses and their sub-clauses
e MATCH - specifies graph patterns to be searched for
= WHERE — adds additional filtering constraints

Write clauses and their sub-clauses
* CREATE — creates new nodes or relationships

DELETE — deletes nodes or relationships

SET — updates labels or properties

REMOVE — removes labels or properties

MDK: Modern Database Concepts | Lecture 12: Graph Databases: Neo4j: Cypher | 6. 6. 2020

Clauses

General clauses and their sub-clauses

e RETURN — defines what the query result should contain

= ORDER BY — describes how the query result should be ordered
= SKIP — excludes certain number of solutions from the result
= LIMIT - limits the number of solutions to be included

e WITH - allows query parts to be chained together

Path Patterns

Path pattern expression
* Sequence of interleaved node and relationship patterns

* Describes a single path (not a general subgraph)
»T-

e ASCII-Art inspired syntax

= Circles () for nodes
= Arrows <--, ==, ==> for relationships

Path Patterns

Node pattern
* Matches one data node

O am @ - @

* Variable
= Allows us to access a given node later on
* Set of labels
= Data node must have all the specified labels to be matched

* Property map
= Data node must have all the requested properties (including
their values) to be matched (the order is unimportant)

Path Patterns

Property map

~@ @
@»
)
o/

Relationship pattern

* Matches one data relationship

e - lge

Path Patterns

Relationship pattern

O e L@?f ’
{

v

e Variable
= Allows us to access a given node later on
* Set of types

= Data relationship must be of one of the enumerated types
to be matched

Path Patterns

Relationship pattern (cont.)
¢ Property map
= Data relationship must have all the requested properties
* Variable path length

= Allows us to match paths of arbitrary lengths
(not just exactly one relationship)

-®
e @——

= Examples: *, *4, *x2. .6, . .6, *2. .

Path Patterns

Examples
0
] ©--

’(m:MUVIE)-->(a:ACTUR)

’(:MDVIE)——>(a { name: "Ivan Trojan" })

’(m)—[:PLAY { role: "Ivan" }1->(Q)

’(:ACTDR { name: "Ivan Trojan" })-[:KNOW *2]->(:ACTOR)

|

|

|

|
’()<—[r:PLAY]-()

|

|

’()-[:KNUW *5..1->(f)

Match Clause

MATCH clause

* Allows to search for sub-graphs of the data graph that match
the provided path pattern / patterns (all of them)

= Query result (table) = unordered set of solutions
= One solution (row) = set of variable bindings

e Each variable has to be bound

T ﬂ»@»f _W
~

o/

(

D) e

Match Clause

WHERE sub-clause may provide additional constraints

* These constraints are evaluated directly during the matching
phase (i.e. not after it)
e Typical usage
= Boolean expressions

= Comparisons
= Path patterns — true if at least one solution is found

Match Clause: Example

Find names of actors who played with Ivan Trojan in any movie

MATCH (i:ACTOR)<-[:PLAY]-(m:MOVIE)-[:PLAY]->(a:ACTOR)
WHERE (i.name = "Ivan Trojan")
RETURN a.name

MATCH (i:ACTOR { name: "Ivan Trojan" 1})
<-[:PLAY]-(m:MOVIE)-[:PLAY]->
(a:ACTOR)
RETURN a.name

i m a
(a1) (m2) (a2) - Jifi Machacek
(a1) (m2) (a3) Jitka Schneiderova
(a1) (m3) (a2) Jifi Machacek

Match Clause

Unigqueness requirement

* One data node may match several query nodes, but one data
relationship may not match several query relationships

OPTIONAL MATCH

* Attempts to find matching data sub-graphs as usual...
e but when no solution is found,

one specific solution with all the variables bound to NULL
is generated

* Note that
either the whole pattern is matched, or nothing is matched

MDK: Modern Database Concepts | Lecture 12: Graph Databases: Neo4j: Cypher | 6. 6. 2020 19

Match Clause: Example

Find movies filmed in 2005 or earlier and names of their actors
(if any)

MATCH (m:MOVIE)

WHERE (m.year <= 2005)
OPTIONAL MATCH (m)-[:PLAY]->(a:ACTOR)
RETURN m.title, a.name

- m 2
m (m2) (a1) Samotafi Ivan Trojan
(m2) = | (m2) (a2) | = Samotafi Jifi Machacek
(m4) (m2) (a3) Samotafi Jitka Schneiderova
(m4) | NULL Stésti NULL

Return Clause

RETURN clause

* Defines what to include in the query result

= Projection of variables, properties of nodes or relationships
(via dot notation), aggregation functions, ...

e Optional ORDER BY, SKIP and LIMIT sub-clauses

L av—wa —T
(
R N N

RETURN DISTINCT
* Duplicate solutions (rows) are removed

Return Clause

Projection
* x = all the variables
= Can only be specified as the very first item
* AS allows to explicitly (re)name output records

AW . | 7
e

\»»ﬂ
)

Return Clause

ORDER BY sub-clause

* Defines the order of solutions within the query result

= Multiple criteria can be specified
= Default direction is ASC

e The order is undefined unless explicitly defined
* Nodes and relationships as such cannot be used as criteria

ASCENDING
DESCENDING

)
o/

Return Clause

SKIP sub-clause

e Determines the number of solutions to be skipped
in the query result

K».—» expression >0

LIMIT sub-clause

¢ Determines the number of solutions to be included
in the query result

H-+ expression [>o

With Clause

WITH clause
¢ Constructs intermediate result

= Analogous behavior to the RETURN clause
= Does not output anything to the user,
just forwards the current result to the subsequent clause

e Optional WHERE sub-clause can also be provided

R

(

- s e |
(

- @D L opresion -

With Clause: Example

Numbers of movies in which actors born in 1965 or later played

MATCH (a:ACTOR)

WHERE (a.year >= 1965)
WITH a, SIZE((a)<-[:PLAY]-(m:MOVIE)) AS movies
RETURN a.name, movies

ORDER BY movies ASC

(a2) | = | (a2) 3 = | lJitka Schneiderova 1
(a3) (a3) 1 Jifi Machacek 3

Query Structure

Chaining of Cypher clauses (simplified)

[: UNWIND clause MERGE clause

—

* Read clauses: MATCH, ...
e Write clauses: CREATE, DELETE, SET, REMOVE, ...

Query Structure

Query parts
* WITH clauses split the whole query into query parts
» Certain restrictions apply...

= Read clauses (if any) must precede write clauses (if any)
in every query part
= The last query part must be terminated by a RETURN clause
— Unless this part contains at least one write clause
— l.e. read-only queries must return data

Write Clauses

CREATE clause
* Inserts new nodes or relationships into the data graph

~(ereate) \'@I_T
O

MATCH (m:MOVIE { id: "stesti"})

CREATE
(a:ACTOR { id: "vilhelmova", name: "Tatiana Vilhelmova", year: 1978}),
(m)-[:PLAY]->(a)

Example

Write Clauses

DELETE clause
* Removes nodes, relationships or paths from the data graph

» Relationships must always be removed before the nodes
they are associated with

= Unless the DETACH modifier is specified

D—ﬁ expression °

Example

MATCH (:MOVIE { id: "stesti"})-[r:PLAY]->(a:ACTOR)
DELETE r

Write Clauses

SET clause

e Allows to...
= set a value of a particular property
— orremove a property when NULL is assigned
= replace properties (all of them) with new ones
= add new properties to the existing ones
= add labels to nodes

e Cannot be used to set relationship types

o> +®+Cproperty key}»@—»[expression
Cvariable}»@»[expression]
(aae)~(D)+(2)-~[opression]

Write Clauses

REMOVE clause
¢ Allows to...

= remove a particular property
= remove labels from nodes

e Cannot be used to remove relationship types

o> variable)—»@—»(property key)
)

o/

Expressions

Literal expressions
* Integers: decimal, octal, hexadecimal
* Floating-point numbers
e Strings

= Enclosed in double or single quotes
= Standard escape sequences

e Boolean values: true, false
e NULL value (cannot be stored in data graphs)
Other expressions

» Collections, variables, property accessors, function calls,
path patterns, boolean expressions, arithmetic expressions,
comparisons, regular expressions, predicates, ...

MDK: Modern Database Concepts | Lecture 12: Graph Databases: Neo4j: Cypher | 6. 6. 2020 33

Lecture Conclusion

Neodj = graph database
* Property graphs
* Traversal framework
= Path expanders, uniqueness, evaluators, traverser

Cypher = graph query language
* Read (sub-)clauses: MATCH, WHERE, ...
e Write (sub-)clauses: CREATE, DELETE, SET, REMOVE, ...
e General (sub-)clauses: RETURN, WITH, ORDER BY, LIMIT, ...

	Outline
	Neo4j
	Sample Data
	Cypher Language
	Path Patterns
	Match Clause
	Return Clause
	With Clause
	Query Structure
	Write Clauses
	Expressions

	Conclusion

