BOB36DBS, BD6B36DBS: Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/192-BOB36DBS/

Lecture 2

Relational Model

Martin Svoboda
martin.svoboda@fel.cvut.cz

25. 2. 2020

Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/192-B0B36DBS/
mailto:martin.svoboda@fel.cvut.cz

Lecture Outline

* Logical database models
= Basic overview

* Model-Driven Development

* Relational model
= Description and features

= Transformation of ER / UML conceptual schemas

Logical Database Models

Layers of Database Modeling

Abstraction

e Conceptual layer

= Models a part of the structured real world relevant for
applications built on top of our database
* Logical layer
= Specifies how conceptual components (i.e. entity
types, relationship types, and their characteristics)

are represented in logical data structures that are
interpretable by machines

e Physical layer

v = Specifies how logical database structures are
implemented in a specific technical environment

Implementation

Logical Layer

* What are these logical structures?

* Formally...
— Sets, relations, functions, graphs, trees, ...
* l.e. traditional and well-defined mathematical structures
= Orin a more friendly way...
— Tables, rows, columns, ...
— Objects, pointers, ...
— Collections, ...

Logical Models

* Models based on tables

= Structure E———
— Rows for entities

X T 1 1]
— Columns for attributes

* Operations
— Selection, projection, join, ...
= Examples
— Relational model
— ... and various derived table models introduced by:

* SQL (as it is standardized)
* and particular implementations like Oracle, MySQL, ...

Logical Models

* Models based on objects -
= Structure 7/

— Objects with attributes \:\\‘> < /
. . ||
— Pointers between objects o
= Motivation
— Object-oriented programming (OOP)
— Encapsulation, inheritance, ...
= Operations
— Navigation

Logical Models

* Models based on graphs

= Structure ‘/I\
— Vertices, edges, attributes

= Operations
— Traversals, pattern matching, graph algorithms
= Examples

— Network model (one of the very first database models)

— Resource Description Framework (RDF)
— Neod4j, InfiniteGraph, OrientDB, FlockDB, ...

Logical Models

* Models based on trees

= Structure ‘A
— Vertices with attributes “

|

— Edges between vertices é
= Motivation

— Hierarchies, categorization, semi-structured data
= Examples

— Hierarchical model (one of the very first database models)

— XML documents

— JSON documents

Overview of Logical Models

» There are plenty of (different / similar) models

— The previous overview was intended just as an insight into
some of the basic ideas and models

= Hierarchical, network, relational, object, object-
relational, XML, key-value, document-oriented,
graph, ...
* Why so many of them?
= Different models are suitable in different situations

= Not everything is (yet) standardized,
proprietary approaches or extensions often exist

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020

10

Logical Modeling

» Step 1: Selection of the right logical model

[Conceptual schema]

— ? —

Relational model RDF model
XML model

* Note that...
= Relational model is not always the best solution

Logical Modeling

» Step 1: Selection of the right logical model

= According to...
— Data characteristics
* True nature of real-world entities and their relationships
— Query possibilities
* Available access patterns, expressive power, ...
— Intended usage
* Storage (JSON data in document-oriented databases, ...)
* Exchange (XML documents sent by Web Service, ...)
* Publication (RDF triples forming the Web of Data, ...)

— ldentified requirements

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020 12

Logical Modeling

» Step 2: Creation of a logical schema

[Conceptual schema]

Relational schema XML schema OWL ontology

I

Logical Modeling

» Step 2: Creation of a logical schema
= Goal
— Transformation of a conceptual schema to a logical one
= Real-world applications often need multiple schemas
— Focus on different parts of the real world
— Serve different components of the system
— Even expressed in different logical models

= Challenge: can this be achieved automatically?
* Or at least semi-automatically?

— Answer: Model-Driven Development

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020

14

Model-Driven Development (MDD)

Model-Driven Development

* MDD

= Software development approach

— Executable schemas instead of executable code

* l.e. schemas that can be automatically (or at least semi-
automatically) converted to executable code

— Unfortunately, just in theory... recent ideas, not yet fully
applicable in practice today (lack of suitable tools)

e MDD principles can be used for database modeling as well

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020

16

Terminology

* Levels of abstraction
= Platform-Independent Level } -

V(E;nceptﬁgl
— Hides particular platform-specific details

= Platform-Specific Level
— Maps the conceptual schema (or its part) RN
to a given logical model / \

— Adds platform-specific details [Logical

= Code Level L

— Expresses the schema in a selected
machine-interpretable logical language A

—SQL, XML Schema, OWL, ...

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020

layer 4

Real-World Example

* Information System for Public Procurement

= http://www.isvzus.cz/

= There are several logical models used:
— Relational data model
* for data storage
— XML data model

* for exchanging data with information systems of public
authorities which issue public contracts

— RDF data model

* for publishing data on the Web of Linked Data in a machine-
readable form (at least this is a goal...)

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020 18

Real-World Example

* Platform-independent schema

+tenderingSupplier
Organization Address
0.* 0.1 1
- legalName . - streetName
. officialNumber FawardedSupplier - streetNumber
0.1 - city
Tender +contractingAuthority |1 - country
- estimatedEndDate T +mainAddress| 1 0.1
- offeredPrice +tenderAddress
+issuedContract |0..*
+tenderedContract +suppliedContract
Contract
0.x 0.*
- referenceNumber
- title
- description 0.1
ItemType - mainObject
~ - additionalObject [0..*]
- ;:i(tJlie 0.% 0.*| . garDate 0.1
- endDate
- estimatedPrice +lot 0..*
- agreedPrice
- actualPrice
- numberOfTenders
parentContract 1

Real-World Example

* Platform-specific schema: relational model

organization 5K Omanizaion_ Address
e o
“leganame unnouo
+PK_oganizair| | Olllatumber. NUvEE (addossta §addressit
= ‘o Speiasions NOMEERG) +PK_Omganizaton i
o 7| K addressd: NUMBERS) e
T
tenderngSuppiied = rgaizatonid) — <pk_pddres\/1
P oyt NG P
5 _Tender_organization|o. P omanizaton(WUMBER) =
-~ cuniauen arsetname: VARCHARZ(S0)
Tend +" U oganization ! arcatmumber
. s o VARCHARaGD)
= e urcuraci
! csimatedendoate: DATE
redpico: NOMBER) (varsedsuppiier P s, NBERO)
P e NoWGER
o 45K Contact_Organization|o T
X anderadConacad; NMBER®). Conact ERNE
T K Addes,
— T P adares P pares /| 2
e T Tender_conmacipunmeER) N amncsNumier: MMBERE] .
L RTenan orpnamonoMBERY + il VARCHARZG0) [—
T e seaspton: cioB [CR——
code: s - + anowe
e VARCHAR2(0) KT b + endate e _Contact_Adaress
P Tender_comact | 0.7 * CaimaiodPico: NUMBERG)
s e agreedPrice: NUMBER) o
e temType MRAEER] actualPice. NUMBERE) +Fx_Conact_Adaress
ok contm NOMBERE)
fera— PROON s contrctd: NUMBER(S) o
o 7| convactnpaunoriya: NuEERE)
o= P oS
s P mainAddresid: NUMBERE)
K tonderkddresd: NUMBERE) p—
0 | uex_tom_emype G2 il
fem FKn
= K _Contc Addo=(UMBER)
= P Contmct
+ " code: NUMBER®) < tem_contact Pk Comact_ |, p Contat s
7 convactid: NUMBER(E) .- = >/ 1 P Contaa_ Organizaton NMBER)
— Cconactyemnacty + FK ContactOrganization(NUMBER)
¢ Pt ConagusEn) 5 T Convael ot
7 e Conec - P conmarunsen) o
Frr
U0, contmct ferncenumben)

Real-World Example

» Platform-specific schema: relational model

= Notes to the previous UML diagram

— Itis a UML class diagram
* But enhanced with features for modeling logical schemas in
(object-)relational model
— Stereotypes allow us to add specific semantics to basic
constructs (class, attribute, association), e.g.,
* <<table>> specifies that a class represents a table
* <<PK>> specifies that an attribute models a primary key

* <<FK>> specifies that an attribute/association models a
foreign key

° etc.

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020 21

Real-World Example

e Code level: SQL (snippet)

CREATE TABLE Contract (
referenceNumber NUMBER (8) NOT NULL,
title VARCHAR2 (50) NOT NULL,
description CLOB,
startDate DATE NOT NULL,
endDate DATE NOT NULL,
estimatedPrice NUMBER(9) NOT NULL,

)i

ALTER TABLE Contract ADD CONSTRAINT PK_Contract
PRIMARY KEY (contractId);

ALTER TABLE Contract ADD CONSTRAINT FK_Contract_Address
FOREIGN KEY (mainAddressId) REFERENCES Address (addressId);

CREATE TABLE Organization(...);

Real-World Example

e Code level: SQL (snippet)

= The previous code was generated fully automatically
— from a platform-specific diagram
* It has to contain all the necessary information
— using a CASE tool (Computer-Aided Software Engineering)
* Which can detect errors and

* helps with the specification

Real-World Example

<2xml version="1.0" encoding="UTE-8™
caites wich RiLSpy vi01z =pl khc:g / /. altova.com) by I (Charles |
2/ /v 3. 07/ 2001 /LS chema”>
e conpiexType nane-vaddresstypers
x3:3equence>
<xaiels

e XML

ement name=vstreeciamen/>

lement name=tstreeciumber”/>

lement name=vcity"/>

<xsielement name=tcountzy®/>

</xs:sequence>

omplexTyp

<xs:conplexType name=!
<xasseuenes

objectTypen>

sielement mames"code" type=txaiint®/>

/xs: sequence>

concractType">

{endciadres
:

|
!

+issuedContract [0..*
«dContract

</xs:sequence>

+suppliedContract

scomplexType>

- Frumberortenders
 referenceNumber rcqn‘ruﬂ'ype
- title __ |

- description 0.1 {8 stroutes |
- mainObject 4

additionalObject [0.."]
0.*(- startDate
- endDate
- esimatedPrice +lot 0.
- agreedPrice

- actualPrice

- numberOfTenders

+parentContract 1

Relational Model

Relational Model

¢ Relational model

= Allows to store entities, - ———
relationships, and their
attributes in relations =
* Founded by E. F. Codd in 1970
e Informally...

= Table = collection of rows, each row represents one
entity, values of attributes are stored in columns

= Tables are more intuitive,
but conceal important mathematical background

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020 26

Relational Model

» Definitions and terminology

= Schema of a relation
— Description of a relational structure (everything except data)
-S(A,:Ty, A,:T,, ..., A:T))
* Sisaschemaname
A, are attribute names and T, their types (attribute domains)
* Specification of types is often omitted
— Example:
* Person (personalld, firstName, lastName)
= Schema of a relational database

— Set of relation schemas (+ integrity constraints, ...)

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020

27

Relational Model

» Definitions and terminology for data

* Relation
— Subset of the Cartesian product of attribute domains T;
* l.e. relation is a set
— Items are called tuples

= Relational database
— Set of relations

Relational Model

e Basic requirements (or consequences?)

= Atomicity of attributes

— Only simple types can be used for domains of attributes
= Uniqueness of tuples

— Relation is a set, and so two identical tuples cannot exist
* Undefined order

— Relation is a set, and so tuples are not mutually ordered
= Completeness of values

— There are no holes in tuples, i.e. all values are specified

* However, special NULL values (well-known from relational
databases) can be added to attribute domains

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020

29

Integrity Constraints

* Identification
— Every tuple is identified by one or more attributes

= Superkey = set of such attributes
— Trivial and special example: all the relation attributes

= Key = superkey with a minimal number of attributes

— |.e. no attribute can be removed so that the identification
ability would still be preserved

— Multiple keys may exist in one relation

* They even do not need to have the same number of attributes
— Notation: keys are underlined

* Relation(Key, CompositeKeyPartl, CompositeKeyPart2, ...)

* Note the difference between simple and composite keys

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020 30

Integrity Constraints

* Referential integrity

= Foreign key = set of attributes of the referencing
relation which corresponds to a (super)key of the
referenced relation
— It is usually not a (super)key in the referencing relation
— Notation

* ReferencingTable.foreignKey € ReferencedTable.Key

 foreignKey € ReferencedTable.Key

Sample Relational Database

* Schema
Course(Code, Name, ...)
Schedule(ld, Event, Day, Time, ...), Event € Course.Code

e Data

ﬂﬁ-!

A7B36DBS | THU 11:00

3 A7B36DBS | THU 14:30
A7B36DBS | Database systems
4 A7B36XML| FRI 09:15

A7B36XML| XML technologies
A7B36PSI | Computer networks

Relations vs. Tables

* Tables
= Table header ~ relation schema
* Row ~ tuple
* Column ~ attribute
* However...
= Tables are not sets, and so...

— there can be duplicate rows in tables
— rows in tables can be ordered
= |.e. SQL and existing RDBMS do not (always) follow the
formal relational model strictly

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020 33

Object vs. (Object-)Relational Model

* Relational model

= Data stored in flat tables

= Suitable for data-intensive batch operations
* Object model

= Data stored as graphs of objects

= Suitable for individual navigational access to entities
* Object-Relational model

= Relational model enriched by object elements
— Attributes may be of complex data types
— Methods can be defined on data types as well

BOB36DBS, BD6B36DBS: Database Systems | Lecture 02: Relational Model | 25.2.2020 34

Transformation of UML / ER to RM

Conceptual Schema Transformation

e Basicidea

= What we have

— ER: entity types, attributes, identifiers, relationship types,
ISA hierarchies

— UML: classes, attributes, associations
= What we need

— Schemas of relations with attributes, keys, and foreign keys
= How to do it

— Classes with attributes — relation schemas

— Associations — separate relation schemas or together with
classes (depending on cardinalities...)

Classes

* Class —
= Separate table ~ personalNumber

- address
- age

Person

— Person(personalNumber, address, age)

= Artificial keys
— Artificially added integer identifiers
* with no correspondence in the real world
* but with several efficiency and also design advantages
* usually automatically generated and assigned

— Person(personld, personNumber, address, age)

Attributes
e Multivalued attribute —

= Separate table

— Person(personalNumber)
Phone(personalNumber, phone)

Person

- personalNumber
- phone: String [1..%]

Phone.personalNumber € Person.personalNumber

Attributes

* Composite attribute —

address

= Separate table T

— Person(personalNumber)
Address(personalNumber, street, city, country)
Address.personalNumber € Person.personalNumber

= Sub-attributes can also be inlined
— But only in case of (1,1) cardinality
— Person(personNumber, street, city, country)

Binary Associations

e Multiplicity (1,1):(1,1) »

Person

Mobile

- personalNumber
- address
- age

= Three tables (basic approach)

-

- serialNumber
- color

— Person(personalNumber, address, age)

Mobile(serialNumber, color)

Ownership(personalNumber, serialNumber)

Ownership.personalNumber € Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

Binary Associations

e Multiplicity (1,1):(1,1) »

Person Mobile
- personalNumber - serialNumber
- address 1 1. color
- age
= Single table

— Person(personalNumber, address, age, serialNumber, color)

Binary Associations

e Multiplicity (1,1):(0,1) —

Person Mobile
- personalNumber - serialNumber
- address 1. color
- age
= Two tables

— Person(personalNumber, address, age, serialNumber)
Person.serialNumber € Mobile.serialNumber
Mobile(serialNumber, color)

— Why not just 1 table?

* Because a mobile phone can exist independently of a person

Binary Associations

e Multiplicity (0,1):(0,1) —

Person Mobile

: zzcrjs;r:INumber : :):i;lNumber

- age

®= Three tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber € Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

— Note that a personal number and serial number are both
independent keys in the Ownership table

Binary Associations

e Multiplicity (1,n)/(0,n):(1,1) —

Person Mobile
- personalNumber - serialNumber
- address @ L5 color
- age
= Two tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color, personalNumber)
Mobile.personalNumber € Person.personalNumber

— Why a personal number is not a key in the Mobile table?
* Because a person can own more mobile phones

Binary Associations

¢ Multiplicity (1,n)/(0,n):(0,1) —

Person Mobile

- personalNumber - serialNumber
- address 1. color

- age

®= Three tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber S Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

— Why a personal number is not a key in the Ownership table?
* Because a person can own more mobile phones

Binary Associations

e Multiplicity (1,n)/(0,n):(1,n)/(0,n) —

Person Mobile

- personalNumber - serialNumber
- address @ @ - color
- age

®= Three tables

— Person(personalNumber, address, age)
Mobile(serialNumber, color)
Ownership(personalNumber, serialNumber)
Ownership.personalNumber € Person.personalNumber
Ownership.serialNumber € Mobile.serialNumber

— Note that there is a composite key in the Ownership table

Attributes of Associations
e Attribute of an association —

= Stored together with
a given association table

— Person(personNumber, name)
Team(name, url)
Member(personNumber, name, from, to)

Person

- personNumber
- name

+has_member| 1..*

ber_of| 0..*

Member

|- from
- to

Team

- name
-l

Member.personNumber € Person.personNumber

Member.name € Team.name

= Multivalued and composite attributes are transformed
analogously to attributes of ordinary classes

General Associations

Person

* N-ary association — et

0..%

0.*

= Universal solution: woter T
N tables for classes + i
1 association table
— Person(personNumber) il
Project(projectNumber)
Team(name)
Worker(personNumber, projectNumber, name)
Worker.personNumber € Person.personNumber
Worker.projectNumber S Project.projectNumber
Worker.name € Team.name

= Less tables? Yes, in case of nice (1,1) cardinalities...

Team

Hierarchies

* ISA hierarchy —

- personalNumber
- name

= Universal solution: /4 b\
separate table for each type
with specific attributes only —

— Person(personalNumber, name)
Professor(personalNumber, phone)
Student(personalNumber, studiesFrom)

Professor.personalNumber € Person.personalNumber
Student.personalNumber € Person.personalNumber

Student

- sudiesFrom

— Applicable in any case (w.r.t. covering / overlap constraints)
— Pros: flexibility (when attributes are altered)
— Cons: joins (when full data is reconstructed)

Hierarchies

* ISA hierarchy —

= Only one table for a hierarchy source

— Person(personalNumber, name, phone, studiesFrom, type)

— Universal once again, but not always suitable
* Types of instances are distinguished by an artificial attribute

» Enumeration or event a set
depending on the overlap constraint

— Pros: no joins
— Cons: NULL values required (and so it is not a nice solution)

Hierarchies

* ISA hierarchy —

= Separate table for each leaf type

— Professor(personalNumber, name, phone)
Student(personalNumber, name, studiesFrom)

— This solution is not always applicable
* In particular when the covering constraint is false
— Pros: no joins
— Cons:
* Redundancies (when the overlap constraint is false)
* Integrity considerations (uniqueness of a personal number)

Weak Entity Types

* Weak entity type — code

= Separate table

— Institution(name)

Team(code, name) neme
Team.name € Institution.name

— Recall that the cardinality must always be (1,1)

— Key of the weak entity type involves also a key (any when
more available) from the entity type it depends on

