NDBI040: Modern Database Concepts

http://www.ksi.mff.cuni.cz/~svoboda/courses/191-NDBI040/

Advanced Aspects

Lecturer: Martin Svoboda, author: Irena Holubová svoboda@ksi.mff.cuni.cz

17. 12. 2019

Charles University, Faculty of Mathematics and Physics

Graph Databases A bit of theory

- Data: a set of entities and their relationships
 - $\hfill\square$ e.g., social networks, travelling routes, \dots
 - We need to efficiently represent graphs
- Basic operations: finding the neighbours of a node, checking if two nodes are connected by an edge, updating the graph structure, ...

We need efficient graph operations

• G = (V, E) is commonly modelled as

- $\hfill\square$ set of nodes (vertices) $\hfill V$
- □ set of edges *E*

 \square n = |V|, m = |E|

Which data structure should be used?

Adjacency Matrix

Bi-dimensional array A of n x n Boolean values
 Indexes of the array = node identifiers of the graph
 The Boolean junction A_{ij} of the two indices indicates whether the two nodes are connected

Variants:

- Directed graphs
- Weighted graphs

□ ...

Adjacency Matrix

Pros:

- □ Adding/removing edges
- Checking if two nodes are connected
- Cons:
 - Quadratic space with respect to n
 - We usually have sparse graphs → lots of 0 values
 - $\hfill\square$ Addition of nodes is expensive
 - Retrieval of all the neighbouring nodes takes linear time with respect to n

Adjacency List

 A set of lists where each accounts for the neighbours of one node

□ A vector of *n* pointers to adjacency lists

- Undirected graph:
 - An edge connects nodes i and j => the list of neighbours of i contains the node j and vice versa
- Often compressed
 - Exploitation of regularities in graphs, difference from other nodes, ...

Adjacency List

- $N1 \rightarrow \{N2, N3\}$
- N2 → {N1, N3, N5}
- N3 → {N1, N2, N5}
- N4 → {N2, N6}

N5 → {N2, N3}

 $N6 \rightarrow \{N4\}$

Pros:

- Obtaining the neighbours of a node
- Cheap addition of nodes to the structure
- More compact representation of sparse matrices

Cons:

- Checking if there is an edge between two nodes
 - Optimization: sorted lists => logarithmic scan, but also logarithmic insertion

Incidence Matrix

- Bi-dimensional Boolean matrix of *n* rows and *m* columns
 - □ A column represents an edge
 - Nodes that are connected by a certain edge
 - □ A row represents a node
 - All edges that are connected to the node

Incidence Matrix

pros:

 For representing hypergraphs, where one edge connects an arbitrary number of nodes

 $\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$

Cons:

 \Box Requires *n x m* bits

Laplacian Matrix

- Bi-dimensional array of *n x n* integers
 Diagonal of the Laplacian matrix indicates the degree of the node
 The rest of positions are set to -1 if the two
 - vertices are connected, 0 otherwise

Laplacian Matrix

Pros:

- Allows analyzing the graph structure by means of spectral analysis
 - Calculates the eigenvalues

Graph Traversals Single Step

- Single step traversal from element *i* to element *j*, where *i*, *j* ∈ (V ∪ E)
- Expose explicit adjacencies in the graph
 - $\Box e_{out}$: traverse to the outgoing edges of the vertices
 - \Box e_{in} : traverse to the incoming edges of the vertices
 - \Box v_{out}: traverse to the outgoing vertices of the edges
 - \Box v_{in} : traverse to the incoming vertices of the edges
 - $\Box e_{lab}$: allow (or filter) all edges with the label
 - $\Box \in$: get element property values for key r
 - \Box e_p : allow (or filter) all elements with the property s for key r
 - $\Box \in =:$ allow (or filter) all elements that are the provided element

Graph Traversals Composition

 Single step traversals can compose complex traversals of arbitrary length

□ e.g., find all friends of Alberto

"Traverse to the outgoing edges of vertex *i* (representing Alberto), then only allow those edges with the label *friend*, then traverse to the incoming (i.e. head) vertices on those *friend*-labeled edges.
 Finally, of those vertices, return their *name* property."

$$f(i) = (\in^{name} \circ v_{in} \circ e_{lab}^{friend} \circ e_{out})(i)$$

Improving Data Locality

- Idea: take into account computer architecture in the data structures to reach a good performance
 - The way data is laid out physically in memory determines the locality to be obtained
 - Spatial locality = once a certain data item has been accessed, the nearby data items are likely to be accessed in the following computations
 - e.g., graph traversal
- Strategy: in graph adjacency matrix representation, exchange rows and columns to improve the cache hit ratio

Breadth First Search Layout (BFSL)

- Trivial algorithm
- Input: sequence of vertices of a graph
- Output: a permutation of the vertices which obtains better cache performance for graph traversals
- BFSL algorithm:
 - 1. Selects a node (at random) that is the origin of the traversal
 - 2. Traverses the graph following a breadth first search algorithm, generating a list of vertex identifiers in the order they are visited
 - 3. Takes the generated list and assigns the node identifiers sequentially
- Pros: optimal when starting from the selected node
- Cons: starting from other nodes

Bandwidth of a Matrix

■ Graphs ↔ matrices

Locality problem = minimum bandwidth problem

Bandwidth of a row in a matrix = the maximum distance between nonzero elements, with the condition that one is on the left of the diagonal and the other on the right of the diagonal

Bandwidth of a matrix = maximum of the bandwidth of its rows

- Matrices with low bandwidths are more cache friendly
 Non zero elements (edges) are clustered across the diagonal
 - Non zero elements (edges) are clustered across the diagonal
- Bandwidth minimization problem (BMP) is NP hard
 For large matrices (graphs) the solutions are only approximated

1	0 1 0 0 1 0 1	0	0	1	0	0	0
0	1	1	0	0	1	0	1
0	1	1	0	1	0	0	0
0	0	0	1	0	0	1	0
1	0	1	0	1	0	0	0
0	1	0	0	0	1	0	1
0	0	0	1	0	0	1	0
0	1	0	0	0	1	0	1

Cuthill-McKee (1969)

 Popular bandwidth minimization technique for sparse matrices

- Re-labels the vertices of a matrix according to a sequence, with the aim of a heuristically guided traversal
- Algorithm:
 - 1. Node with the first identifier (where the traversal starts) is the node with <u>the smallest degree</u> in the whole graph
 - 2. Other nodes are labeled sequentially as they are visited by BFS traversal
 - $\hfill\square$ In addition, the heuristic prefers those nodes that have the smallest degree

Graph Partitioning

- Some graphs are too large to be fully loaded into the main memory of a single computer
 - Usage of secondary storage degrades the performance of graph applications
 - Scalable solution <u>distributes</u> the graph on multiple computers
- We need to partition the graph reasonably
 - □ Usually for particular (set of) operation(s)
 - □ The shortest path, finding frequent patterns, BFS, spanning tree search, ...

One and Two Dimensional Graph Partitioning

- Aim: partitioning the graph to solve <u>BFS</u> more efficiently
 - Distributed into shared-nothing parallel system
 - □ Partitioning of the <u>adjacency matrix</u>

1D partitioning

- Matrix rows are randomly assigned to the P nodes (processors) in the system
- Each vertex and the edges emanating from it are owned by one processor

One and Two Dimensional Graph Partitioning

BFS with 1D partitioning

- Input: starting node s having level 0
- Output: every vertex v becomes labeled with its level, denoting its distance from the starting node
- 1. Each processor has a set of frontier vertices F
 - At the beginning it is node s where the BFS starts
- 2. The edge lists of the vertices in *F* are merged to form a set of neighbouring vertices *N*
 - Some owned by the current processor, some by others
- Messages are sent to all other processors to (potentially) add these vertices to their frontier set F for the next level
 - A processor may have marked some vertices in a previous iteration => ignores messages regarding them

One and Two Dimensional Graph Partitioning

2D partitioning

- Processors are logically arranged in an R x C processor mesh
- Adjacency matrix is divided C block columns and R x C block rows
- Each processor owns C blocks
- Note: 1D partitioning = 2D partitioning with C = 1 (or R = 1)
- Consequence: each node communicates with at most R + C nodes instead of all P nodes
 - $\hfill\square$ In step 2 a message is sent to all processors in the same row
 - □ In step 3 a message is sent to all processors in the same column

Partitioning of vertices: Processor (i, j) owns vertices corresponding to block row $(j-1) \times R + i$

$$A_{i,j}^{(*)}$$

= block owned by processor (i,j)

Types of Graphs

Single-relational

Edges are homogeneous in meaning

e.g., all edges represent friendship

Multi-relational (property) graphs

Edges are typed or labeled

- e.g., friendship, business, communication
- Vertices and edges in a property graph maintain a set of key/value pairs
 - Representation of non-graphical data (properties)
 - e.g., name of a vertex, the weight of an edge

Graph Databases

- A graph database = a set of graphs
- Types of graphs:
 - Directed-labeled graphs
 - e.g., XML, RDF, traffic networks
 - Undirected-labeled graphs
 - e.g., social networks, chemical compounds
- Types of graph databases:
 - Non-transactional = few numbers of very large graphs
 - e.g., Web graph, social networks, ...
 - Transactional = large set of small graphs
 - e.g., chemical compounds, biological pathways, linguistic trees each representing the structure of a sentence...

Transactional Graph Databases Types of Queries

Sub-graph queries

- Searches for a specific pattern in the graph database
- $\hfill\square$ A small graph or a graph, where some parts are uncertain
 - e.g., vertices with wildcard labels
- More general type: sub-graph isomorphism

Super-graph queries

- Searches for the graph database members of which their whole structures are <u>contained</u> in the input query
- Similarity (approximate matching) queries
 - □ Finds graphs which are <u>similar</u>, but not necessarily isomorphic to a given query graph
 - Key question: how to measure the similarity

Sub-graph Query Processing Mining-Based Graph Indexing Techniques

- Idea: if features of query graph q do not exist in data graph G, then G cannot contain q as its sub-graph
- Graph-mining methods extract selected features (sub-structures) from the graph database members
 - An inverted index is created for each feature
- Answering a sub-graph query q:
 - 1. Identifying the set of features of q
 - 2. Using the inverted index to retrieve all graphs that contain the same features of q
- Cons:
 - Effectiveness depends on the quality of mining techniques to effectively identify the set of features
 - Quality of the selected features may degrade over time (after lots of insertions and deletions)
 - Re-identification and re-indexing must be done

Sub-graph Query Processing Non Mining-Based Graph Indexing Techniques

- Focus on indexing whole constructs of the graph database
 - Instead of indexing only some selected features
- Cons:
 - □ Can be less effective in their pruning (filtering) power
 - May need to conduct expensive structure comparisons in the filtering process
- Pros:
 - Can handle graph updates with less cost
 - Do not rely on the effectiveness of the selected features
 - Do not need to rebuild whole indexes

Graph Similarity Queries

- Find sub-graphs in the database that are similar to query q
 - Allows for node mismatches, node gaps, structural differences, …
- Usage: when graph databases are noisy or incomplete
 - Approximate graph matching query-processing techniques can be more useful and effective than exact matching

Key question: how to measure the similarity?