
B4M36DS2, BE4M36DS2: Database Systems 2
hƩp://www.ksi.mff.cuni.cz/~svoboda/courses/191-B4M36DS2/

Lecture 5

MapReduce, Apache Hadoop
MarƟn Svoboda
marƟn.svoboda@fel.cvut.cz

21. 10. 2019

Charles University, Faculty of MathemaƟcs and Physics
Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/191-B4M36DS2/
mailto:martin.svoboda@fel.cvut.cz

Lecture Outline
MapReduce

• Programming model and implementaƟon
• MoƟvaƟon, principles, details, …

Apache Hadoop
• HDFS – Hadoop Distributed File System
• MapReduce

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 2

Programming Models
What is a programming model?

• AbstracƟon of an underlying computer system
Describes a logical view of the provided funcƟonality
Offers a public interface, resources or other constructs
Allows for the expression of algorithms and data structures
Conceals physical reality of the internal implementaƟon
Allows us to work at a (much) higher level of abstracƟon

• The point is
how the intended user thinks in order to solve their tasks
and not necessarily how the system actually works

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 3

Programming Models
Examples

• TradiƟonal von Neumann model
Architecture of a physical computer with several components
such as a central processing unit (CPU), arithmeƟc-logic unit
(ALU), processor registers, program counter, memory unit, etc.
ExecuƟon of a stream of instrucƟons

• Java Virtual Machine (JVM)
• …

Do not confuse programming models with
• Programming paradigms (procedural, funcƟonal, logic, modular,

object-oriented, recursive, generic, data-driven, parallel, …)
• Programming languages (Java, C++, …)

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 4

Programming Models
Parallel Programming Models

Process interacƟon
Mechanisms of mutual communicaƟon of parallel processes

• Shared memory – shared global address space, asynchronous read
and write access, synchronizaƟon primiƟves

• Message passing
• Implicit interacƟon

Problem decomposiƟon
Ways of problem decomposiƟon into tasks executed in parallel

• Task parallelism
• Data parallelism – independent tasks on disjoint parƟƟons of data
• Implicit parallelism

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 5

MapReduce

MapReduce Framework
What is MapReduce?

• Programming model + implementaƟon
• Developed by Google in 2008

Google:
A simple and powerful interface that enables automaƟc par-
allelizaƟon and distribuƟon of large-scale computaƟons,
combined with an implementaƟon of this interface that
achieves high performance on large clusters of commodity
PCs.

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 7

MapReduce Framework
A bit of history and moƟvaƟon

Google PageRank problem (2003)
• How to rank tens of billions of web pages by their importance

… efficiently in a reasonable amount of Ɵme
… when data is scattered across thousands of computers
… data files can be enormous (terabytes or more)
… data files are updated only occasionally (just appended)
… sending the data between compute nodes is expensive
… hardware failures are rule rather than excepƟon

• Centralized index structure was no longer sufficient
• SoluƟon

Google File System – a distributed file system
MapReduce – a programming model

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 8

MapReduce Framework
MapReduce programming model

• Cluster of commodity personal computers (nodes)
Each running a host operaƟng system, mutually interconnected
within a network, communicaƟon based on IP addresses, …

• Data is distributed among the nodes
• Tasks executed in parallel across the nodes

ClassificaƟon
• Process interacƟon: message passing
• Problem decomposiƟon: data parallelism

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 9

MapReduce Model
Basic Idea

Divide-and-conquer paradigm
• Map funcƟon

Breaks down a problem into sub-problems
Processes input data in order to generate a set of intermediate
key-value pairs

• Reduce funcƟon
Receives and combines sub-soluƟons to solve the problem
Processes and possibly reduces intermediate values
associated with the same intermediate key

And that’s all!

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 10

MapReduce Model
Basic Idea

And that’s all!
It means...

• We only need to implementMap and Reduce funcƟons
• Everything else such as

input data distribuƟon,
scheduling of execuƟon tasks,
monitoring of computaƟon progress,
inter-machine communicaƟon,
handling of machine failures,
…

is managed automatically by the framework!

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 11

MapReduce Model
A bit more formally…

Map funcƟon
• Input: an input key-value pair (input record)
• Output: a set of intermediate key-value pairs

Usually from a different domain
Keys do not have to be unique

• (key, value) → list of (key, value)
Reduce funcƟon

• Input: an intermediate key + a set of (all) values for this key
• Output: a possibly smaller set of values for this key

From the same domain
• (key, list of values) → (key, list of values)

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 12

Example: Word Frequency
ImplementaƟon

/**
* Map function
* @param key Document identifier
* @param value Document contents
*/

map(String key, String value) {
foreach word w in value: emit(w, 1);

}

/**
* Reduce function
* @param key Particular word
* @param values List of count values generated for this word
*/

reduce(String key, Iterator values) {
int result = 0;
foreach v in values: result += v;
emit(key, result);

}

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 13

Logical Phases

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 14

Logical Phases
Mapping phase

• Map funcƟon is executed for each input record
• Intermediate key-value pairs are emiƩed

Shuffling phase
• Intermediate key-value pairs are grouped and sorted

according to the keys
Reducing phase

• Reduce funcƟon is executed for each intermediate key
• Output key-value pairs are generated

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 15

Cluster Architecture
Master-slave architecture

• 2 types of nodes, each with 2 basic roles
• Master

Manages execuƟon of MapReduce jobs
– Schedules individual Map / Reduce tasks to idle workers
– …

Maintains metadata about input / output files
– These are stored in the underlying distributed file system

• Slaves (workers)
Physically store the actual data contents of files

– Files are divided into smaller parts called splits
– Each split is stored by one / or even more parƟcular workers

Accept and execute assigned Map / Reduce tasks

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 16

Cluster Architecture

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 17

MapReduce Job Submission

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 18

MapReduce Job Submission
Submission of MapReduce jobs

• Jobs can only be submiƩed to the master node
• Client provides the following:

ImplementaƟon of (not only)Map and Reduce funcƟons
DescripƟon of input file (or even files)
DescripƟon of output directory

LocalizaƟon of input files
• Master determines locaƟons of all involved splits

I.e. workers containing these splits are resolved

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 19

Input Splits LocalizaƟon

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 20

Map Task Assignment

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 21

Map Task ExecuƟon
Map Task = processing of 1 split by 1 worker

• Assigned by the master to an idle worker that is (preferably)
already containing the involved split

Individual steps…
• Input reader is used to parse contents of the split

I.e. input records are generated
• Map funcƟon is applied on each input record

Intermediate key-value pairs are emiƩed
• These pairs are stored locally and organized into regions

Either in the system memory,
or flushed to a local hard drive when necessary
ParƟƟon funcƟon is used to determine the intended region

– Intermediate keys (not values) are used for this purpose
– E.g. hash of the key modulo the overall number of reducers

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 22

Input Parsing
Parsing phase

• Each split is parsed so that input records are retrieved
(i.e. input key-value pairs are obtained)

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 23

Mapping Phase

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 24

Mapping Phase

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 25

Map Task ConfirmaƟon

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 26

Reduce Task Assignment

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 27

Reduce Task ExecuƟon
Reduce Task = reducƟon of selected key-value pairs by 1 worker

• Goal: processing of all emiƩed intermediate key-value pairs
belonging to a parƟcular region

Individual steps…
• Intermediate key-value pairs are first acquired

All relevant mapping workers are requested
Data of corresponding regions are transfered (remote read)

• Once downloaded, they are locally merged
I.e. sorted and grouped based on keys

• Reduce funcƟon is applied on each intermediate key
• Output key-value pairs are emiƩed and stored (output writer)

Note that each worker produces its own separate output file

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 28

Region Data AcquisiƟon

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 29

Region Data AcquisiƟon

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 30

Reducing Phase

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 31

Reducing Phase

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 32

Reduce Task ConfirmaƟon

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 33

MapReduce Job TerminaƟon

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 34

Combine FuncƟon
OpƟonal Combine funcƟon

• ObjecƟve
Decrease the amount of intermediate data
i.e. decrease the amount of data that is needed to be
transferred from Mappers to Reducers

• Analogous purpose and implementaƟon to Reduce funcƟon
• Executed locally by Mappers
• However, only works when the reducƟon is…

CommutaƟve
AssociaƟve
Idempotent: f(f(x)) = f(x)

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 35

Combine FuncƟon

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 36

Advanced Reducing Phase

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 37

FuncƟons Overview
Input reader

• Parses a given input split and prepares input records
Map funcƟon
ParƟƟon funcƟon

• Determines a parƟcular Reducer for a given intermediate key
Compare funcƟon

• Mutually compares two intermediate keys
Combine funcƟon
Reduce funcƟon
Output writer

• Writes the output of a given Reducer

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 38

Advanced Aspects
Counters

• Allow to track the progress of a MapReduce job in real Ɵme
Predefined counters

– E.g. numbers of launched / finished Map / Reduce tasks,
parsed input key-value pairs, …

Custom counters (user-defined)
– Can be associated with any acƟon that a Map or Reduce

funcƟon does

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 39

Advanced Aspects
Fault tolerance

• When a large number of nodes process a large number of data
⇒ fault tolerance is necessary

Worker failure
• Master periodically pings every worker; if no response is received in

a certain amount of Ɵme, master marks the worker as failed
• All its tasks are reset back to their iniƟal idle state and become

eligible for rescheduling on other workers
Master failure

• Strategy A – periodic checkpoints are created; if master fails,
a new copy can then be started

• Strategy B – master failure is considered to be highly unlikely;
users simply resubmit unsuccessful jobs

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 40

Advanced Aspects
Stragglers

• Straggler = node that takes unusually long Ɵme to complete
a task it was assigned

• SoluƟon
When a MapReduce job is close to compleƟon, the master
schedules backup execuƟons of the remaining in-progress tasks
A given task is considered to be completed whenever either
the primary or the backup execuƟon completes

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 41

Advanced Aspects
Task granularity

• Intended numbers of Map and Reduce tasks
• PracƟcal recommendaƟon (by Google)

Map tasks
– Choose the number so that each individual Map task has

roughly 16 – 64 MB of input data
Reduce tasks

– Small mulƟple of the number of worker nodes we expect to use
– Note also that the output of each Reduce task ends up

in a separate output file

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 42

AddiƟonal Examples
URL access frequency

• Input: HTTP server access logs
• Map: parses a log, emits (accessed URL, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of accesses to a given URL

Inverted index
• Input: text documents containing words
• Map: parses a document, emits (word, document ID) pairs
• Reduce: emits all the associated document IDs sorted
• Output: list of documents containing a given word

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 43

AddiƟonal Examples
Distributed sort

• Input: records to be sorted according to a specific criterion
• Map: extracts the sorƟng key, emits (key, record) pairs
• Reduce: emits the associated records unchanged

Reverse web-link graph
• Input: web pages with … tags
• Map: emits (target URL, current document URL) pairs
• Reduce: emits the associated source URLs unchanged
• Output: list of URLs of web pages targeƟng a given one

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 44

AddiƟonal Examples
Sources of links between web pages

/**
* Map function
* @param key Source web page URL
* @param value HTML contents of this web page
*/

map(String key, String value) {
foreach <a> tag t in value: emit(t.href, key);

}

/**
* Reduce function
* @param key URL of a particular web page
* @param values List of URLs of web pages targeting this one
*/

reduce(String key, Iterator values) {
emit(key, values);

}

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 45

Use Cases: General PaƩerns
CounƟng, summing, aggregaƟon

• When the overall number of occurrences of certain items or a
different aggregate funcƟon should be calculated

CollaƟng, grouping
• When all items belonging to a certain group should be found,

collected together or processed in another way
Filtering, querying, parsing, validaƟon

• When all items saƟsfying a certain condiƟon should be found,
transformed or processed in another way

SorƟng
• When items should be processed in a parƟcular order with respect

to a certain ordering criterion

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 46

Use Cases: Real-World Problems
Just a few real-world examples…

• Risk modeling, customer churn
• RecommendaƟon engine, customer preferences
• AdverƟsement targeƟng, trade surveillance
• Fraudulent acƟvity threats, security breaches detecƟon
• Hardware or sensor network failure predicƟon
• Search quality analysis
• …

Source: hƩp://www.cloudera.com/

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 47

Apache Hadoop

Apache Hadoop
Open-source soŌware framework

• hƩp://hadoop.apache.org/
• Distributed storage and processing of very large data sets

on clusters built from commodity hardware
Implements a distributed file system
Implements aMapReduce programming model

• Derived from the original Google MapReduce and GFS
• Developed by Apache SoŌware FoundaƟon
• Implemented in Java
• OperaƟng system: cross-plaƞorm
• IniƟal release in 2011

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 49

http://hadoop.apache.org/

Apache Hadoop
Modules

• Hadoop Common
Common uƟliƟes and support for other modules

• Hadoop Distributed File System (HDFS)
High-throughput distributed file system

• Hadoop Yet Another Resource NegoƟator (YARN)
Cluster resource management
Job scheduling framework

• HadoopMapReduce
YARN-based implementaƟon of the MapReduce model

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 50

Apache Hadoop
Hadoop-related projects

• Apache Cassandra – wide column store
• Apache HBase – wide column store
• Apache Hive – data warehouse infrastructure
• Apache Avro – data serializaƟon system
• Apache Chukwa – data collecƟon system
• ApacheMahout – machine learning and data mining library
• Apache Pig – framework for parallel computaƟon and analysis
• Apache ZooKeeper – coordinaƟon of distributed applicaƟons
• …

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 51

Apache Hadoop
Real-world Hadoop users

• Facebook – internal logs, analyƟcs, machine learning, 2 clusters
1100 nodes (8 cores, 12 TB storage), 12 PB
300 nodes (8 cores, 12 TB storage), 3 PB

• LinkedIn – 3 clusters
800 nodes (2×4 cores, 24 GB RAM, 6×2 TB SATA), 9 PB
1900 nodes (2×6 cores, 24 GB RAM, 6×2 TB SATA), 22 PB
1400 nodes (2×6 cores, 32 GB RAM, 6×2 TB SATA), 16 PB

• SpoƟfy – content generaƟon, data aggregaƟon, reporƟng, analysis
1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs

• Yahoo! – 40000 nodes with Hadoop, biggest cluster
4500 nodes (2×4 cores, 16 GB RAM, 4×1 TB storage), 17 PB

Source: hƩp://wiki.apache.org/hadoop/PoweredBy

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 52

HDFS
Hadoop Distributed File System

• Open-source, high quality, cross-plaƞorm, pure Java
• Highly scalable, high-throughput, fault-tolerant
• Master-slave architecture
• OpƟmal applicaƟons

MapReduce, web crawlers, data warehouses, …

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 53

HDFS: AssumpƟons
Data characterisƟcs

• Large data sets and files
• Streaming data access
• Batch processing rather than interacƟve users
• Write-once, read-many

Fault tolerance
• HDFS cluster may consist of thousands of nodes

Each component has a non-trivial probability of failure
• ⇒ there is always some component that is non-funcƟonal

I.e. failure is the norm rather than excepƟon, and so
automaƟc failure detecƟon and recovery is essenƟal

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 54

HDFS: File System
Logical view: Linux-based hierarchical file system

• Directories and files
• Contents of files is divided into blocks

Usually 64 MB, configurable per file level
• User and group permissions
• Standard operaƟons are provided

Create, remove, move, rename, copy, …
Namespace

• Contains names of all directories, files, and other metadata
I.e. all data to capture the whole logical view of the file system

• Just a single namespace for the enƟre cluster

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 55

HDFS: Cluster Architecture
Master-slave architecture

• Master: NameNode
Manages the file system namespace
Manages file blocks (mapping of logical to physical blocks)
Provides the user interface for all the operaƟons

– Create, remove, move, rename, copy, … file or directory
– Open and close file

Regulates access to files by users
• Slave: DataNode

Physically stores file blocks within the underlying file system
Serves read/write requests from users

– I.e. user data never flows through the NameNode
Has no knowledge about the file system

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 56

HDFS: ReplicaƟon
ReplicaƟon = maintaining ofmulƟple copies of each file block

• Increases read throughput, increases fault tolerance
• ReplicaƟon factor (number of copies)

Configurable per file level, usually 3
Replica placement

• CriƟcal to reliability and performance
• Rack-aware strategy

Takes the physical locaƟon of nodes into account
Network bandwidth between the nodes on the same rack
is greater than between the nodes in different racks

• Common case (replicaƟon factor 3):
Two replicas on two different nodes in a local rack
Third replica on a node in a different rack

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 57

HDFS: NameNode
How the NameNodeWorks?

• FsImage – data structure describing the whole file system
Contains: namespace + mapping of blocks + system properƟes
Loaded into the system memory (4 GB RAM is sufficient)
Stored in the local file system, periodical checkpoints created

• EditLog – transacƟon log for all the metadata changes
E.g. when a new file is created, replicaƟon factor is changed, …
Stored in the local file system

• Failures
When the NameNode starts up

– FsImage and EditLog are read from the disk, transacƟons from
EditLog are applied, new version of FsImage is flushed on the
disk, EditLog is truncated

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 58

HDFS: DataNode
How each DataNodeWorks?

• Stores physical file blocks
Each block (replica) is stored as a separate local file
HeurisƟcs are used to place these files in local directories

• Periodically sends HeartBeat messages to the NameNode
• Failures

When a DataNode fails or in case of a network parƟƟon,
i.e. when the NameNode does not receive a HeartBeat
message within a given Ɵme limit

– The NameNode no longer sends read/write requests to this
node, re-replicaƟon might be iniƟated

When a DataNode starts up
– Generates a list of all its blocks and sends a BlockReport

message to the NameNode

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 59

HDFS: API
Available applicaƟon interfaces

• Java API
Python access or C wrapper also available

• HTTP interface
Browsing the namespace and downloading the contents of files

• FS Shell – command line interface
Intended for the user interacƟon
Bash-inspired commands
E.g.:

– hadoop fs -ls /
– hadoop fs -mkdir /mydir

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 60

Hadoop MapReduce
HadoopMapReduce

• MapReduce programming model implementaƟon
• Requirements

HDFS
– Input and output files for MapReduce jobs

YARN
– Underlying distribuƟon, coordinaƟon, monitoring and

gathering of the results

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 61

Cluster Architecture
Master-slave architecture

• Master: JobTracker
Provides the user interface forMapReduce jobs
Fetches input file data locaƟons from the NameNode
Manages the enƟre execuƟon of jobs

– Provides the progress informaƟon
Schedules individual tasks to idle TaskTrackers

– Map, Reduce, … tasks
– Nodes close to the data are preferred
– Failed tasks or stragglers can be rescheduled

• Slave: TaskTracker
Accepts tasks from the JobTracker
Spawns a separate JVM for each task execuƟon
Indicates the available task slots via HearBeat messages

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 62

ExecuƟon Schema

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 63

Java Interface
Mapper class

• ImplementaƟon of themap funcƟon
• Template parameters

KEYIN, VALUEIN – types of input key-value pairs
KEYOUT, VALUEOUT – types of intermediate key-value pairs

• Intermediate pairs are emiƩed via context.write(k, v)

class MyMapper extends Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@Override
public void map(KEYIN key, VALUEIN value, Context context)

throws IOException, InterruptedException
{

// Implementation
}

}

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 64

Java Interface
Reducer class

• ImplementaƟon of the reduce funcƟon
• Template parameters

KEYIN, VALUEIN – types of intermediate key-value pairs
KEYOUT, VALUEOUT – types of output key-value pairs

• Output pairs are emiƩed via context.write(k, v)

class MyReducer extends Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@Override
public void reduce(KEYIN key, Iterable<VALUEIN> values, Context context)

throws IOException, InterruptedException
{

// Implementation
}

}

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 65

Example
Word Frequency

• Input: Documents with words
Files located at /home/input HDFS directory

• Map: parses a document, emits (word, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of occurrences for each word

Output will be wriƩen to /home/output

MapReduce job execuƟon

hadoop jar wc.jar WordCount /home/input /home/output

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 66

Example: Mapper Class
public class WordCount {

…
public static class MyMapper

extends Mapper<Object, Text, Text, IntWritable>
{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException

{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);

}
}

}
…

}

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 67

Example: Reducer Class
public class WordCount {

…
public static class MyReducer

extends Reducer<Text, IntWritable, Text, IntWritable>
{

private IntWritable result = new IntWritable();
@Override
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException

{
int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
result.set(sum);
context.write(key, result);

}
}
…

}

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 68

Lecture Conclusion
MapReduce criƟcism

• MapReduce is a step backwards
Does not use database schema
Does not use index structures
Does not support advanced query languages
Does not support transacƟons, integrity constraints, views, …
Does not support data mining, business intelligence, …

• MapReduce is not novel
Ideas more than 20 years old and overcome
Message Passing Interface (MPI), Reduce-ScaƩer

The end of MapReduce?

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 70

	Outline
	Programming Models
	MapReduce
	Programming Model
	Example
	Logical Phases
	Cluster Architecture
	Job Submission
	Mapping Phase
	Reducing Phase
	Combine Function
	Advanced Aspects
	Additional Examples
	Use Cases

	Apache Hadoop
	Projects and Users

	Hadoop DFS
	Hadoop MapReduce
	Java Interface
	Example

	Conclusion

