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Lecture Outline
MapReduce

• Programming model and implementaƟon
• MoƟvaƟon, principles, details, …

Apache Hadoop
• HDFS – Hadoop Distributed File System
• MapReduce
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Programming Models
What is a programming model?

• AbstracƟon of an underlying computer system
Describes a logical view of the provided funcƟonality
Offers a public interface, resources or other constructs
Allows for the expression of algorithms and data structures
Conceals physical reality of the internal implementaƟon
Allows us to work at a (much) higher level of abstracƟon

• The point is
how the intended user thinks in order to solve their tasks
and not necessarily how the system actually works
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Programming Models
Examples

• TradiƟonal von Neumann model
Architecture of a physical computer with several components
such as a central processing unit (CPU), arithmeƟc-logic unit
(ALU), processor registers, program counter, memory unit, etc.
ExecuƟon of a stream of instrucƟons

• Java Virtual Machine (JVM)
• …

Do not confuse programming models with
• Programming paradigms (procedural, funcƟonal, logic, modular,

object-oriented, recursive, generic, data-driven, parallel, …)
• Programming languages (Java, C++, …)
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Programming Models
Parallel Programming Models

Process interacƟon
Mechanisms of mutual communicaƟon of parallel processes

• Shared memory – shared global address space, asynchronous read
and write access, synchronizaƟon primiƟves

• Message passing
• Implicit interacƟon

Problem decomposiƟon
Ways of problem decomposiƟon into tasks executed in parallel

• Task parallelism
• Data parallelism – independent tasks on disjoint parƟƟons of data
• Implicit parallelism
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MapReduce Framework
What is MapReduce?

• Programming model + implementaƟon
• Developed by Google in 2008

Google:
A simple and powerful interface that enables automaƟc par-
allelizaƟon and distribuƟon of large-scale computaƟons,
combined with an implementaƟon of this interface that
achieves high performance on large clusters of commodity
PCs.
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MapReduce Framework
A bit of history and moƟvaƟon

Google PageRank problem (2003)
• How to rank tens of billions of web pages by their importance

… efficiently in a reasonable amount of Ɵme
… when data is scattered across thousands of computers
… data files can be enormous (terabytes or more)
… data files are updated only occasionally (just appended)
… sending the data between compute nodes is expensive
… hardware failures are rule rather than excepƟon

• Centralized index structure was no longer sufficient
• SoluƟon

Google File System – a distributed file system
MapReduce – a programming model
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MapReduce Framework
MapReduce programming model

• Cluster of commodity personal computers (nodes)
Each running a host operaƟng system, mutually interconnected
within a network, communicaƟon based on IP addresses, …

• Data is distributed among the nodes
• Tasks executed in parallel across the nodes

ClassificaƟon
• Process interacƟon: message passing
• Problem decomposiƟon: data parallelism
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MapReduce Model
Basic Idea

Divide-and-conquer paradigm
• Map funcƟon

Breaks down a problem into sub-problems
Processes input data in order to generate a set of intermediate
key-value pairs

• Reduce funcƟon
Receives and combines sub-soluƟons to solve the problem
Processes and possibly reduces intermediate values
associated with the same intermediate key

And that’s all!
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MapReduce Model
Basic Idea

And that’s all!
It means...

• We only need to implementMap and Reduce funcƟons
• Everything else such as

input data distribuƟon,
scheduling of execuƟon tasks,
monitoring of computaƟon progress,
inter-machine communicaƟon,
handling of machine failures,
…

is managed automatically by the framework!

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 11



MapReduce Model
A bit more formally…

Map funcƟon
• Input: an input key-value pair (input record)
• Output: a set of intermediate key-value pairs

Usually from a different domain
Keys do not have to be unique

• (key, value) → list of (key, value)
Reduce funcƟon

• Input: an intermediate key + a set of (all) values for this key
• Output: a possibly smaller set of values for this key

From the same domain
• (key, list of values) → (key, list of values)
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Example: Word Frequency
ImplementaƟon

/**
* Map function
* @param key Document identifier
* @param value Document contents
*/

map(String key, String value) {
foreach word w in value: emit(w, 1);

}

/**
* Reduce function
* @param key Particular word
* @param values List of count values generated for this word
*/

reduce(String key, Iterator values) {
int result = 0;
foreach v in values: result += v;
emit(key, result);

}
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Logical Phases
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Logical Phases
Mapping phase

• Map funcƟon is executed for each input record
• Intermediate key-value pairs are emiƩed

Shuffling phase
• Intermediate key-value pairs are grouped and sorted

according to the keys
Reducing phase

• Reduce funcƟon is executed for each intermediate key
• Output key-value pairs are generated
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Cluster Architecture
Master-slave architecture

• 2 types of nodes, each with 2 basic roles
• Master

Manages execuƟon of MapReduce jobs
– Schedules individual Map / Reduce tasks to idle workers
– …

Maintains metadata about input / output files
– These are stored in the underlying distributed file system

• Slaves (workers)
Physically store the actual data contents of files

– Files are divided into smaller parts called splits
– Each split is stored by one / or even more parƟcular workers

Accept and execute assigned Map / Reduce tasks
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Cluster Architecture
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MapReduce Job Submission
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MapReduce Job Submission
Submission of MapReduce jobs

• Jobs can only be submiƩed to the master node
• Client provides the following:

ImplementaƟon of (not only)Map and Reduce funcƟons
DescripƟon of input file (or even files)
DescripƟon of output directory

LocalizaƟon of input files
• Master determines locaƟons of all involved splits

I.e. workers containing these splits are resolved
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Input Splits LocalizaƟon
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Map Task Assignment
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Map Task ExecuƟon
Map Task = processing of 1 split by 1 worker

• Assigned by the master to an idle worker that is (preferably)
already containing the involved split

Individual steps…
• Input reader is used to parse contents of the split

I.e. input records are generated
• Map funcƟon is applied on each input record

Intermediate key-value pairs are emiƩed
• These pairs are stored locally and organized into regions

Either in the system memory,
or flushed to a local hard drive when necessary
ParƟƟon funcƟon is used to determine the intended region

– Intermediate keys (not values) are used for this purpose
– E.g. hash of the key modulo the overall number of reducers
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Input Parsing
Parsing phase

• Each split is parsed so that input records are retrieved
(i.e. input key-value pairs are obtained)
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Mapping Phase
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Mapping Phase
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Map Task ConfirmaƟon
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Reduce Task Assignment
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Reduce Task ExecuƟon
Reduce Task = reducƟon of selected key-value pairs by 1 worker

• Goal: processing of all emiƩed intermediate key-value pairs
belonging to a parƟcular region

Individual steps…
• Intermediate key-value pairs are first acquired

All relevant mapping workers are requested
Data of corresponding regions are transfered (remote read)

• Once downloaded, they are locally merged
I.e. sorted and grouped based on keys

• Reduce funcƟon is applied on each intermediate key
• Output key-value pairs are emiƩed and stored (output writer)

Note that each worker produces its own separate output file
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Region Data AcquisiƟon
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Region Data AcquisiƟon
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Reducing Phase
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Reducing Phase
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Reduce Task ConfirmaƟon
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MapReduce Job TerminaƟon
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Combine FuncƟon
OpƟonal Combine funcƟon

• ObjecƟve
Decrease the amount of intermediate data
i.e. decrease the amount of data that is needed to be
transferred from Mappers to Reducers

• Analogous purpose and implementaƟon to Reduce funcƟon
• Executed locally by Mappers
• However, only works when the reducƟon is…

CommutaƟve
AssociaƟve
Idempotent: f(f(x)) = f(x)
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Combine FuncƟon
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Advanced Reducing Phase
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FuncƟons Overview
Input reader

• Parses a given input split and prepares input records
Map funcƟon
ParƟƟon funcƟon

• Determines a parƟcular Reducer for a given intermediate key
Compare funcƟon

• Mutually compares two intermediate keys
Combine funcƟon
Reduce funcƟon
Output writer

• Writes the output of a given Reducer
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Advanced Aspects
Counters

• Allow to track the progress of a MapReduce job in real Ɵme
Predefined counters

– E.g. numbers of launched / finished Map / Reduce tasks,
parsed input key-value pairs, …

Custom counters (user-defined)
– Can be associated with any acƟon that a Map or Reduce

funcƟon does
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Advanced Aspects
Fault tolerance

• When a large number of nodes process a large number of data
⇒ fault tolerance is necessary

Worker failure
• Master periodically pings every worker; if no response is received in

a certain amount of Ɵme, master marks the worker as failed
• All its tasks are reset back to their iniƟal idle state and become

eligible for rescheduling on other workers
Master failure

• Strategy A – periodic checkpoints are created; if master fails,
a new copy can then be started

• Strategy B – master failure is considered to be highly unlikely;
users simply resubmit unsuccessful jobs
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Advanced Aspects
Stragglers

• Straggler = node that takes unusually long Ɵme to complete
a task it was assigned

• SoluƟon
When a MapReduce job is close to compleƟon, the master
schedules backup execuƟons of the remaining in-progress tasks
A given task is considered to be completed whenever either
the primary or the backup execuƟon completes
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Advanced Aspects
Task granularity

• Intended numbers of Map and Reduce tasks
• PracƟcal recommendaƟon (by Google)

Map tasks
– Choose the number so that each individual Map task has

roughly 16 – 64 MB of input data
Reduce tasks

– Small mulƟple of the number of worker nodes we expect to use
– Note also that the output of each Reduce task ends up

in a separate output file
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AddiƟonal Examples
URL access frequency

• Input: HTTP server access logs
• Map: parses a log, emits (accessed URL, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of accesses to a given URL

Inverted index
• Input: text documents containing words
• Map: parses a document, emits (word, document ID) pairs
• Reduce: emits all the associated document IDs sorted
• Output: list of documents containing a given word
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AddiƟonal Examples
Distributed sort

• Input: records to be sorted according to a specific criterion
• Map: extracts the sorƟng key, emits (key, record) pairs
• Reduce: emits the associated records unchanged

Reverse web-link graph
• Input: web pages with <a href="…">…</a> tags
• Map: emits (target URL, current document URL) pairs
• Reduce: emits the associated source URLs unchanged
• Output: list of URLs of web pages targeƟng a given one
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AddiƟonal Examples
Sources of links between web pages

/**
* Map function
* @param key Source web page URL
* @param value HTML contents of this web page
*/

map(String key, String value) {
foreach <a> tag t in value: emit(t.href, key);

}

/**
* Reduce function
* @param key URL of a particular web page
* @param values List of URLs of web pages targeting this one
*/

reduce(String key, Iterator values) {
emit(key, values);

}
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Use Cases: General PaƩerns
CounƟng, summing, aggregaƟon

• When the overall number of occurrences of certain items or a
different aggregate funcƟon should be calculated

CollaƟng, grouping
• When all items belonging to a certain group should be found,

collected together or processed in another way
Filtering, querying, parsing, validaƟon

• When all items saƟsfying a certain condiƟon should be found,
transformed or processed in another way

SorƟng
• When items should be processed in a parƟcular order with respect

to a certain ordering criterion
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Use Cases: Real-World Problems
Just a few real-world examples…

• Risk modeling, customer churn
• RecommendaƟon engine, customer preferences
• AdverƟsement targeƟng, trade surveillance
• Fraudulent acƟvity threats, security breaches detecƟon
• Hardware or sensor network failure predicƟon
• Search quality analysis
• …

Source: hƩp://www.cloudera.com/
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Apache Hadoop
Open-source soŌware framework

• hƩp://hadoop.apache.org/
• Distributed storage and processing of very large data sets

on clusters built from commodity hardware
Implements a distributed file system
Implements aMapReduce programming model

• Derived from the original Google MapReduce and GFS
• Developed by Apache SoŌware FoundaƟon
• Implemented in Java
• OperaƟng system: cross-plaƞorm
• IniƟal release in 2011
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Apache Hadoop
Modules

• Hadoop Common
Common uƟliƟes and support for other modules

• Hadoop Distributed File System (HDFS)
High-throughput distributed file system

• Hadoop Yet Another Resource NegoƟator (YARN)
Cluster resource management
Job scheduling framework

• HadoopMapReduce
YARN-based implementaƟon of the MapReduce model
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Apache Hadoop
Hadoop-related projects

• Apache Cassandra – wide column store
• Apache HBase – wide column store
• Apache Hive – data warehouse infrastructure
• Apache Avro – data serializaƟon system
• Apache Chukwa – data collecƟon system
• ApacheMahout – machine learning and data mining library
• Apache Pig – framework for parallel computaƟon and analysis
• Apache ZooKeeper – coordinaƟon of distributed applicaƟons
• …
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Apache Hadoop
Real-world Hadoop users

• Facebook – internal logs, analyƟcs, machine learning, 2 clusters
1100 nodes (8 cores, 12 TB storage), 12 PB
300 nodes (8 cores, 12 TB storage), 3 PB

• LinkedIn – 3 clusters
800 nodes (2×4 cores, 24 GB RAM, 6×2 TB SATA), 9 PB
1900 nodes (2×6 cores, 24 GB RAM, 6×2 TB SATA), 22 PB
1400 nodes (2×6 cores, 32 GB RAM, 6×2 TB SATA), 16 PB

• SpoƟfy – content generaƟon, data aggregaƟon, reporƟng, analysis
1650 nodes, 43000 cores, 70 TB RAM, 65 PB, 20000 daily jobs

• Yahoo! – 40000 nodes with Hadoop, biggest cluster
4500 nodes (2×4 cores, 16 GB RAM, 4×1 TB storage), 17 PB

Source: hƩp://wiki.apache.org/hadoop/PoweredBy
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HDFS
Hadoop Distributed File System

• Open-source, high quality, cross-plaƞorm, pure Java
• Highly scalable, high-throughput, fault-tolerant
• Master-slave architecture
• OpƟmal applicaƟons

MapReduce, web crawlers, data warehouses, …
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HDFS: AssumpƟons
Data characterisƟcs

• Large data sets and files
• Streaming data access
• Batch processing rather than interacƟve users
• Write-once, read-many

Fault tolerance
• HDFS cluster may consist of thousands of nodes

Each component has a non-trivial probability of failure
• ⇒ there is always some component that is non-funcƟonal

I.e. failure is the norm rather than excepƟon, and so
automaƟc failure detecƟon and recovery is essenƟal
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HDFS: File System
Logical view: Linux-based hierarchical file system

• Directories and files
• Contents of files is divided into blocks

Usually 64 MB, configurable per file level
• User and group permissions
• Standard operaƟons are provided

Create, remove, move, rename, copy, …
Namespace

• Contains names of all directories, files, and other metadata
I.e. all data to capture the whole logical view of the file system

• Just a single namespace for the enƟre cluster
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HDFS: Cluster Architecture
Master-slave architecture

• Master: NameNode
Manages the file system namespace
Manages file blocks (mapping of logical to physical blocks)
Provides the user interface for all the operaƟons

– Create, remove, move, rename, copy, … file or directory
– Open and close file

Regulates access to files by users
• Slave: DataNode

Physically stores file blocks within the underlying file system
Serves read/write requests from users

– I.e. user data never flows through the NameNode
Has no knowledge about the file system
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HDFS: ReplicaƟon
ReplicaƟon = maintaining ofmulƟple copies of each file block

• Increases read throughput, increases fault tolerance
• ReplicaƟon factor (number of copies)

Configurable per file level, usually 3
Replica placement

• CriƟcal to reliability and performance
• Rack-aware strategy

Takes the physical locaƟon of nodes into account
Network bandwidth between the nodes on the same rack
is greater than between the nodes in different racks

• Common case (replicaƟon factor 3):
Two replicas on two different nodes in a local rack
Third replica on a node in a different rack
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HDFS: NameNode
How the NameNodeWorks?

• FsImage – data structure describing the whole file system
Contains: namespace + mapping of blocks + system properƟes
Loaded into the system memory (4 GB RAM is sufficient)
Stored in the local file system, periodical checkpoints created

• EditLog – transacƟon log for all the metadata changes
E.g. when a new file is created, replicaƟon factor is changed, …
Stored in the local file system

• Failures
When the NameNode starts up

– FsImage and EditLog are read from the disk, transacƟons from
EditLog are applied, new version of FsImage is flushed on the
disk, EditLog is truncated
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HDFS: DataNode
How each DataNodeWorks?

• Stores physical file blocks
Each block (replica) is stored as a separate local file
HeurisƟcs are used to place these files in local directories

• Periodically sends HeartBeat messages to the NameNode
• Failures

When a DataNode fails or in case of a network parƟƟon,
i.e. when the NameNode does not receive a HeartBeat
message within a given Ɵme limit

– The NameNode no longer sends read/write requests to this
node, re-replicaƟon might be iniƟated

When a DataNode starts up
– Generates a list of all its blocks and sends a BlockReport

message to the NameNode
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HDFS: API
Available applicaƟon interfaces

• Java API
Python access or C wrapper also available

• HTTP interface
Browsing the namespace and downloading the contents of files

• FS Shell – command line interface
Intended for the user interacƟon
Bash-inspired commands
E.g.:

– hadoop fs -ls /
– hadoop fs -mkdir /mydir
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Hadoop MapReduce
HadoopMapReduce

• MapReduce programming model implementaƟon
• Requirements

HDFS
– Input and output files for MapReduce jobs

YARN
– Underlying distribuƟon, coordinaƟon, monitoring and

gathering of the results
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Cluster Architecture
Master-slave architecture

• Master: JobTracker
Provides the user interface forMapReduce jobs
Fetches input file data locaƟons from the NameNode
Manages the enƟre execuƟon of jobs

– Provides the progress informaƟon
Schedules individual tasks to idle TaskTrackers

– Map, Reduce, … tasks
– Nodes close to the data are preferred
– Failed tasks or stragglers can be rescheduled

• Slave: TaskTracker
Accepts tasks from the JobTracker
Spawns a separate JVM for each task execuƟon
Indicates the available task slots via HearBeat messages

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 62



ExecuƟon Schema

B4M36DS2, BE4M36DS2: Database Systems 2 | Lecture 5: MapReduce, Apache Hadoop | 21. 10. 2019 63



Java Interface
Mapper class

• ImplementaƟon of themap funcƟon
• Template parameters

KEYIN, VALUEIN – types of input key-value pairs
KEYOUT, VALUEOUT – types of intermediate key-value pairs

• Intermediate pairs are emiƩed via context.write(k, v)

class MyMapper extends Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@Override
public void map(KEYIN key, VALUEIN value, Context context)

throws IOException, InterruptedException
{

// Implementation
}

}
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Java Interface
Reducer class

• ImplementaƟon of the reduce funcƟon
• Template parameters

KEYIN, VALUEIN – types of intermediate key-value pairs
KEYOUT, VALUEOUT – types of output key-value pairs

• Output pairs are emiƩed via context.write(k, v)

class MyReducer extends Reducer<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
@Override
public void reduce(KEYIN key, Iterable<VALUEIN> values, Context context)

throws IOException, InterruptedException
{

// Implementation
}

}
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Example
Word Frequency

• Input: Documents with words
Files located at /home/input HDFS directory

• Map: parses a document, emits (word, 1) pairs
• Reduce: computes and emits the sum of the associated values
• Output: overall number of occurrences for each word

Output will be wriƩen to /home/output

MapReduce job execuƟon

hadoop jar wc.jar WordCount /home/input /home/output
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Example: Mapper Class
public class WordCount {

…
public static class MyMapper

extends Mapper<Object, Text, Text, IntWritable>
{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context)
throws IOException, InterruptedException

{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

word.set(itr.nextToken());
context.write(word, one);

}
}

}
…

}
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Example: Reducer Class
public class WordCount {

…
public static class MyReducer

extends Reducer<Text, IntWritable, Text, IntWritable>
{

private IntWritable result = new IntWritable();
@Override
public void reduce(Text key, Iterable<IntWritable> values,
Context context) throws IOException, InterruptedException

{
int sum = 0;
for (IntWritable val : values) {

sum += val.get();
}
result.set(sum);
context.write(key, result);

}
}
…

}
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Lecture Conclusion
MapReduce criƟcism

• MapReduce is a step backwards
Does not use database schema
Does not use index structures
Does not support advanced query languages
Does not support transacƟons, integrity constraints, views, …
Does not support data mining, business intelligence, …

• MapReduce is not novel
Ideas more than 20 years old and overcome
Message Passing Interface (MPI), Reduce-ScaƩer

The end of MapReduce?
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