
B0B36DBS, BD6B36DBS: Database Systems
hƩp://www.ksi.mī.cuni.cz/~svoboda/courses/182-B0B36DBS/

Lecture 9

FuncƟonal Dependencies
Authors: Tomáš Skopal, Irena Holubová
Lecturer: MarƟn Svoboda, marƟn.svoboda@fel.cvut.cz

16. 4. 2019

Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/182-B0B36DBS/
mailto:martin.svoboda@fel.cvut.cz

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 2

Today’s lecture outline

• motivation

 data redundancy and update/insertion/deletion anomalies

• functional dependencies

 Armstrong’s axioms

 attribute and dependency closures

• normal forms

 3NF

 BCNF

Functional Dependencies

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 4

• result of relational design = a set of relational schemas

• problems:
 data redundancy

‒ unnecessary multiple storage of the same data

‒ increased space cost

 insert/update/deletion anomalies

‒ insertions and updates must preserve redundant data storage

‒ deletion might cause loss of some data

 null values

‒ unnecessary empty space

‒ increased space cost

• solution
 relational schema normalization

Motivation

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 5

Example of “abnormal” schema

EmpId Name Position Hourly salary Hours completed

1 John Goodman accountant 200 50

2 Paul Newman salesman 500 30

3 David Houseman salesman 500 45

4 Brad Pittman accountant 200 70

5 Peter Hitman accountant 200 66

6 Adam Batman lecturer 300 10

1) From functional analysis we know that position determines hourly salary:

 However, hourly salary data is stored multiple times – redundancy.

2) If we delete employee 6, we lose the information on lecturer salary.

3) If we change the accountant hourly salary, we must do that in three places.

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 6

How could this even happen?

• simply

 during “manual” design of relation schemas

 badly designed conceptual model
‒ e.g., too many attributes in a class

Person
- id
- address
- education
etc.

Phone
- serial nr.
- manufacturer
- model
etc.

+owns
0..*

+is owned by
1

the UML diagram results in 2 tables:

Person(id, address, education, ...)
Mobil(serial nr., manufacturer, model, ..., id)

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 7

How could this even happen?

Serial nr. Manufacturer Model Made in Certificate

13458 Nokia Lumia Finland EU, USA

34654 Nokia Lumia Finland EU, USA

65454 Nokia Lumia Finland EU, USA

45464 Apple iPhone 4S USA EU, USA

64654 Samsung Galaxy S2 Taiwan Asia, USA

65787 Samsung Galaxy S2 Taiwan Asia, USA

Redundancy in attributes Manufacturer, Model, Made in, Certificate

What happened?

Class Phone includes also other classes – Manufacturer, Model, ...

How to fix it?

Two options 1) fix the UML model (design of more classes)

 2) alter the already created schemas (see next)

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 8

Functional dependencies

• attribute-based integrity constraints defined by the user
 e.g., DB application designer

• a kind of alternative to conceptual modelling
 ER and UML invented much later

• functional dependency (FD) X  Y over schema R(A)
 mapping fi : Xi  Yi, where Xi,Yi A (where i = 1..number of FDs in R(A))

 n-tuple from Xi determines m-tuple from Yi

 m-tuple from Yi is determined by (is dependent on) n-tuple from Xi

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 9

Functional dependencies

• simply, for X  Y,
values in X together determine the values in Y

• if X  Y and Y  X, then X and Y are functionally equivalent
 could be denoted as X  Y

• if X  a, where a  A, then X  a is an elementary FD
 i.e., only a single attribute on right-hand side

• FDs represent a generalization of the key concept (identifier)
 key is a special case, see next slides

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 10

Example – wrong interpretation

EmpId Name Position Hourly salary Hours completed

1 John Goodman accountant 200 50

2 Paul Newman salesman 500 30

3 David Houseman salesman 500 45

4 Brad Pittman accountant 200 70

5 Peter Hitman accountant 200 66

6 Adam Batman lecturer 300 10

One might observe from the data, that:

Position  Hourly salary and also Hourly salary  Position

EmpId  everything

Hours completed  everything

Name  everything

(but that is nonsense w.r.t. the natural meaning of the attributes)

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 11

Example – wrong interpretation

EmpId Name Position Hourly salary Hours completed

1 John Goodman accountant 200 50

2 Paul Newman salesman 500 30

3 David Houseman salesman 500 45

4 Brad Pittman accountant 200 70

5 Peter Hitman accountant 200 66

6 Adam Batman lecturer 300 10

7 Fred Whitman advisor 300 70

8 Peter Hitman salesman 500 55

newly
inserted
records

Position  Hourly salary

EmpId  everything

Hourly salary  Position

Hours completed  everything

Name  everything

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 12

Example – correct interpretation

• at first, after the data analysis the FDs are set “forever”,
limiting the content of the tables

 e.g., Position  Hourly salary
 EmpId  everything

 insertion of the last row is not allowed as it violates both the FDs

EmpId Name Position Hourly salary Hours completed

1 John Goodman accountant 200 50

2 Paul Newman salesman 500 30

3 David Houseman salesman 500 45

4 Brad Pittman accountant 200 70

5 Peter Hitman accountant 200 66

5 Adam Batman salesman 300 23

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 13

Armstrong’s axioms

Let us have R(A,F). Let X, Y, Z  A and F is the set of FDs

1) if Y  X, then X  Y (trivial FD)

 2) if X  Y and Y  Z, then X  Z (transitivity)

 3) if X  Y and X  Z, then X  YZ (composition)

 4) if X  YZ, then X  Y and X  Z (decomposition)

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 14

Armstrong’s axioms

Armstrong’s axioms:

- are correct (sound)
- what is derived from F is valid for any instance from R

- are complete
- all FDs valid in all instances in R (w.r.t. F) can be derived using the

axioms

- 1,2,3 (trivial, transitivity, composition) are independent
- removal of any axiom 1,2,3 violates the completeness

(decomposition could be derived from trivial FD and transitivity)

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 15

Example – deriving FDs

R(A,F)
A = {a,b,c,d,e}
F = {ab  c, ac  d, cd  ed, e  f}

We could derive, e.g.,:
ab  a (trivial)
ab  ac (composition with ab  c)
ab  d (transitivity with ac  d)
ab  cd (composition with ab  c)
ab  ed (transitivity with cd  ed)
ab  e (decomposition)
ab  f (transitivity)

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 16

Example – deriving the decomposition
rule

R(A,F)
A = {a,b,c}
F = {a  bc}

Deriving:
a  bc (assumption)

 bc  b (trivial FD)
 bc  c (trivial FD)
 a  b (transitivity)
 a  c (transitivity)

i.e., a  bc  a  b  a  c

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 17

Closure of set of FDs

• closure F+ of FDs set F (FD closure) is the set of all FDs
derivable from F using the Armstrong’s axioms
 generally exponential size w.r.t. |F|

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 18

Example – closure of set of FDs

R(A,F), A = {a,b,c,d}, F = {ab  c, cd  b, ad  c}

F+ =
{a  a, b  b, c  c, d  d,
 ab  a, ab  b, ab  c,
 cd  b, cd  c, cd  d,
 ad  a, ad  c, ad  d,
 abd  a, abd  b, abd  c, abd  d,
 abd  abcd, ...}

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 19

Cover

• cover of a set F is any set of FDs G such that F+=G+
 i.e., a set of FDs which have the same closure (= generate the same set

of FDs)

• canonical cover = cover consisting of elementary FDs
 decompositions are performed to obtain singleton sets on the right-hand side

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 20

Example – cover

R1(A,F), R2(A,G),
A = {a,b,c,d},
F = {a  c, b  ac, d  abc},
G = {a  c, b  a, d  b}

For checking that G+ = F+ we do not have to establish the whole covers,
it is sufficient to derive F from G, and vice versa, i.e.,
F’ = {a  c, b  a, d  b} – decomposition
G’ = {a  c, b  ac, d  abc } – transitivity and composition
 G+ = F+

Schemas R1 and R2 are equivalent because G is cover of F,
while they share the attribute set A.

 Moreover, G is minimal cover, while F is not (for minimal cover see next slides).

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 21

Redundant FDs

• FD f is redundant in F if (F – {f})+ = F+
 i.e., f can be derived from the rest of F

• non-redundant cover of F = cover of F after removing all
redundant FDs
 note the order of removing FDs matters – a redundant FD could

become non-redundant FD after removing another redundant FD

 i.e., there may exist multiple non-redundant covers of F

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 22

Example – redundant FDs

R(A,F)
A = {a,b,c,d},
F = {a  c, b  a, b  c, d  a, d  b, d  c}

FDs b  c, d  a, d  c are redundant

after their removal F+ is not changed, i.e., they could be derived
from the remaining FDs
b  c derived using transitivity a  c, b  a
d  a derived using transitivity d  b, b  a
d  c derived using transitivity d  b, b  a, a  c

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 23

Attribute closure, key

• attribute closure X+ (w.r.t. F) is a subset of attributes from A
determined by X (using F)
 consequence: if X+ = A, then X is a super-key

• if F contains a FD X  Y and there exist an attribute a in X such that
Y  (X – a)+, then a is an attribute redundant in X  Y
 i.e., we do not need a in X to determine right-hand side Y

• reduced FD does not contain any redundant attributes

• For R(A) key is a set K  A s.t. it is a super-key (i.e., K  A) and
K  A is reduced
 there could exist multiple keys (at least one)

 if there is no FD in F, it trivially holds A  A, i.e., the key is the entire set A

 key attribute = attribute that is in any key

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 24

Example – attribute closure

R(A,F), A = {a,b,c,d}, F = {a  c, cd  b, ad  c}

{a}+ = {a,c} it holds a  c (+ trivial a  a)

{b}+ = {b} (trivial b  b)

{c}+ = {c} (trivial c  c)

{d}+ = {d} (trivial d  d)

{a,b}+ = {a,b,c} a  c (+ trivial)

{a,d}+ = {a,b,c,d} ad  c, cd  b (+ trivial)

{c,d}+ = {b,c,d} cd  b (+ trivial)

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 25

Example – redundant attribute

R(A,F), A = {i,j,k,l,m},
F = {m  k, lm  j, ijk  l, j  m, l  i, l  k}

Hypothesis:
 k is redundant in ijk  l, i.e., it holds ij  l
Proof:

1. based on the hypothesis let’s construct FD ij  ?

2. note that ijk  l remains in F because we ADD new FD ij  ?
 so we can use ijk  l for construction of the attribute closure {i,j}+

3. we obtain {i,j}+ = {i, j, m, k, l},
i.e., there exists ij  l which we add into F (it is the member of F+)

4. now forget how ij  l got into F

5. because ijk  l could be trivially derived from ij  l,
it is redundant FD and we can remove it from F

6. so, we removed the redundant attribute k in ijk  l

In other words, we transformed the problem of removing redundant attribute
on the problem of removing redundant FD.

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 26

FDs vs. attributes

FDs:

• can be redundant
 “we don’t need it”

• can have a closure
 “all derivable FDs”

• can be elementary
 “single attribute on the right-

hand side”

• can be reduced
 “no redundancies on the left-

hand side”

Attributes:

• can be redundant
 “we don’t need it”

• can have a closure
 “all derivable attributes”

• can form (super-)keys

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 27

Minimal cover

• non-redundant canonical cover that consists of only reduced FDs

 i.e. no redundant FDs, no redundant attributes, decomposed FDs

 is constructed by removing redundant attributes in FDs followed by
removing of redundant FDs

‒ i.e., the order matters!!!

Example: abcd  e, e  d, a  b, ac  d

Correct order of reduction: Wrong order of reduction:

1. b,d are redundant 1. no redundant FD
in abcd  e, i.e., removing them 2. redundant b,d in abcd  e

2. ac  d is redundant (now not a minimal cover, because
 ac  d is redundant)

Keys

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 29

Determining (first) key

• redundant attributes are iteratively removed from left-hand side of trivial
FD A  A

algorithm GetFirstKey(set of deps. F, set of attributes A)

: returns a key K;

 return ReduceAttributes(F, A  A);

Note: Because multiple keys can exists, the algorithm finds only one of them.

Which one? It depends on the traversing of the attribute set within the
algorithm ReduceAttributes.

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 30

Determining all keys, the principle

K

X

y
A

Let us have a schema S(A, F).
Simplify F to minimal cover.

A

X

y

1. Find any key K (see the previous slide).

3. Because X  y and K  A, it transitively holds also X{K – y}  A, i.e., X{K – y} is super-key.

4. Reduce FD X{K – y}  A so we obtain key K’ on the left-hand side.

 This key is surely different from K (we removed y).

5. If K’ is not among the determined keys so far, we add it, declare K=K’ and continue from step 2.
Otherwise we finish.

2. Take a FD X  y in F such that y K or terminate if not exists (there is no other key).

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 31

Determining all keys, the algorithm

• Formally: Lucchesi-Osborn algorithm

 having an already determined key, we search for equivalent sets of attributes, i.e., other keys

• NP-complete problem (theoretically exponential number of keys/FDs)

algorithm GetAllKeys(set of FDs F, set of attr. A)

 : returns set of all keys Keys;

 let all dependencies in F be non-trivial

 K := GetFirstKey(F, A);

 Keys := {K};

 for each K in Keys do

 for each X  Y in F do

 if (Y  K   and K’  Keys : K’  (K  X) – Y) then

 N := ReduceAttributes(F, ((K  X) – Y)  A);

 Keys := Keys  {N};

 endif

 endfor

 endfor

return Keys;

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 32

Example – determining all keys
Contracts(A, F)

A = {c = ContractId, s = SupplierId, j = ProjectId, d = DeptId,
 p = PartId, q = Quantity, v = Value}
F = {c  all, sd  p, p  d, jp  c, j  s}

1. Determine the first key – Keys = {c}

2. Iteration 1: take jp  c that has a part of the last key on the right-hand side (in
this case the whole key – c) and jp is not a super-set of already determined key

3. jp  all is reduced (no redundant attribute), i.e.,

 Keys = {c, jp}

4. Iteration 2: take sd  p that has a part of the last key on the right-hand side
(jp),
{jsd} is not a super-set of c nor jp, i.e., it is a key candidate

5. in jsd  all we get redundant attribute s, i.e.,

 Keys = {c, jp, jd}

6. Iteration 3: take p  d, however, jp was already found so we do not add it

7. Finish as the iteration 3 resulted in no key addition.

Normal Forms

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 34

First normal form (1NF)

Every attribute in a relational schema is of
simple non-structured type.

• 1NF is the basic condition on „flat database“

• a table is really two-dimensional array
 not involving arrays, subtables, trees, structures, …

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 35

Example – 1NF

Person(Id: Integer, Name: String, Birth: Date)

 is in 1NF

Employee(Id: Integer, Subordinate : Person[], Boss : Person)

 not in 1NF
 (nested table of type Person in attribute Subordinate,
 and the Boss attribute is structured)

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 36

2nd normal form (2NF)

• there do not exist partial dependencies of non-
key attributes on (any) key, i.e.,
it holds x  NK KK : KK  x

 where NK is the set of non-key attributes, and

 KK is subset of some key

key
key
attribute(s)

non-key
attribute

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 37

Example – 2NF

Company DB server HQ Purchase date

John’s firm Oracle Paris 1995

John’s firm MS SQL Paris 2001

Paul’s firm IBM DB2 London 2004

Paul’s firm MS SQL London 2002

Paul’s firm Oracle London 2005

Company DB server Purchase date

John’s firm Oracle 1995

John’s firm MS SQL 2001

Paul’s firm IBM DB2 2004

Paul’s firm MS SQL 2002

Paul’s firm Oracle 2005

Company HQ

John’s firm Paris

Paul’s firm London

Company, DB Server  everything

Company  HQ

Company, DB Server  everything
Company  HQ

 not in 2NF, because HQ is determined
by a part of key (Company)

consequence:
redundancy of HQ values

both schemas are in 2NF 

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 38

Transitive dependency on key

• FD A → B such that A → some key
 (A is not a super-key), i.e., we get transitivity key → A → B

• i.e., unique values of key are mapped to the same or less unique values of
A, and those are mapped to the same or less unique values of B

Example in 2NF:
 ZIPcode → City → Country

ZIPcode City Country

CZ 118 00 Prague Czech rep.

CZ 190 00 Prague Czech rep.

CZ 772 00 Olomouc Czech rep.

CZ 783 71 Olomouc Czech rep.

SK 911 01 Trenčín Slovak rep.

no redundancy medium redundancy high redundancy

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 39

3rd normal form (3NF)

• non-key attributes are not transitively dependent on key

• note: as the 3NF using the above definition cannot be tested without construction of
F+, we use a definition that assumes only R(A,F):

• at least one condition holds for each FD X  a (where X  A, a  A):

 FD is trivial

 X is super-key

 a is part of a key (i.e., a key attribute)

key a Y

a X
key X

a

a

key

X

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 40

Example – 3NF

Company HQ ZIPcode

John’s firm Prague CZ 11800

Paul’s firm Ostrava CZ 70833

Martin’s firm Brno CZ 22012

David’s firm Prague CZ 11000

Peter’s firm Brno CZ 22012

Company ZIPcode

John’s firm CZ 11800

Paul’s firm CZ 70833

Martin’s firm CZ 22012

David’s firm CZ 11000

Peter’s firm CZ 22012

ZIPcode HQ

CZ 11800 Prague

CZ 70833 Ostrava

CZ 22012 Brno

CZ 11000 Prague

Company  everything
ZIPcode  HQ

is in 2NF, not in 3NF (transitive dependency of
HQ on key through ZIPcode)

consequence:
redundancy of HQ values

Company  everything
ZIPcode  everything

both schemas are in 3NF

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 41

Boyce-Codd normal form (BCNF)

• every attribute is (non-transitively) dependent on key

• more exactly, in a given schema R(A, F) there holds at least one condition
for each FD X  a (where X  A, a  A):

 FD is trivial

 X is super-key

• note: the same as 3NF without the last option (a is key attribute)

a X
key X

a

a

key

X

B0B36DBS, BD6B36DBS: Database Systems | Lecture 9: Functional Dependencies | 16. 4. 2019 42

Example – BCNF

Destination Pilot Plane Day

Paris cpt. Oiseau Boeing #1 Monday

Paris cpt. Oiseau Boeing #2 Tuesday

Berlin cpt. Vogel Airbus #1 Monday

Pilot, Day  everything
Plane, Day  everything
Destination  Pilot

is in 3NF, not in BCNF
(Pilot is determined by Destination,
which is not a super-key)

consequence:
redundancy of Pilot values

Destination Pilot

Paris cpt. Oiseau

Berlin cpt. Vogel

Destination Plane Day

Paris Boeing #1 Monday

Paris Boeing #2 Tuesday

Berlin Airbus #1 Monday

Destination  Pilot
Plane, Day  everything

both schemas are in BCNF

