BOB36DBS, BD6B36DBS: Database Systems
http://www.ksi.mff.cuni.cz/~svoboda/courses/182-BOB36DBS/

Lecture 8

Physical Layer

Authors: Tomas Skopal, Irena Holubova
Lecturer: Martin Svoboda, martin.svoboda@fel.cvut.cz

9. 4. 2019

Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/182-B0B36DBS/
mailto:martin.svoboda@fel.cvut.cz

Today’s lecture outline

» disk management, paging, buffer manager
» database files organization
* indexing

= B*-tree

= bitmaps

= hashing

Three layers of database modeling

abstraction © conceptual layer

= models a part of the “structured” real world relevant
for applications built on top of your database

— real world part
= real-world entities and relationships between them

= different conceptual models (e.g. ER, UML)
e logical layer

= specifies how conceptual components are represented
in logical machine interpretable data structures

= different logical models (e.g. object, relational, object-relational, XML,
graph, etc.)
¢ physical layer
= specifies how logical database structures are implemented in a specific
technical environment

implementation = data files, index structures (e.g. B+ trees), etc.

Introduction

¢ relations/tables are stored in files on the disk

* we need to organize table records within a file
= efficient storage, update and access

Example:
Employees (name char(20), age integer, salary integer)

Paging

e records are stored in disk pages of fixed size (a few kB)
= reason: hardware
— assuming a magnetic disk based on rotational plates and reading heads
= the data organization must be adjusted w.r.t. this mechanism
e the HW firmware can only access entire pages
= |/O operations — reads, writes

¢ real time for I/O operations =
= seek time + rotational delay + data transfer time

e sequential access to pages is much faster than random access
= the seek time and rotational delay not needed

Example: reading 4 KB could take 8 + 4 + 0,5 ms = 12,5 ms;
i.e., the reading itself takes only 0,5 ms = 4% of the real time!!!

BOB36DBS, BD6B36DBS: Database Systems | Lecture 8: Physical Layer | 9.4.2019

Paging

e |/Ois a unit of time cost

* the page is divided into slots, that are used to store records
= arecord is identified by rid (record id) = page id + slot id
* arecord can be stored
= in multiple pages =
— better space utilization
— need for more 1/O0s for record manipulation
= in a single page (assuming it fits) =
— a part of page may not be used
— less 1/0Os
= ideally: records fit the entire page

Paging

» only fixed-size data types are used in the record
= fixed record size
e also variable-size data types are used in the record
= variable size of the records,
= e.g., typesvarchar (X), BLOB, ...

o fixed-size records = fixed-size slots

» variable-size records = need for slot directory in the page
header

Fixed-size page organization, example

full slots
Slot 6
Slot7 4
/ [5
number of stored number of slots
empty slots
records bitmap showing slot

utilization

Variable-size page organization, example

number of stored
records

slot directory
(pairs offset + record size)

Buffer management

buffer = a piece of main memory for temporary storage of disk pages
= disk pages are mapped into memory frames 1:1
e every frame has 2 flags:
= pin_count = number of references to the page in frame
= dirty = indication of containing a modified record
e buffer manager
= implements read and write operations for higher DBMS logic
* read: retrieves the page from buffer + increasing pin_count
= if itis not there, it is first fetched from the disk
e write: puts the page into the buffer + setting dirty
e if the buffer is full (during read or write), some page must be replaced
= various policies, e.g., LRU (least-recently-used),
= if the replaced page is dirty, it must be stored

BOB36DBS, BD6B36DBS: Database Systems | Lecture 8: Physical Layer | 9.4.2019

10

Buffer management

higher DBMS logic

memory

4>
u disk

Database storage

 data files — contain table data
¢ index files — speed up processing of queries

» system catalogue — contains metadata
= table schemas
* index names

= integrity constraints, keys, etc.

Data files

1. heap
2. sorted file
3. hashed file

Observing average 1/0 cost of simple operations:

1) sequential access to records

2) searching records based on equality (w.r.t search key)
3) searching records based on range (w.r.t search key)
4) record insertion

5) record deletion

Cost model:
N = number of pages, R = records per page

Simple operations, SQL examples

e sequential reading of pages

SELECT * FROM Employees
e searching on equality

SELECT * FROM Employees WHERE age = 40
e searching on range

SELECT * FROM Employees

WHERE salary > 10000 AND salary < 20000
e record insertion

INSERT INTO Employees VALUES (...)
¢ record deletion based on rid

DELETE FROM Employees WHERE rid = 1234
e record deletion

DELETE FROM Employees WHERE salary < 5000

Heap file

* records stored in pages are not ordered (e.g., according to
key)
= they are stored in the order of insertion
* page search can only be achieved by sequential scan
(GetNext operation)

* quick record insertion (at the end of file)

» deletion problems: ,holes” (pieces of not utilized space)

Maintenance of empty heap pages

* double linked list
= header + lists of full and non full pages

* page directory
= linked list of directory pages

= every item in the directory refers to a data page
— flag = item utilization

Maintenance of empty heap pages

i __—* nonfull " nonfull | nonfull
ﬁ;)tUble linked e K] page page] page
‘\::: full page —* full page 1 fullpage
page directory
- page i page L page
NE = 1

page

page

Heap, cost of simple operations

* sequential access =N
* search on equality =N
e searchonrange=N
e record insertion=1

* record deletion
L] 2’
assuming rid based search costs 1 1/0
= Nor2*N,
if deleted based on equality or range

Sorted file

* records stored in pages based on an ordering according to a
search key

= single or multiple attributes
» file pages maintained contiguous, i.e., no ,holes”
» fast: search on equality and/or range
* slow: insertion and deletion
=, moving” the rest of pages
e in practice:
= sorted file at the beginning
= each page has an overhead space where to insert
= if the overhead space is full, update pages are used (linked list)

= areorganization needed from time to time
- i.e., sorting

BOB36DBS, BD6B36DBS: Database Systems | Lecture 8: Physical Layer | 9.4.2019 19

Sorted file, cost of simple operations

* sequential access = N
 search on equality = log,N

* search onrange =log,N+M
= where M is the number of relevant pages
* record insertion =N

¢ record deletion = log,N + N (based on key)

Hashed file

e organized in K buckets
= a bucket is extensible to multiple disk pages
e arecord is inserted into/read from a bucket determined
by hashing function f applied on search key
= bucket id = f(key)
 if the bucket is full, new pages are allocated and linked to
the bucket (linked list)

» fast search / deletion on equality

* higher space overhead, problems with chained pages
(solved by dynamic hashed techniques)

BOB36DBS, BD6B36DBS: Database Systems | Lecture 8: Physical Layer | 9.4.2019 21

Hashed file

Imary, 25, 30000 \
haShing fUnCtion tom, 26, 55000

age)=o ohn, 21, 30000

sue, 25, 30500

l h(age)
search key
(a g e) @ hiage)=2 Isil, 35, 40000
\
im, 30, 73000 > buckets

pete, 32, 32000

ron, 35, 31500

h(age) = 2

barb, 55, 40000

marg, 51, 74000 /

Hashed file, cost of simple operations

* sequential access = N

* search on equality = N/K (best case)
= K = number of buckets

search on range = N

record insertion = N/K (best case)

deletion on equality = N/K + 1 (best case)

Indexing

* index is a helper structure that provides fast search based on
search key(s)

* organized into disk pages (like data files)
= usually different file than data files
» usually contains only search keys and links to the respective
records
= je.,rid
e need much less space than data files
= e.g., 100x less

Indexing, principles

o index item can contain
= the whole record (then index and data file are the same)
= pair<key, rid>
= pair <key, rid-list>, where rid-1listis a list of links to
records with the same search key value

1. clustered: ordering of index items is (almost) the same as
ordering in the data file

= tree-based index, index containing the entire records, hashed index,

. primary key = search key used in clustered index

2. unclustered: the order of search keys is not preserved

BOB36DBS, BD6B36DBS: Database Systems | Lecture 8: Physical Layer | 9.4.2019 25

Indexing, principles

CLUSTERED INDEX UNCLUSTERED INDEX
records in data file pages records in data file pages

Clustered index:

Pros: huge speedup when searching on range —result record pages are read
sequentially from data file

Cons: large overhead for keeping the data file sorted

B*-tree

k=9 X
5 13 4 42
¢ c, c, <4
vk VK Yk
° eXtendS B-tree k<5 Sck<13 13<k<42 42<k

= balanced tree-based index

» provides logarithmic complexity for insertion, search on
equality (no duplicates), deletion on equality (no duplicates)

» guarantees 50% node (page) utilization
e B*-tree extends B-tree by

= all keys are in the leaves — inner nodes contain indexed intervals

= linking leaf pages for efficient range queries

B*-tree, schema

inner
nodes/pages

teaf -t e H-- -3 - -t - 1
nodes/pages
(ordered by a search key)

inner node item
|

Po K1IP1 |(2||:’2 o o o

' '

<

Hashed index

¢ similar to hashed data file

" i.e., buckets + hashing function

* buckets contain only key values together with the
rids

¢ Ssame pros/cons

Bitmaps

e suitable for indexing attributes of low-cardinality data types

= e.g., attribute FAMILY_STATUS = {single, married, divorced, widow}

e for each value h of an indexed attribute a a bitmap (binary vector) is constructed,
where 1 on ith position means the value h appears in the it" record (in the attribute

a), while it holds

= bitwise OR =1 (every attribute has a value)

= bitwise AND = 0 (attribute values are deterministic)

Name Address | Family status
John Smith London | single
Rostislav Drobil Prague | married
Franz Neumann Munich | married

Fero Lakato$ Malacky | single
Sergey Prokofjev | Moscow | divorced

single

1

o
o
1
o

married

[T

divorced

B o oo

widow

© 0o oo

Bitmaps

e query evaluation

= bitwise operations with attribute bitmaps

= resulting bitmap marks the queried records
* example

= Which single or divorced people did not complete the military service?
(bitmap(single) OR bitmap(divorced)) AND not bitmap(YES)

single OR divorced) AND not YES

answer: Sergey Prokofjev, Moscow & ;

N . o]

Name Address | Military | Family single OR divorced / o

service | status B v\ o

John Smith London | YES single Family status ° 1 Military service

- " - single married © divorced widow YES
Rostislav Drobil Prague YES married 1 ° 1 ° 0 1
Franz Neumann | Munich NO married Z i * : 2 i
Fero Lakato$ Malacky | YES single 1 ° o o 1
Sergey Prokofjev | Moscow | NO divorced ° ° N ° °

Bitmaps

® pros
= efficient storage, could be also compressed
= fast query processing, bitwise operations are fast
= easy parallelization
® cons
= suitable only for attributes with small cardinality domain

= range queries get slow linearly with the number of values in the range
(bitmaps for all the values must be processed)

