BOB36DBS, BD6B36DBS: Database Systems

http://www.ksi.mff.cuni.cz/~svoboda/courses/182-B0B36DBS/

SQL: Data Querying

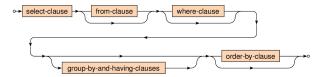
Martin Svoboda martin.svoboda@fel.cvut.cz

12. 3. 2019

Czech Technical University in Prague, Faculty of Electrical Engineering

Outline

• SQL


- Data manipulation
 - SELECT queries

SQL: Select Queries

Select Queries

SELECT statements in a nutshell

- Consist of 1-5 clauses and optionally also ORDER BY clause
- SELECT clause: which columns should be included in the result table
- FROM clause: which source tables should provide data we want to query
- WHERE clause: condition a row must satisfy to be included in the result
- **GROUP BY** clause: which attributes should be used for the aggregation
- HAVING clause: condition an aggregated row must satisfy to be in the result
- ORDER BY clause: attributes that are used to sort rows of the final result

Sample Tables

Database of flights and aircrafts

Flights:	↓		
Flight	Company	Destination	Passengers
OK251	CSA	New York	276
LH438	Lufthansa	Stuttgart	68
OK012	CSA	Milano	37
OK321	CSA	London	156
AC906	Air Canada	Toronto	116
KL7621	KLM	Rotterdam	75
KL1245	KLM	Amsterdam	130

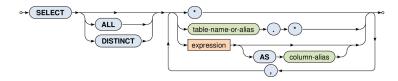
Aircrafts:

Aircraft	Company	Capacity
Boeing 717	CSA	106
Airbus A380	KLM	555
Airbus A350	KLM	253

Select Queries: Example

- Which aircrafts can be used for the scheduled flights?
 - Only aircrafts of a given company and sufficient capacity can be used

SELECT	Flight	s.*, Ai	rcraf	t	
FROM F1	Lights	NATURAL	JOIN	Aircraf	ts
WHERE	(Passer	igers <=	Capa	city)	
ORDER E	SY Flig	nt		\sim	Flig


Flight	Company	Destination	Passengers	Aircraft
KL1245	KLM	Amsterdam	130	Airbus A380
KL1245	KLM	Amsterdam	130	Airbus A350
KL7621	KLM	Rotterdam	75	Airbus A380
KL7621	KLM	Rotterdam	75	Airbus A350
OK012	CSA	Milano	37	Boeing 717

Aircraft	Company	Capacity
Boeing 717	CSA	106
Airbus A380	KLM	555
Airbus A350	KLM	253

Flight	Company	Destination	Passengers
OK251	CSA	New York	276
LH438	Lufthansa	Stuttgart	68
OK012	CSA	Milano	37
OK321	CSA	London	156
AC906	Air Canada	Toronto	116
KL7621	KLM	Rotterdam	75
KL1245	KLM	Amsterdam	130

Select Clause

- SELECT ... FROM ... WHERE ... ORDER BY ...
 - List of columns to be included in the result
 - Projection of input columns
 - Column name
 - * (all columns), table.* (all from a given table)
 - Definition of new, derived and aggregated columns
 - Using expressions based on literals, functions, subqueries, ...
 - Columns can also be assigned (new) names using AS

Select Clause

SELECT

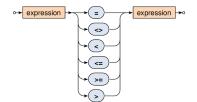
Output modifiers

- ALL (default) all the rows are included in the output
- DISTINCT duplicities are removed
- Examples
 - SELECT ALL * ...
 - SELECT Flights.*, Aircraft ...
 - SELECT DISTINCT Company AS Carrier ...
 - SELECT ((3*5) + 5) AS MyNumber, 'Hello' AS MyString ...
 - SELECT SUM(Capacity) ...
 - SELECT (SELECT COUNT(*) FROM Table) AS Result ...

Where Clause

• SELECT ... FROM ... WHERE ... ORDER BY ...

Selection condition

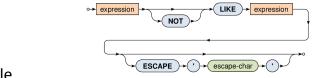

- I.e. condition that a row must satisfy to get into the result
- Simple expressions may be combined using conjunctions
 - AND, OR, NOT

↔ WHERE → search-condition → ∘

- Examples
 - ... WHERE (Capacity > 200) AND (Aircraft LIKE 'Airbus%') ...
 - ... WHERE (Company IN ('KLM', 'Emirates')) ...
 - ... WHERE NOT (Passengers BETWEEN 100 AND 200) ...

Comparison predicates

- Standard comparison
- Works even for tuples
 - Example: (1,2,3) <= (1,2,5)</p>


Interval predicate

 Value BETWEEN Min AND Max is equivalent to (Min <= Value) AND (Value <= Max)

String matching predicate

- Tests whether a string value matches a given pattern
 - This pattern may contain special characters:
 - % matches an arbitrary substring (even empty)
 - _ matches an arbitrary character
 - Optional escaping character can also be set

- Example
 - Company LIKE '%Airlines%'

NULL values detection predicate

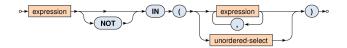
- Tests whether a given value is / is not NULL
 - Note that, e.g., (expression = NULL) cannot be used!

NULL Values

Impact of NULL values

- NULL values were introduced to handle missing information
- But how such values should act in functions a predicates?
- When a function (or operator) cannot be evaluated, NULL is returned
 - For example: 3 + NULL is evaluated as NULL
- When a predicate cannot be evaluated, special logical value UNKNOWN is returned
 - For example: 3 < NULL is evaluated to UNKNOWN</p>
 - This means we need to work with a three-value logic
 - TRUE, FALSE, UNKNOWN

Three-Value Logic


Truth tables

р	q	p AND q	p OR q	NOT q
TRUE	TRUE	TRUE	TRUE	FALSE
TRUE	FALSE	FALSE	TRUE	TRUE
TRUE	UNKNOWN	UNKNOWN	TRUE	UNKNOWN
FALSE	TRUE	FALSE	TRUE	
FALSE	FALSE	FALSE	FALSE	
FALSE	UNKNOWN	FALSE	UNKNOWN	
UNKNOWN	TRUE	UNKNOWN	TRUE	
UNKNOWN	FALSE	FALSE	UNKNOWN	
UNKNOWN	UNKNOWN	UNKNOWN	UNKNOWN	

Set membership predicate

Tests whether a value exists in a given set of values

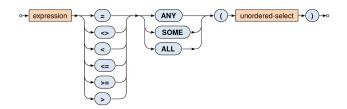
- Example: Company IN ('KLM', 'Emirates')

- Note that...
 - $\dots IN(\emptyset) = FALSE$
 - Ø represents an empty table
 - ... IN (☆) = UNKNOWN
 - X represents any table having rows with only NULL values

Existential quantifier predicate

- Tests whether a given set is not empty
- Can be used to simulate the universal quantifier too

– \forall corresponds to $\neg \exists \neg$


↔ EXISTS → () → unordered-select → () → ∘

- Note that...
 - EXISTS (Ø) = FALSE
 - EXISTS (X) = TRUE

Set comparison predicates

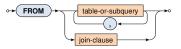
ALL

- All the rows from the nested query must satisfy the operator
- $\text{ALL}(\emptyset) = \text{TRUE}$
- ALL (X) = UNKNOWN

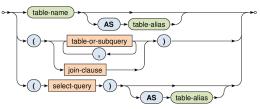
Set comparison predicates

- ANY and SOME (synonyms)
 - At least one row from the nested query must satisfy the given comparison operator
 - ANY (Ø) = FALSE
 - ANY (☆) = UNKNOWN

From Clause

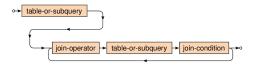

• SELECT ... FROM ... WHERE ... ORDER BY ...

Description of tables to be queried


- Actually not only tables, but also nested queries or views
- Old way
 - Comma separated list of tables (...)
 - Cartesian product of their rows is assumed
 - Required join conditions are specified in the WHERE clause
 - Example: SELECT ... FROM Flights, Aircrafts WHERE ...
- New way
 - Usage of join operators with optional conditions
 - Example: SELECT ... FROM Flights JOIN Aircrafts WHERE ...

From Clause

- SELECT ... FROM ... WHERE ... ORDER BY ...
 - Description of tables to be queried
 - Overall diagram
 - Both old and new ways



- Tables and subqueries
 - Table name, auxiliary parentheses, direct select statement

From Clause

- SELECT ... FROM ... WHERE ... ORDER BY ...
 - Description of tables to be queried
 - Basic structure of joins

- Examples
 - » Flights NATURAL JOIN Aircrafts
 - » Flights JOIN Aircrafts USING (Company)

» ...

- What types of joins are we provided?

Cross join

Cartesian product of all the rows from both the tables

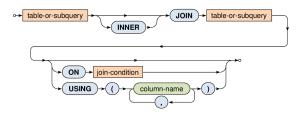
↔ table-or-subquery ↔ CROSS → JOIN + table-or-subquery →

SELECT * FROM T1 CROSS JOIN T2

Α	T1.*	Α	T2.*		T1.A	T1.*	T2.A	T2.*
1		1		ŕ	1		1	
2		4			1		4	
3					2		1	
					2		4	
					3		1	
					3		4	

Natural join

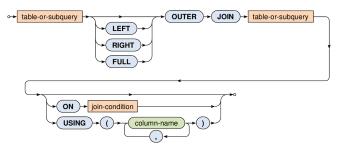
- Pairs of rows are combined only when they have equal values in all the columns they share
 - I.e. columns of the same name


→ table-or-subquery → NATURAL → JOIN → table-or-subquery →

SELECT * FROM T1 NATURAL JOIN T2

Inner join

- Pairs of rows are combined only when...
 - ON: ... they satisfy the given join condition
 - USING: ... they have equal values in the listed columns
- Note that inner join is a subset of the cross join


- Inner join
 - SELECT * FROM T1 JOIN T2 ON (T1.A <= T2.A)</p>

Α	T1.*	А	T2.*	T1.A	T1.*	T2.A	T2.*
1		1		1		1	
2		4		1		4	
3				2		4	
				3		4	

- SELECT * FROM T1 JOIN T2 USING (A)
 - Equals to the corresponding natural join
- SELECT * FROM T1 JOIN T2
 - Equals to the corresponding cross join

Outer join

- Pairs of rows from the standard inner join + rows that cannot be combined, in particular, ...
 - LEFT / RIGHT: ... rows from the left / right table only
 - FULL (default): ... rows from both the tables

Outer join

- Note that...
 - NULL values are used to fill missing information in rows that could not be combined
- SELECT *

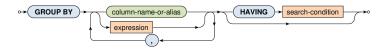
FROM T1 LEFT OUTER JOIN T2 ON (T1.A = T2.A)

А	T1.*	А	T2.*		T1.A	T1.*	T2.A	T2.*
1		1		,	1		1	
2		4			2		NULL	NULL
3					3		NULL	NULL

Union join

 Rows of both tables are integrated into one table, no pairs of rows are combined together at all

→ table-or-subquery → UNION → JOIN → table-or-subquery →


SELECT * FROM T1 UNION JOIN T2

Α	T1.*	А	T2.*	T1.A	T1.*	T2.A	T2.*
1		1		1		NULL	NULL
2		4		2		NULL	NULL
3				3		NULL	NULL
				NULL	NULL	1	
				NULL	NULL	4	

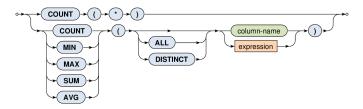
Aggregations

Basic idea of table aggregation

- First...
 - FROM and WHERE clauses are evaluated in a standard way
 - This results into an intermediate table
- Then...
 - GROUP BY: rows of this table are divided into groups according to equal values over all the specified columns
 - HAVING: and, finally, these aggregated rows (superrows) can be filtered out using a provided search condition

Aggregations: Example

How many flights does each company have scheduled?


- However, we are not interested in flights to Stuttgart and Munich
- As well as we do not want companies with just one flight or less

SELECT Company, COUNT(*) AS Flights FROM Flights
WHERE (Destination NOT IN ('Stuttgart', 'Munich'))
GROUP BY Company HAVING (Flights > 1)

Flight	Company	Destination	Passengers	\Rightarrow	Flight	Company	Destination	Passengers	⇒	Company	Flights
OK251	CSA	New York	276		OK251		New York	276		CSA	3
LH438	Lufthansa	Stuttgart	68		OK012	CSA	Milano	37		Air Canada	1
OK012	CSA	Milano	37		OK321		London	156		KLM	2
OK321	CSA	London	156		AC906	Air Canada	Toronto	116		Û	
AC906	Air Canada	Toronto	116		KL7621	KLM	Rotterdam	75		Company	Flights
KL7621	KLM	Rotterdam	75		KL1245	KLIVI	Amsterdam	130		CSA	3
KL1245	KLM	Amsterdam	130							LSA	3
										KLM	2

Aggregations

- What columns can be used...
 - in the SELECT clause as well as in the HAVING clause
 - ... when table aggregation takes place?
 - Answer (for both the cases): only...
 - Aggregating columns (i.e. those from the GROUP BY clause)
 - Columns newly derived using aggregation functions

Aggregations

Aggregate functions

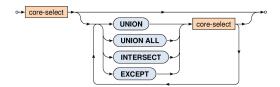
- Allow to produce values from the rows within a group
- COUNT(*)
 - Number of all the rows including duplicities and NULL values
- COUNT / SUM / AVG / MIN / MAX
 - Number of values / sum of values / average / min / max
 - NULL values are always and automatically ignored
 - Modifier ALL (default) includes duplicities, DISTINCT not
 - $COUNT(\emptyset) = 0$
 - SUM(Ø) = NULL (which is strange!)
 - $AVG(\emptyset)$ = NULL, $MIN(\emptyset)$ = NULL, $MAX(\emptyset)$ = NULL

Aggregations: Example

Find basic characteristics for all the scheduled flights

 I.e. return the overall number of flights, the overall number of the involved companies, the sum of all the passengers, the average / minimal / maximal number of passengers

SELECT


```
COUNT(*) AS Flights,
COUNT(DISTINCT Company) AS Companies,
SUM(Passengers) AS PSum,
AVG(Passengers) AS PAvg,
MIN(Passengers) AS PMin,
MAX(Passengers) AS PMax
FROM Flights
```

Flights	Companies	PSum	PAvg	PMin	PMax
7	4	858	123	37	276

Flight	Company	Destination	Passengers
OK251	CSA	New York	276
LH438	Lufthansa	Stuttgart	68
OK012	CSA	Milano	37
OK321	CSA	London	156
AC906	Air Canada	Toronto	116
KL7621	KLM	Rotterdam	75
KL1245	KLM	Amsterdam	130

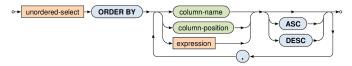
Set Operations

- Available set operations
 - UNION union of two tables (without duplicities)
 - UNION ALL union of two tables (with duplicities)
 - INTERSECT intersection of two tables
 - EXCEPT difference of two tables

Set Operations: Example

Merge available companies from tables of flights and aircrafts

```
SELECT Company FROM Flights
UNION
SELECT Company FROM Aircrafts
```

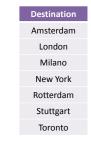


- Note that...
 - Both the operands must be compatible
 - I.e. they have the same number of columns
 - And these columns must be of the same types

Ordered Queries

ORDER BY

- Note that rows in the result have no defined order!
 - ... unless this order is explicitly specified
- Multiple columns (...) can be used for such order
- NULL values precede any other values
- Directions
 - ASC (default) ascending
 - DESC descending



Ordered Queries: Example

Return an ordered list of all the scheduled destinations

SELECT DISTINCT Destination FROM Flights ORDER BY Destination ASC

Flight	Company	Destination	Passengers
OK251	CSA	New York	276
LH438	Lufthansa	Stuttgart	68
OK012	CSA	Milano	37
OK321	CSA	London	156
AC906	Air Canada	Toronto	116
KL7621	KLM	Rotterdam	75
KL1245	KLM	Amsterdam	130

Nested Queries

• Where the nested queries can be used?

- In predicates...
 - ANY, SOME, ALL
 - -IN
 - EXISTS
- For definition of tables in the FROM clause
- Almost in any expression if scalar values are produced

Nested Queries: Example

• Find all the scheduled flights which have higher than average number of passengers.

```
SELECT *
```

FROM Flights

WHERE (Passengers > (SELECT AVG(Passengers) FROM Flights))

Flight	Company	Destination	Passengers
OK251	CSA	New York	276
LH438	Lufthansa	Stuttgart	68
OK012	CSA	Milano	37
OK321	CSA	London	156
AC906	Air Canada	Toronto	116
KL7621	KLM	Rotterdam	75
KL1245	KLM	Amsterdam	130

Flight	Company	Destination	Passengers
OK251	CSA	New York	276
OK321	CSA	London	156
KL1245	KLM	Amsterdam	130

Nested Queries: Example

- Return the number of suitable aircrafts for each flight.
 - Only aircrafts of a given company and sufficient capacity can be used
 - Note how values from the outer query are bound with the inner one

	Flight	Company	Destination	Passengers	Aircrafts
SELECT		CSA	New York	276	0
Flights.*,	LH438	Lufthansa	Stuttgart	68	0
	OK012	CSA	Milano	37	1
(OK321	CSA	London	156	0
SELECT COUNT(*)	AC906	Air Canada	Toronto	116	0
FROM Aircrafts AS A	KL7621	KLM	Rotterdam	75	2
WHERE	KL1245	KLM	Amsterdam	130	2
(A.Company = F.Company) AND					
(A Connection >= E Reconnector)				Company	Capacity
(A.Capacity >= F.Passengers)			Boeing 717	CSA	106
) AS Aircrafts			Airbus A380	KLM	555
FROM Flights AS F			Airbus A350	KLM	253