
NPRG036

XML Technologies

Lectures 11 and 12

XML Databases

14. and 21. 5. 2018

Author: Irena Holubová

Lecturer: Martin Svoboda

http://www.ksi.mff.cuni.cz/~svoboda/courses/172-NPRG036/

Lecture Outline

 XML persistence
 Introduction

 XML databases

 Numbering schemes

 Mapping techniques

Why XML Database?

 Motivation: requirements of applications

 Processing of external data

 Web pages, other textual data, structured data

 E-commerce

 Lists of goods, personalized views of the lists, orders, invoices, …

 Integration of heterogeneous information resources

 Integrated processing of data from Web pages and from relational
databases

 Main reason: storing XML data into databases means
management of huge volumes of XML data in an efficient way

World of documents

 many small documents

 usually static

 implicit structure

 tagging

 suitable for humans

World of databases

 several huge databases

 usually dynamic

 explicit structure

 schema

 suitable for machines

Documents vs. Databases

Documents vs. Databases

Documents

 editing

 printing

 lexical checking

 word count

 information retrieval

 searching

Databases

 updating

 data cleaning

 querying

 storing/transforming

Documents and Structured Data

 The border between the world of documents and world
of databases is not exact
 In some proposals both kinds of access are possible

 Somewhere in the middle we can find formatting languages
and semi-structured data

 Semi-structured data are defined as data which are
not sorted (have arbitrary order), which are not
complete (have optional parts) and whose structure
can "unpredictably" change
 Web data, HTML pages, Bibtex files, biological and

chemical data

 XML data are a kind of semi-structured data

Classification of XML Documents

 The basic classification of XML documents

results from their origin and the way they

were created

 data-oriented

 document-oriented

 hybrid

 For the particular classes different ways of

implementations are suitable

Data-oriented XML Documents

 Usually created and processed by machines

 Regular, deep structure
 Fully structured data

 They do not contain
 Mixed-content elements

 CDATA sections

 Comments

 Processing instructions

 The order of sibling elements is often unimportant

 Example: database exports, catalogues, …

Data-oriented XML Documents

<book id="12345">

 <title>All I Really Need To Know I Learned in

Kindergarten</title>

 <author>

 <name>Robert</name>

 <surname>Fulghum</surname>

 </author>

 <edition title="Argo">

 <year>2003</year>

 <ISBN>80-7203-538-X</ISBN>

 </edition>

 <edition title="Argo">

 <year>1996</year>

 <ISBN>80-7203-028-0</ISBN>

 </edition>

</book>

Document-oriented XML Documents

 Usually created and processed by humans

 Irregular, less structured
 Semi-structured data

 Often contain
 Mixed-content elements

 CDATA sections

 Comments

 Processing instructions

 The order of sibling elements is crucial

 Example: XHTML web pages

Document-oriented XML Documents

<book id="12345">

 <title>All I Really Need To Know I Learned in

Kindergarten</title>

 <author>Robert Fulghum</author>

 <description>A new, edited and extended publication

published on the occasion of the fifteen anniversary of

the first edition</description>

 <Text>

 <p>Fifteen years after publishing of <q>his</q>

<i>Kindergarten</i> Robert Fulghum has decided to read it

once again, now in <i>2003</i>.</p>

 <p>He wanted to find out whether and, if so, to what

extent his opinions have changed and why. Finally, he

modified and extended his book to...</p>

 <Text>

</book>

Implementation Approaches

 Differ according to the type of documents

 Exploit typical features

 Problem: hybrid documents

 Ambiguous classification

 Document-oriented techniques

 vs.

 Data-oriented techniques

Document-oriented Techniques (1)

 We need to preserve the document as whole
 Order of sibling elements

 Comments, CDATA sections, ...

 Even whitespaces

 For legal documents

 Round tripping – storing a document into a
database and its retrieval
 The level of round tripping says to what extent the

documents are similar

 The higher level, the higher similarity

 In the optimal case they are equivalent

Document-oriented Techniques (2)

 LOB

 Storing of the whole document into a BLOB / CLOB column

 Possible in all known database systems

(+) The highest level of round tripping, fast retrieval of the whole
document, extending of XML data with database features

(–) No XML operations

 The data need to be extracted from the DB and pre-processed

 XML data type

 Like a LOB with the support for XML operations

 XML querying, XML full-text search

 Requires special indices (numbering schemas)

 SQL/XML

Document-oriented Techniques (3)

 Native XML databases (NXD)
 Natural support for XML operations

 XML query languages, XML update operations, DOM/SAX
interfaces, …

 Focus on document-oriented aspects
 Comments, CDATA sections, …

 The logical model is based on XML
 i.e. we work with trees

 The physical model can be, e.g., relational
 i.e. we can physically store the trees, e.g., into relations

(+) Good level of round tripping

(–) The index (numbering schema) is (used to be) several times
bigger than the data, necessity to start from scratch
(transactions, replication, multi-user access, query
optimization, …)

Data-oriented Techniques (1)

 Idea: The data are stored in a relational database
management system (RDBMS)

 Mapping method – transforms the data into relations (and
back)

 XML queries over XML data  SQL queries over relations

 The result of SQL query  XML document

 Exploit data-oriented aspects (low level of round tripping)

 It is not necessary to preserve the document as a whole

 Order of sibling elements is ignored, document-oriented
constructs (comments, whitespaces, …) are ignored, …

 No (little) support for mixed-content elements

Data-oriented Techniques (2)

 Middleware

 A separate software which ensures transformation of XML
data between XML documents and relations

 XML-enabled database

 RDBMS with functions and extensions for XML data support

 Special related approach: XML data binding

 Methods for binding of XML data and objects

 For each element type a separate class

 Its attributes and subelements form properties of the class

 I.e. it is not a DOM tree of objects!

Numbering Schemas

A numbering schema of a tree model of a document is
a function which assigns each node a unique
identifier that serves as a reference to that node for
indexing and query evaluation

 Enable fast evaluation of selected relationships
among nodes of XML document
 Ancestor-descendant

 Parent-child

 Element-attribute

 …

 Depth of the node

 Order among siblings

 …

Numbering Schemas

 Sequential numbering schema

 The identifiers are assigned to the nodes as soon as

they are added to the system sequentially, starting from

1

 Structural numbering schema

 Enables to preserve and evaluate a selected

relationship among any two nodes of the document

 Often it is expected to enable fast searching for all

occurrences of such a relationship in the document

Numbering Schemas

 Stable numbering schema

 A schema which does not have to be modified (except for
preserving its local features) when the structure of the
respective data changes

 i.e., on insertion/deletion of nodes

 A schema of a structural numbering schema

 Is an ordered pair (p, L), where p is a binary predicate and L
is an invertible function which for the given XML tree model T
= (N, E) assigns each node v ∈ N a binary sequence L(v).

 For each pair of nodes u, v ∈ N predicate p(L(u), L(v)) is
satisfied if v is in a particular relationship with u.

 e.g. v is a descendant of u

 Particular numbering schema: particular p and L

Dietz Numbering

<?xml version="1.0"?>

<contact>

 <name>B. Pitt</name>

 <phone>

 <cell>6091234</cell>

 <home>41983</home>

 </phone>

</contact>

(1,8)

contact

(2,2)

name

(3,1)

"B. Pitt"

(4,7)

phone

(5,4)

cell

(7,6)

home

(6,3)

"6091234"

(8,5)

"41983"

Dietz Numbering

 Preorder traversal

 Child nodes of a node follow their parent node

 Postorder traversal

 Parent node follows its child nodes

 Construction of a numbering schema

 Each node v ∈ N is assigned with a pair (x,y) denoting
preorder and postorder order

 Node v ∈ N having L(v) = (x,y) is a descendant node of node u

having L(u) = (x',y') if x' < x & y' > y

Depth-first (DF) Numbering

(1,43)

contact

(2,5)

name

(3,4)

"B. Pitt"

(33,42)

phone

(34,37)

cell

(38,41)

home

(35,36)

"13727"

(39,40)

"41983"

preorder traversal +

 assigning (umin, umax),
where

 umin is the time of
visiting a node

 umax is the time of
leaving a node

 Predicate is the same
as in the previous case

ORDPATH

 New level of
tree = new level
of numbering

 We use only
odd numbers

 The predicate
corresponds to
searching a
substring

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

ORDPATH – Insert

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.7

phone

 At the end directly

ORDPATH – Insert

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.-1

title

1.7

phone

 At the beginning using
negative numbers

ORDPATH – Insert

1

contact

1.1

name

1.1.1

"B. Pitt"

1.3

phone

1.3.1

cell

1.3.3

home

1.3.1.1

"13727"

1.3.3.1

"41983"

1.5

phone

1.-1

title

1.7

phone

1.3.2

1.3.2.1

home

1.3.2.1.1

"1234"

1.3.2.3

home

1.3.2.3.1

"56789"

 In the middle using an
auxiliary node with
even number

XML Databases

 What we want: persistent storage of XML data

 General classification:
 Based on a file system

 Based on an object model

 Based on (object-)relational databases

 XML-enabled databases

 Exploit a mapping method between XML data and
relations

 Native XML databases

 Exploit a suitable data structure for hierarchical tree data

 Usually a set of numbering schemas

XML Databases

 The most efficient approaches are the native ones
 Reason: From the beginning they target the XML data

structure

 They are based on it

 Disadvantage: We need to start from scratch

 The databases are not only about storing the data,
but also transactions, versioning, multi-user access,
replication, …

 An alternative intuitive idea: Exploitation of a
mature and verified technology of (object-)
relational databases

Mapping Methods

 Methods for transformation between XML

data and relations

 Further classification:

A. Generic – mapping regardless XML schema of

the stored XML data

B. Schema-driven – mapping based on XML

schema of the stored XML data

 DTD, XML Schema

C. User-defined – mapping provided by the user

A. Generic Methods

 Do not exploit XML schema of the stored data
 Idea: Not all data have a schema

 Approaches:
1. A relational schema for a particular type of (collection

of) XML data

 e.g. Table-based mapping

2. A general relational schema for any type of (collection
of) XML data

 View XML data as a general tree

 We store the tree

 e.g. Generic-tree mapping, Structure-centred mapping,
Simple-path mapping

Table-based Mapping (1)

 <Tables>

 <Table_1>

 <Row>

 <Column_1>...</Column_1>

 ...

 <Column_n>...</Column_n>

 </Row>

 ...

 </Table_1>

 ...

 <Table_n>

 <Row>

 <Column_1>...</Column_1>

 ...

 <Column_m>...</Column_m>

 </Row>

 ...

 </Table_n>

 </Tables>

Table-based Mapping (2)

 Trivial case

 The schema is an implicit part of the data

 Only a limited set of documents can be stored

 Typical usage: data transfer among multiple

databases

 There exist also more complex schemas, but the

idea is the same

 Basically again usage of (an implicit) schema

Generic-tree Mapping (1)

 The target relational schema enables to store any

kind of XML data

 Regardless their XML schema

 XML document  directed tree

 Inner nodes have an ID

 Leaves carry values of attributes or text nodes

 Outgoing edges of a node represent

subelements/attributes of the element represented by

ingoing edge of the same node

 Edges are labeled with element/attribute names

Generic-tree Mapping (2)

...

<person id=1 age=23>

 <name>Irena</name>

 <surname>Mlýnková</surname>

 <address id=2>

 <street>Podlesí 4943</street>

 <city>Zlín</city>

 </address>

</person>

<person id=3 age=30>

 <name>Jim</name>

 <surname>Beam</surname>

</person>

...

person person

1

2

age

3

23

age

30

name

Jim

surname

Beam

address

street
city

Podlesí 4943 Zlín

name

surname

Irena Mlýnková

Generic-tree Mapping (3)

 Edge mapping
 Edge (sourceID, order, label, type, targetID)

 Type: inner edge, element/attribute edge, …

 Edge (..., (1, 2, "name", element, -1), ...

 (1, 4, "address", inner, 2), ...)

 Attribute mapping
 Attribute = name of the edge
 Edgeattribute (sourceID, order, type, targetID)

 Edgename(..., (1, 2, element, -1), ...

 (3, 2, element, -1), ...)

!

Generic-tree Mapping (4)

 Universal mapping

 Uni (sourceID, ordera1, typea1, targetIDa1, ...

orderak, typeak, targetIDak)

 Outer join of tables from attribute mapping

 a1, ... ak are all the attribute names in the XML document

 Too many null values

 Normalized universal mapping

 The universal table contains for each name just one record

 Others (i.e. multi-value attributes) are stored in overflow
tables

 From edge mapping

Generic-tree Mapping (5)

 How do we store the leaf values?

1. Special value tables, each for each data type used

2. Value columns in the previous tables

 Many null values (for each data type an extra column)

 Or we ignore data types

 Other options

 Combination of previous approaches

 E.g. attribute mapping for frequent attributes and edge

mapping for other

Structure-centred Mapping (1)

 XML document  directed tree

 All nodes have the same structure:

 N = (t, l, c, n), where

 t is the type of node (i.e. ELEM, ATTR, TXT, ...)

 l is the label of node (if exists)

 c is text content of node (if exists)

 n = {N1, ... Nm} is (possibly empty) list of child nodes

 Variants of the algorithm = variants of storing the

list of child nodes

 Aim: efficient operations

Structure-centred Mapping (2)

1. Keys and foreign keys

 Each node is assigned with an ID (key) and ID

of its parent node (foreign key)

(+) Simple, efficient updates

(–) Inefficient queries (joins of many tables)

2. DF values

 Node ID = pair (DFmin, DFmax)

 DFmin = the time of visiting a node

 DFmax = the time of leaving a node

Structure-centred

Mapping (3)

(+) Efficient querying and reconstruction of a node

 E.g. v is a descendant of u, if umin < vmin and vmax < umax

 The nodes can be ordered totally

(–) Inefficient updates

 In the worst case we need to re-number the whole

tree

Node3 (29,30)

Node1 (27,40)

Node4 (32,33)Node2 (28,31) Node5 (34,39)

Node6 (35,36) Node7 (37,38)

...

Structure-centred

Mapping (4)

3. SICF (simple continued fraction) values

 SICF node identifier = , where qi  N (i = 1, ... k)

 Sequence <q1, ... qk> identifies the node

 For root node: SICF ID  = <s>, s > 1

 For all other nodes:

 If node u has SICF ID = <q1, ... qm> and n child nodes u1, ... un,
then SICF ID of i-th child node is <q1, ... qm, i>

 Resembles to ORDPATH

 Does not have its advantages

 We do not use the “trick” with odd and even numbers

(+) we have a more precise structural information

(–) like in the previous case

Simple-path Mapping (1)

 Assumption: XPath queries

 Idea: We can store all paths to all nodes in the documents

 So-called simple paths

<SimpleAbsolutePathUnit> ::= <PathOp> <SimplePathUnit> |

 <PathOp> <SimplePathUnit> ’@’ <AttName>

<PathOp> ::= ’/’

<SimplePathUnit> ::= <ElementType> |

 <ElementType> <PathOp> <SimplePathUnit>

 Just a simple path is not sufficient information

 It does not contain information about position/order of node in
the document

Simple-path Mapping (2)

 Relational schema:

 Element (IDdoc, IDpath, Order, Position)

 Attribute (IDdoc, IDpath, Value, Position)

 Text (IDdoc, IDpath, Value, Position)

 Path (IDpath, Value)

 Order of an element within its sibling nodes

 Position of a word in a text is an integer value

 Position of a tag is a real number

 integral part = position of the closest preceding word

 decimal fraction = position within tags following the closest preceding
word

(+) Efficient processing of XPath queries

 Implementation of ‘//’ using SQL LIKE

B. Schema-driven Mapping (1)

 Based on existence of an XML schema
 Usually DTD or XML Schema

 Algorithm:
1. XML schema is mapped to relational schema

2. XML data valid against the XML schema are stored into
relations
 i.e., for data with different structure (XML schema) we

have a different relational schema

 Aim: We want to create an optimal schema with
"reasonable" amount of tables and null values
and which corresponds to the source XML
schema

B. Schema-driven Mapping (2)

 General characteristics of the algorithms:

1. For each element we create a relation consisting of its
attributes

2. Subelements with maximum occurrence of one are (instead
of to separate tables) mapped to tables of parent elements

 so-called inlining

3. Elements with optional occurrence  nullable columns

4. Subelements with multiple-occurrence  separate tables

 Element-subelement relationships are mapped using keys
and foreign keys

5. Alternative subelements 

 separate tables (analogous to the previous case) or

 one universal table (with many nullable fields)

B. Schema-driven Mapping (3)

5. Order of sibling elements (if necessary)  special column

6. Mixed-content elements usually not supported

 Would require many columns with nullable fields

7. Despite the previous optimizations a reconstruction of an

element requires joining several tables.

 Most of the techniques use an auxiliary graph

 Classification:

 Fixed methods – exploit information only from schema

 Basic, Shared and Hybrid

 Flexible methods – exploit other information

 LegoDB mapping, Hybrid object-relational mapping

Algorithms Basic, Shared and Hybrid (1)

 Continuous improvements of mapping a DTD to
relational schema
 One of the first approaches

 DTD graph – auxiliary structure for creation of a
relational schema
 Nodes = elements (occur 1x) / attributes / operators

 Directed edges = relationships element-subelement /
element-attribute / element-operator / operator-element

 Note: DTD is first "flattened" and simplified
 Contains only operators * and ? (+  *, a|b  a?,b?)

 A classical trick

Algorithms Basic, Shared and Hybrid (2)

<!ELEMENT author(name?,surname)>

<!ELEMENT name(#PCDATA)>

<!ELEMENT surname(#PCDATA)>

<!ELEMENT book(author*,title)>

<!ATTLIST book published CDATA>

<!ELEMENT title(#PCDATA)>

<!ELEMENT article(author)>

<!ATTLIST article paper CDATA>

author

?

name

surname

book

title* published

article

paper

Algorithm Basic

 Naïve approach

 Rules:

1. For each element in the document create a separate relation

 Motivation: The root element can be any element in the DTD

2. For each element inline as many child nodes as possible

 We do not inline only child nodes of operator ‘*’ and recursive

subelements – they are stored in separate relations

(–) Too many relations

 E.g. for our sample element author we would create two

relations corresponding to two places of its usage within
book and article

!

Algorithm Shared

 Idea: We want to map each element only once

 Rules:
1. Nodes with an in-degree of one are inlined to parent relations.

2. Nodes with an in-degree of zero are stored in separate relations
 They are not reachable from any other node

3. Repeated elements are stored in separate relations.

4. Of all mutually recursive elements having an in-degree one, one of them is
stored in a separate relation.

5. The problem of inlined elements, which can become roots of an instance
XML document, is solved using a flag for each element that indicates this
situation.

 E.g. For our sample DTD graph we would create 3 relations
author, book, article

(–) The number of relations can be further reduced in some cases

Algorithm Hybrid

 Combination of maximum inlining of Basic and sharing in Shared

 Rules:

1. - 5. Same as in Shared

6. In addition, we inline elements with an in-degree greater than one,
that are neither recursive nor reached through a "*" node.

 E.g. in our sample DTD graph it does not have any effect, but if
book has only one author, it does

 Further extension:

 Storing of order of elements

 Into special columns

 Mapping of integrity constraints

 ?, list of values, ID, IDREF, IDREFS, ...

 [NOT] NULL, CHECK, UNIQUE, PRIMARY/FOREIGN KEY, ...

LegoDB Mapping (1)

 Idea: For the given XML schema we create a space of
possible mappings and we select the optimal one for the
given application

 Application:
 Sample XML documents

 Sample XML queries + their significance

 One step:
1. We apply a selected transformation on the given XML

schema Sold
 We get a new XML schema Snew

2. XML schema Snew is mapped (using a fixed method) to
relational schema Srel

3. Sample queries are evaluated with regard to Srel

4. Sold = Snew

LegoDB Mapping (2)

 The space of possible XML transformations is
infinite
 Heuristics, greedy search strategies, …

 XML transformations
 Inlining / outlining

 (a,(b|c)) = (a,b|a,c)

 (a+) = (a,a*)

 (a|b)  (a?,b?)

 ~ = (a|(~!a)), where ~ means any element and ~!a any
element except for a

 The static mapping is similar to Hybrid algorithm

LegoDB Mapping (3)

(+) The most efficient mapping for the specified

application

(–) If the application changes (the user starts to

specify different queries)

 Efficiency can be worse than in case of a fixed mapping

 Modification of a schema is not an easy task

Hybrid Object-relational Mapping (1)

 Motivation: Data in XML documents are semi-structured 
classical decomposition of unstructured parts leads to
inefficient queries
 i.e., we create many tables which we have to join to retrieve the

data

 Solution
 Structured parts of the data are mapped into relations

 Unstructured parts are stored into special XML data types
 Data type for XML fragments

 Support for XML operations

 Motivation for SQL/XML data type XML

 or BLOB if we do not need XML operations

 Core problem of the algorithm: Which parts of the document
are unstructured?

Hybrid Object-relational Mapping (2)

 Approach:
1. Creating of DTD graph G1

2. For each node we evaluate the measure of
significance 

3. Subgraphs denoted with unstructured nodes are
replaced with an auxiliary attribute for XML type 
DTD graph G2

1. The node is not a leaf

2. The node and its descendants have  < LOD
 Level of detail

3. The node dose not have a parent node that would
satisfy the conditions

4. Graph G2 is statically mapped to a relational schema

Hybrid Object-relational Mapping (3)

 Meaning of the variables:

 S (weight derived from the DTD structure)

 The combination of values expressing the position of the

element/attribute in the graph

 D (weight derived from the existing XML data)

 The ratio of the number of documents containing the

element/attribute and the absolute number of documents

 Q (weight derived from the queries)

 The ratio of the number of queries containing the

element/attribute and the absolute number of queries

(+) and (–) like in the previous case

C. User-defined Mapping

 The whole mapping process is defined by the user

 Algorithm:

1. The user creates the target relational schema

2. The user specifies the required mapping (using a system-
dependent interface)

 Usually a declarative interface, annotations in XML
schemas, special query languages, ...

(+) The most flexible approach

 The user knows what (s)he wants

(–) The user must know several advanced technologies, the
definition of an optimal relational schema is not an easy task

User-driven Mapping (1)

 An attempt to solve the disadvantages of user-

defined mapping

 Idea: an implicit method + user-defined local

changes

 Annotation of schema = user denotes fragments

(subtrees) whose storage strategy should be modified

 Pre-defined set of allowed changes of mapping

 Usually a set of attributes and their values

 Example – system XCacheDB

User-driven Mapping – XCacheDB (2)

 INLINE – inline the fragment into parent table

 TABLE – store the fragment into a separate table

 BLOB_ONLY – store the fragment into a BLOB

column

 STORE_BLOB – store the fragment implicitly +

into a BLOB column

 RENAME – change the name of table of column

 DATATYPE – change the data type of the column

Current State of the Art of XML

Databases

 Native databases vs. XML-enabled databases

 The difference is fading away

 Oracle DB, IBM DB2, MS SQL Server – the storage is defined
by the user

 BLOB

 Native XML storage (typically parsed XML data + ORDPATH
numbering schema)

 Decomposition into relations – fixed schema-driven or user-
driven

 Currently user-driven annotations often denoted as obsolete

 Standard bridge between XML and relational world: SQL/XML

