NDBIO40: Big Data Management and NoSQL Databases
http://www.ksi.mff.cuni.cz/~svoboda/courses/171-NDBI040/

Practical Class 5
Riak

Martin Svoboda
svoboda@ksi.mff.cuni.cz

13. 11. 2017

Charles University in Prague, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/171-NDBI040/

Riak Overview

RiakKV
* Highly available distributed key-value store
e http://basho.com/products/riak-kv/

Data model

Instance (— bucket types) — buckets — objects

* Bucket = logical collection of objects
e Object = key-value pair with metadata

= Key is a Unicode string, unique within a bucket
= Value can be anything (text, binary object, image, ...)
= Each object is also associated with metadata

http://basho.com/products/riak-kv/

CRUD Operations

HTTP API

o All the user requests are submitted as HTTP requests with
appropriately selected / constructed methods, URLs, headers,
and data

URL pattern of HTTP requests for all the CRUD operations

H@+@*$@+@»7
(

\@»@»Tf
t (o

Optional parameters (depending on the operation)

NDBI040: Big Data Management and NoSQL Databases | Practical Class 5: Riak | 13. 11. 2017

CRUD Operations

Basic operations on objects
e Create: POST or PUT methods

= Inserts a key-value pair into a given bucket
= Key is specified manually, or will be generated automatically

* Read: GET method

= Retrieves a key-value pair from a given bucket
* Update: PUT method

= Updates a key-value pair in a given bucket
* Delete: DELETE method

= Removes a key-value pair from a given bucket

NDBI040: Big Data Management and NoSQL Databases | Practical Class 5: Riak | 13. 11. 2017

HTTP API

cURL tool

* Allows to transfer data from / to a server using HTTP
(or other supported protocols)

Options
o X , ——request
= HTTP request method to be used (GET, ...)
e —-d , ——data

= Data to be sent to the server (implies the POST method)
e -H , ——header

= Extra headers to be included when sending the request
e —-i,--include

= Prints both headers and (not just) body of a response

NDBI040: Big Data Management and NoSQL Databases | Practical Class 5: Riak | 13. 11. 2017

First Steps

Remotely connect to our NoSQL server
* SSH and SFTP access
e PuTTY and WinSCP on Windows
* nosql.ms.mff.cuni.cz:42222

Check Riak cluster status
e curl -v http://localhost:10011/ping
* And with higher permissions...

riak ping

riak-admin test

riak-admin status

riak-admin status | grep ring_members

NDBI040: Big Data Management and NoSQL Databases | Practical Class 5: Riak | 13. 11. 2017

Read and Write Operations

Insert object for a new actor

e Prefix all the bucket names with your 1ogin

curl -i -X PUT
-H 'Content-Type: text/plain'
-d 'Ivan Trojan, 1964'
http://localhost:10011/buckets/login_actors/keys/trojan

Retrieve the previously inserted actor

* Examine both response body and headers

curl -i -X GET
http://localhost:10011/buckets/login_actors/keys/trojan

Bucket Operations

List all the buckets

* Only buckets with at least one object will be included

curl -i -X GET
http://localhost:10011/buckets?buckets=true

List all the keys in the bucket of actors

* Note that this operation cannot be executed efficiently

curl -i -X GET
http://localhost:10011/buckets/login_actors/keys?keys=true

Update and Delete Operations

Update our actor object

curl -i -X PUT
-H 'Content-Type: application/json'
-d '{ "name" : "Ivan Trojan", "year" : 1964 }'
http://localhost:10011/buckets/login_actors/keys/trojan

Check the updated actor object

e Use different virtual nodes as well
e localhost:10011, localhost:10012, localhost:10013

Remove the actor object

curl -i -X DELETE
http://localhost:10011/buckets/login_actors/keys/trojan

Sample Data

Insert objects for new actors
e Putthe datainto login_actors bucket
e Use application/json content type

’{ "name" : "Ivan Trojan", "year" : 1964 } ‘
’{ "name" : "Jifi Machaéek", "year" : 1966 } ‘
’{ "name" : "Jitka Schneiderova", "year" : 1973 } ‘
’{ "name" : "Zden&k Svérak", "year" : 1936 } ‘

Sample Data

Insert objects for new movies
e Putthe datainto login_movies bucket
* Use application/json content type once again

{
"title" : "Vratné lahve", "year" : 2006,
"actors" : ["Zdené&k Svérak", "Jifi Machacek"]
}
{
"title" : "Samotari", "year" : 2000,
"actors" : ["Jitka Schneiderova", "Ivan Trojan", "Ji¥i Machalek"]
}
{
"title" : "Medvidek", "year" : 2007,
"actors" : ["Jifi Machalek", "Ivan Trojan"]
}

Links and Link Walking

Links = directed relationships between objects

- - G- O @D @D,

ﬁt‘j’%‘j’ﬁ'ﬂ

* Bucket—assumes only a given target bucket

Parameters

* Tag— considers only a given link tag

* Keep—whether the objects should be included in the result

Links and Link Walking

Create new links actor — movie

curl -i -X PUT
-H 'Content-Type: application/json'
-H 'Link: </buckets/login_movies/keys/samotari>; riaktag="tmovie"'
-H 'Link: </buckets/login_movies/keys/medvidek>; riaktag="tmovie"'
-d '{ "name" : "Ivan Trojan", "year" : 1964 }'
http://localhost:10011/buckets/login_actors/keys/trojan

Check the updated actor object
* Verify the presence of links in particular

Traverse the links from the actor

curl -i -X GET

http://localhost:10011/buckets/login_actors/keys/trojan
/login_movies,tmovie,1

Links and Link Walking

Add all the links movie — actor

Express a more complicated link walking query

¢ Find all the actors that appeared in movies where Trojan
stared

Search 2.0: Yokozuna

Create a full-text index for the bucket of actors

curl -i -X PUT
-H 'Content-Type: application/json'
-d '{ "schema" : "_yz_default" }'
http://localhost:10011/search/index/login_iactors

curl -i -X PUT
-H 'Content-Type: application/json'
-d '{ "props" : { "search_index" : "login_iactors" } }'
http://localhost:10011/buckets/login_actors/props

Verify the new bucket properties

curl -i -X GET
http://localhost:10011/buckets/login_actors/props

Search 2.0: Yokozuna

Reinsert objects for all the actors
* Note that names of fields were changed...

= Suffixes recognizable by the JSON extractor were added
= Czech accented characters were removed

’{ "name_s" : "Zdenek Sverak", "year_i" : 1936 }

’{ "name_s" : "Ivan Trojan", "year_i" : 1964 }
’{ "name_s" : "Jiri Machacek", "year_i" : 1966 }
’{ "name_s" : "Jitka Schneiderova", "year_i" : 1973 } ‘

Search 2.0: Yokozuna

Find all the actors born in 1964

curl -i -X GET
'http://localhost:10011/search/query/
login_iactors?wt=json&omitHeader=true&q=year_i:1964'

Express a more complicated full-text query

¢ Find all the actors who were born in 1960 or later and their
name contains substring de

References

Riak documentation
¢ http://docs.basho.com/riak/kv/2.1.4/
Search queries (Apache Solr query syntax)

e http://docs.basho.com/riak/kv/2.1.4/
developing/usage/search/

¢ https://lucene.apache.org/solr/guide/6_6/
the-standard-query-parser.html

http://docs.basho.com/riak/kv/2.1.4/
http://docs.basho.com/riak/kv/2.1.4/developing/usage/search/
http://docs.basho.com/riak/kv/2.1.4/developing/usage/search/
https://lucene.apache.org/solr/guide/6_6/the-standard-query-parser.html
https://lucene.apache.org/solr/guide/6_6/the-standard-query-parser.html

	RiakKV
	Overview
	cURL Tool
	CRUD Operations
	Link Walking
	Search 2.0
	References

