B4M36DS2, BE4M36DS2: Database Systems 2
http://www.ksi.mff.cuni.cz/~svoboda/courses/171-B4M36DS2/

Lecture 9

Document Databases: MongoDB

Martin Svoboda
martin.svoboda@fel.cvut.cz

27. 11. 2017

Charles University in Prague, Faculty of Mathematics and Physics
Czech Technical University in Prague, Faculty of Electrical Engineering

http://www.ksi.mff.cuni.cz/~svoboda/courses/171-B4M36DS2/

Lecture Outline

Document databases
* Introduction
MongoDB
* Data model

e CRUD operations
* Insert
= Update
* Remove
= Find: projection, selection, modifiers

Document Stores

Data model
e Documents

= Self-describing
= Hierarchical tree structures (JSON, XML, ...)

— Scalar values, maps, lists, sets, nested documents, ...
= |dentified by a unique identifier (key, ...)

* Documents are organized into collections
Query patterns

* Create, update or remove a document

* Retrieve documents according to complex query conditions
Observation

* Extended key-value stores where the value part is examinable

B4M36DS2, BE4AM36DS2: Database Sy 2 | Lecture 9: Document Databases: MongoDB | 27. 11. 2017

MongoDB Document Database

\b mongo

MongoDB

JSON document database

https://www.mongodb.com/

Features
= Open source, high availability, eventual consistency, automatic
sharding, master-slave replication, automatic failover,
secondary indices, ...

Developed by MongoDB

Implemented in C++, C, and JavaScript

Operating systems: Windows, Linux, Mac OS X, ...

Initial release in 2009

https://www.mongodb.com/

Query Example

Collection of movies Query statement

{ Titles of movies filmed in 2005 and later,

_id: ObjectId("1"), . . .
title: "Vratné lahve", sorted by these titles in descending order

year: 2006
3 db.movies.find(
{ year: { $gt: 2005 } 1},
{ { _id: false, title: true }
_id: ObjectId("2"),).sort({ title: -1 })

title: "Samotari",

year: 2000 Query result

}
’{ title: "Vratné lahve" }

{

_id: ObjectId("3"), ’{ title: "Medvidek" }

title: "Medvidek",

year: 2007
}

Data Model

Database system structure

Instance — databases — collections — documents

e Database
e Collection

= Collection of documents, usually of a similar structure
e Document

= MongoDB document = one JSON object

— lLe. even a complex JSON object with other recursively nested
objects, arrays or values

= Each document has a unique identifier (primary key)
— Technically realized using a top-level _id field

Data Model

MongoDB document
* Internally stored in BSON format (Binary JSON)

= Maximal allowed size 16 MB
= GridFS can be used to split larger files into smaller chunks

Restrictions on field names
* Top-level _id is reserved for a primary key
* Field names cannot start with $
= Reserved for query operators
* Field names cannot contain .
= Used when accessing nested fields

B4M36DS2, BEAM36 DS2: Database Sy 2 | Lecture 9: Document Databases: MongoDB | 27. 11. 2017

Primary Keys

Features of identifiers
* Unique within a collection
* Immutable (cannot be changed once assigned)
e Can be of any type other than a JSON array

Key management
* Natural identifier
e Auto-incrementing number — not recommended
* UUID (Universally Unique Identifier)

* Objectld — special 12-byte BSON type (the default option)

= Small, likely unique, fast to generate, ordered, based on a
timestamp, machine id, process id, and a process-local counter

“““ DS2, BE4AM36DS2: Database Sy 2 | Lecture 9: Document Databases: MongoDB | 27. 11. 2017

Design Questions

Data modeling (in terms of collections and documents)
* No explicit schema is provided, nor expected or enforced
= However...

— documents within a collection are similar in practice
— implicit schema is required nevertheless

e Challenge

= Balancing application requirements, performance aspects,
data structure, mutual relationships, query patterns, ...

Two main concepts
e References
e Embedded documents

Denormalized Data Models

Embedded documents
* Related data in a single document
= with embedded JSON objects, so called subdocuments
* Pros: data manipulation (fewer queries need to be issued)
e Cons: possible data redundancies
e Suitable for one-to-one or one-to-many relationships

{
_id: ObjectId("2"), title: "Samotaf¥i", year: 2000,
actors: [
{ firstname: "Jitka", lastname: "Schneiderova" 1},
{ firstname: "Ivan", lastname: "Trojan" },
{ firstname: "Ji¥i", lastname: "Machacéek" }

]
}

Normalized Data Models

References

* Related data in separate documents

= These are interconnected via directed links (references)
= Technically expressed using ordinary values with identifiers
of target documents (i.e. no special construct is provided)

* Features: higher flexibility, follow up queries might be needed
e Suitable for many-to-many relationships

{ {
_id: ObjectId("2"), _id: ObjectId("6"),
title: "Samotari", firstname: "Jitka",
year: 2000, lastname: "Schneiderova"
actors: [ObjectId("6"), — }

",
ObjectId("4"),
")

ObjectId("5") 1]

Sample Data

Collection of movies

Collection of actors

{
_id: ObjectId("1"),
title: "Vratné lahve", year: 2006,
actors: [ObjectId("7"), ObjectId("5")]

{ _id: ObjectId("4™),
firstname: "Ivan",
lastname: "Trojan" }

_id: ObjectId("2"),

title: "Samotairi", year: 2000,

actors: [ObjectId("6"), ObjectId("4"),
ObjectId("5")]

{ _id: ObjectId("s"),

firstname: "Jiri",
lastname: "Machalek" }

{ _id: ObjectId("s"),
firstname: "Jitka",
lastname: "Schneiderova" }

_id: ObjectId("3"),
title: "Medvidek", year: 2007,
actors: [ObjectId("5"), ObjectId("4")]

{ _id: ObjectId("7"),
firstname: "Zdenék",
lastname: "Svérak" }

Application Interfaces

mongo shell
¢ Interactive interface to MongoDB

° ./bin/mongo --username user --password pass
--host host —--port 28015

Drivers

e Java, C, C++, CH, Perl, PHP, Python, Ruby, Scala, ...

Query Language

MongoDB query language is based on JavaScript
* Single command / entire script

* Read queries return a cursor
= Allows us to iterate over all the selected documents

e Each command is always evaluated over a single collection

Query patterns
e Basic CRUD operations
= Accessing documents via identifiers or conditions on fields

* Aggregations: MapReduce, pipelines, grouping

B4M36DS2, BE4AM36DS2: Database Sy 2 | Lecture 9: Document Databases: MongoDB | 27. 11. 2017

15

CRUD Operations

Overview
e db.collection.insert ()
= Inserts a new document into a collection
e db.collection.update()

= Modifies an existing document / documents or
inserts a new one

e db.collection.remove()
= Deletes an existing document / documents
e db.collection.find ()

= Finds documents based on filtering conditions
= Projection and / or sorting may be applied too

Insert Operation

Insert Operation

Inserts a new document / documents into a given collection

-@-0-E=D-0- @

L.
%_.ET.J o
S

e Parameters
= Document: one or more documents to be inserted

— Provided document identifiers (_id fields) must be unique
— When missing, they are generated automatically (Objectld)

= Options
e Collections are created automatically when not yet exist

Insert Operation: Examples

Insert a new actor document

db.actors.insert({

{ _id: ObjectId("s"),
firstname: "Anna", firstname: "Anna",
lastname: "Geislerova" lastname: "Geislerova"

} }

)

Insert two new movies

db.movies.insert(
L
{
_id: ObjectId("9"), title: “Zelary", year: 2003,
actors: [ObjectId("4"), ObjectId("8") 1]
},
{ title: "Anthropoid", year: 2016, actors: [ObjectId("8")] },
]
)

Update Operation

Update Operation

Modifies / replaces an existing document / documents

~@-0-E=-O-

L
©-E-O- T~ 0-

* Parameters
= Query: description of documents to be updated
— The same behavior as in find operations
= Update: modification actions to be applied
= Options
* At most one document is updated by default
= Unless {multi: true } option is specified

Update Operation: Examples

Replace the whole document of at most one specified actor

db.actors.update(

{ _id: ObjectId("8") 1},
{ firstname: "Ana",
lastname: "Geislerova" }

{

}

_id: ObjectId("8"),
firstname: "Ana",
lastname: "Geislerova"

Update all movies filmed in 2015 or later

)

db.movies.update(

{ year: { $gt: 2015 } 1},
{
$set: { new: true },
$inc: { rating: 3 }
3,
{ multi: true }

Update Operation

Update / replace modes

* Replace
when the update parameter contains no update operators

= The whole document is replaced (_id is preserved)
* Update
when the update parameter contains only update operators
= Current document is updated using these operators

— $set, $unset, $inc, $mul, ...
— Each operator can be used at most once

Update Operators

Field operators
* $set — sets the value of a given field / fields

H-*@*@T.*G)*@_T@w

* $unset — removes a given field / fields

H.*@*@‘tg*. O

¢ $rename — renames a given field / fields

Update Operators

Field operators
¢ $inc — increments the value of a given field / fields

H‘@®7-@-T®m
O)

¢ $mul — multiplies the value of a given field / fields

»-»@»@ﬁ.(;-ﬁ}o
¢ $currentDate — stores the current date time / timestamp
to a given field / fields

o (Seurrentdate))-~(:)--()-~(fidd)~ (istype : "aate”)) O
[—]

)
N4

Update Operators

Array operators
* $push — adds one item / all items to the end of an array

>~(push) ()~ *@T O
©-Geach) -)-{aray |-@
)
)

* $addToSet — adds one item / all items to the end of an array,
but duplicate values are ignored

~((SaddToSet)~ (i)~ @T @
©-Geaeh)~(D-{ary D
)

Update Operators

Array operators
* $pop — removes the first / last item of an array

H.*@*@T-G}T:TTG}N’

* $pull —removes all array items that match a specified query

”.*@*@T-@ETCD*’
[auery |
®)

Upsert Mode

Upsert behavior of update operation
* When {upsert: true } option is specified,
and, at the same time, no document was updated
=- new document is inserted
What this document will contain?
* In case of the replace mode...
= All the fields (i.e. value fields) from the update parameter
* In case of the update mode...

= All the value fields from the query parameter,
= and the outcome of all the update operators
from the update parameter

e _idfield is preserved, or newly generated if necessary

“““ DS2, BE4AM36DS2: Database Sy 2 | Lecture 9: Document Databases: MongoDB | 27. 11. 2017 28

Upsert Mode: Example

Unsuccessful update of a movie resulting to an insertion

db.movies.update(
{ title: "Tmavomodry svét", year: { $gt: 2000 } },
{
$set: {
director: { firstname: "Jan", lastname: "Svérak" 1},
year: 2001
},
$inc: { rating: 2 }
},
{ upsert: true }
)

{ _id: ObjectId("11"),
title: "Tmavomodry svét",
director: { firstname: "Jan", lastname: "Svérak" },
year: 2001,
rating: 2 }

Remove Operation

Remove Operation

Removes a document / documents from a given collection

@O~ -O- G

L .
OB o — 0

* Parameters
= Query: description of documents to be removed
— The same behavior as in find operations
= Options
* All the matching documents are removed
unless { justOne: true } option is provided

Find Operation

Find Operation

Selects documents from a given collection

@00

S ——

e Parameters

= Query: description of documents to be selected
= Projection: fields to be included / excluded in the result

* Matching documents are returned via an iterable cursor
= This allows us to chain further sort, skip or 1imit operations

Find Operation: Examples

Select all movies from our collection

‘db.movies.find() ‘

’db.movies.find({3) ‘

Select a particular movie based on its document identifier

‘db.movies.find({ _id: ObjectId("2") })

Select movies filmed in 2000 with a rating greater than 1

‘db.movies.find({ year: 2000, rating: { $gt: 1 } }) ‘

Select movies filmed between 2005 and 2015

’db.movies.find({ year: { $gte: 2005, $1lte: 2015 } }) ‘

Selection

Query parameter describes the documents we are interested in

lo-@ »@T o’
© ®

O

Conditions on fields (each field can be used at most once)
* Value equality

= The actual field value must be identical to the specified value
(including, e.g., the order of nested fields or array items)

* Query operators (each operator can be used at most once)
= The actual field value must satisfy all the provided operators

B4M36DS2, BE4AM36DS2: Database Sy 2 | Lecture 9: Document Databases: MongoDB | 27. 11. 2017

Value Equality Conditions: Examples

Select movies having a specific director

db.movies.find(
{ director: { firstname: "Jan", lastname: "Svérak" } }

)

db.movies.find(
{ director: { lastname: "Svérak", firstname: "Jan" } }

)

Select movies having specific actors

‘db.movies.find({ actors: [ObjectId("7"), ObjectId("5")] }) ‘

‘db.movies.find({ actors: [ObjectId("5"), ObjectId("7") 1 })

Queries in both the pairs are not equivalent!

Dot Notation

The dot notation for field names

o>(field

* Accessing fields of embedded documents
= "field.subfield"
— E.g.: "director.firstname"
e Accessing items of arrays
= "field.index"

— E.g.: "actors.2"
— Positions start at 0

Value Equality Conditions

Example (revisited)
Select movies having a specific director

db.movies.find(
{ director: { firstname: "Jan", lastname: "Svérak" } }

)

db.movies.find(
{ "director.firstname": "Jan", "director.lastname": "Sv&rak" }

)

Query Operators

Comparison operators

s

:

Sl e

e Comparisons take particular BSON data types into account
= Certain numeric conversions are automatically applied

Query Operators

Comparison operators
* $eq, $ne
= Tests the actual field value for equality / inequality
— The same behavior as in case of value equality conditions
* $1t, $1te, $gte, $gt
= Tests whether the actual field value is less than / less than or
equal / greater than or equal / greater than the provided value
* $in
= Tests whether the actual field value is equal to at least one
of the provided values
* $nin
= Negation of $in

B4M36DS2, BEAM36 DS2: Database Sy 2 | Lecture 9: Document Databases: MongoDB | 27. 11. 2017 40

Query Operators

Element operators
* $exists — tests whether a given field exists / not exists

~(sexists)~ -T

Evaluation operators

* $regex — tests whether a given field value matches
a specified regular expression (PCRE)

* $text — performs text search (text index must exists)

Query Operators

Array operators

* $all - tests whether a given array contains all the specified
items (in any order)

00—

Example (revisited)
Select movies having specific actors

db.movies.find(
{ actors: [ObjectId("5"), ObjectId("7") 1 }
)

db.movies.find(
{ actors: { $all: [ObjectId("5"), ObjectId("7") 1 } }
)

Query Operators

Array operators

* $size —tests the size of a given array against a fixed number
(and not, e.g., a range, unfortunately)

~(@size)~(:)~(gze)~

* $elemMatch — tests whether a given array contains at least
one item that satisfies all the involved query operations

~(selemMatch)-~(':)~ auery |-

Query Operators

Logical operators

¢ $and, $or

= Logical connectives for conjunction / disjunction
= At least 2 involved query expressions must be provided
= Only allowed at the top level of a query

* $not
o @not)~ ()@ [aieryoperator] - @

= Logical negation of exactly one involved query operator
= |.e. cannot be used at the top level of a query

Querying Arrays

Condition based on value equality is satisfied when...

* the given field as a whole is identical to the provided value,
or

* at least one item of the array is identical to the provided value

‘db.movies.find({ actors: ObjectId("5") })

|
’{ actors: ObjectId("5") } ‘
|

’{ actors: [ObjectId("5"), ObjectId("7") 1 }

Querying Arrays

Condition based on query operators is satisfied when...

 the given field as a whole satisfies all the involved operators,
or

* each of the involved operators is satisfied by at least one item
of the given array

= note, however, that this item might not be the same for all the
individual operators

‘db.movies.find({ ratings: { $gte: 2, $lte: 3 } }) ‘

’{ ratings: 3 } ‘ ’{ ratings: [3, 7, 51 } ‘ ’{ ratings: [1, 41 } ‘

Use $elemMatch when just one array item should be found
for all the operators

Projection
Projection allows us to determine the fields returned in the result

T

array fiid)~((: (D[projecton operator 1~(3)
)

o/

true or 1 for fields to be included

false or O for fields to be excluded

Positive and negative enumerations cannot be combined!
= The only exception is _id which is included by default

Projection operators — allow to select particular array items

Projection Operators

Array operators

* $elemMatch — selects the first matching item of an array
This item must satisfy all the operators included in query
When there is no such item, the field is not returned at all

~(selemMatch)--(:)~ auery |-

* $slice —selects the first count items of an array (when
count is positive) / the last count items (when negative)
Certain number of items can also be skipped

-(@slice) (oount) s
O-EGD-O-EGD-@

Projection: Examples

Find a particular movie, select its identifier, title and actors

db.movies.find(
{ _id: ObjectId("2") },

)

{ title: true, actors: true }

{

_id: ObjectId("2"),

title: "Samotari",

actors: [ObjectId("6"),
ObjectId("4"),
ObjectId("5")]

Find movies from 2000, select their titles and the last two actors

db.movies.find(
{ year: 2000 },
{
title: 1, _id: O,
actors: { $slice: -2 }
}
)

{

title: "Samotari",
actors: [ObjectId("4"),
ObjectId("5")]

Modifiers

Modifiers change the order and number of returned documents
* sort —orders the documents in the result
e limit —returns at most a certain number of documents
o~ Qimit) (O~ Ceount)--(0)
* skip — skips a certain number of documents from the
beginning

G- @ @D D~

All the modifiers are optional, can be chained in any order, but
must all be specified before any documents are retrieved via a
given cursor

B4M36DS2, BE4AM36DS2: Database Sy 2 | Lecture 9: Document Databases: MongoDB | 27. 11. 2017

50

Modifiers

Sort modifier orders the documents in the result

~@D~(O~ @TIG) @O
-Sh
i

1 for ascending, -1 for descending order

The order of documents is undefined unless explicitly sorted

Sorting of larger datasets should be supported by indices
Sorting happens before the projection phase
= |.e. notincluded fields can be used for sorting purposes as well

“““ DS2, BE4AM36DS2: Database Sy 2 | Lecture 9: Document Databases: MongoDB | 27. 11. 2017 51

Lecture Conclusion

MongoDB

* Document database for JSON documents

¢ Sharding with master-slave replication architecture
Query functionality

e CRUD operations

= Insert, find, update, remove
= Complex filtering conditions

* MapReduce

* |ndex structures

	Introduction
	MongoDB
	Data Model
	Sample Data
	Query Interfaces
	CRUD Operations
	Insert Operation
	Update Operation
	Remove Operation
	Find Operation

