
Query languages 1 (NDBI001)

Query evaluation

Jaroslav Pokorný

MFF UK, Praha

pokorny@ksi.mff.cuni.cz

Query languages 1 2

Statistics

Statistics for each relation:

nR # of tuples in relation R

V(A,R) # of elements in R[A]

pR # of pages to store R

bR blocking factor

M # of pages of free

space in RAM

l(A,R) # of levels of

index file for A in R

Notation:

bufferR compact space of pages for R in RAM

(we do not consider caching)

…

#1
#2
#3

#nR

bR

Query languages 1 3

Indexing by B+-trees:

Appropriate for: if there is an ordering on dom(A).

Consider attribute A of relation R:

• fA,R: average number of successors

in non-leaf node (~50-100)

• I(A,R): # index levels (~2-3)

– ~ log(V(A,R))/log(fA,R)

• pR,A : # leaf pages

l(A,R)

pR,A

Query languages 1 4

Time and space complexity

• Measures for query cost:
– CPU (cost of an operation is small; it is decreasing, difficult

to estimate)

– Disk (the main cost component - # of I/O operations)

• How many tuples is necessary to transfer?

• Which statistics should be maintained?

Notation: A instead of R.A

Query languages 1 5

Methods for selection

SELECT *

FROM R

WHERE A = ‘a’

Cases: A is a primary key,

A is a secondary (alternative) key

there is an index on A -

unclustered or of

type CLUSTER

A is a hash key

Assumption: uniform distribution of A values in R[A]

 nR(A=a) = nR /V(A,R)

Query languages 1 6

Methods for selection

Sequential scanning

• pR /*worst case*/

• pR/2 /* average, if A is

a primary key*/

…

#1
#2
#3

#nR

bR

Query languages 1 7

Methods for selection

Binary search, if R is ordered on A

• log2(pR) /*if A is primary key*/

• log2(pR) + nR(A=a) /bR /*if A is arbitrary

attribute*/

…

#1
#2
#3

#nR

bR

Query languages 1 8

Methods for selection

Scanning, if there is an index for A

• l(A) + 1 /*if A is primary key*/

• l(A) + nR(A=a)/bR /*if index

for A is of type CLUSTER*/

• l(A) + nR(A=a) /*if index

for A is not of type CLUSTER*/

Scanning, if A is a hash key
• 1 access

...

…

#1
#2
#3

#nR

bR

Query languages 1 9

Methods for selection

SELECT *

FROM R

WHERE A < ‘a’

Sequential scanning

• pR /* the worst case*/

• pR(a – minA)/(maxA – minA) /*if R is sorted on A*/

Scanning, when there is an index

• l(A) + pR /2 /*if R is sorted on A*/

• l(A) + pR,A /2 + nR /2 /* if there is an index for
A, A is a secondary key*/

Query languages 1 10

Example

Booking(passenger_n, flight_n, date, remark)

nBooking = 10 000

bBooking = 20

V(passenger_n, Booking) = 500

V(flight_n, Booking) = 50

fflight_n,Booking = 20

Query: Find passengers with flight number = ‘77’

Query languages 1 11

Example

Sequential scan:

 query cost: 500 I/O operations

Clustered index for flight_n:

query cost = l(flight_n) + nBooking(flight_n=70)/bR

• l(A): 50 values fA = 20  l(A)=2

Justification: (log(50)/log(20)  2

• nR(A=a) = nR/V(A,r) = 10,000/50 = 200 tuples

nR(A=a)/bR = 200/20 = 10 pages

 query cost = 2+10= 12

Query languages 1 12

Join operator calculation

Two types of implementation:
– independent relations

– with pointers

(Starbrust, Winbase,…)

Basic methods:
– nested loops (variants with indexing, scanning)

– sort-merge

– hash join

Assumptions: join attribute A, pR  pS,

for the variant with pointers R  S

Remark: special case - Cartesian product

R(K,A,...)

S(A,...)

N:1

Query languages 1 13

Nested loops - binary

• naive algorithm

for each r  R

for each s  S

if (r,s) then begin u:= r [] s; WRITE(u) end

…

• by pages

smaller relation as outer one!

M=3  pR + pRpS reads

(nR nS/V(A,S))/bRS writes (justify!)

Improvement: - inner relation is read

it saves 1 read at start (end)

Query languages 1 14

Nested loops - binary

Variants:

• M big, then the partition: M-2, 1, 1

outer inner result

 pR + pSpR/(M-2) reads

• R in main memory

 pR + pS reads

• with pointers, M=3

 pR + nR reads

Query languages 1 15

Nested loops - binary

• index on S.A (B+-tree)

Assumptions: R sorted on R.A, S.A is primary

 pR + l(A,S) + pS,A + V(A,R) reads

• S hashed on S.A

Assumptions: R sorted on R.A, S.A is primary

 pR + V(A,R) reads

• with selection (by scanning),

Ex.: SELECT * FROM R,S

WHERE R.A=S.A AND R.B=12

Assumptions: R.B primary key (indexed), S.A secondary key (clust. index,

tuples with S.A=a in one page)

 l(A,S) + l(B,R) + 2 reads

Query languages 1 16

Nested loops - binary

• join index SI(AR,AS)

R(A,...)

1

2

3

S(A,...)

1

2

3

Query languages 1 17

Nested loops - more relations

M‘ = M1+ M2 + … + Mn < M

Ri are partitioned into li subrelations of length Mi, i.e.,
li = pi/Mi, (1in)

Cost function [Kim84]:
C = p1 + [M2+(p2-M2)p1/M1]+...+[Mn+(pn-Mn)p1/M1...pn-1/Mn-1]

 the problem of finding integer Mi, to obtain C minimal

Heuristics:

(1) List n relations into the algorithm proportionally by their size, that p1 
p2  ...  pn;

(2) For Rn allocate 1 page, M‘ - 1 divide equally;

(3) (M‘ - 1)/(n-1) is not integer then assign bigger Mi to smaller relations;

Query languages 1 18

Nested loops - more relations

Structure of the basic algorithm (here for three relations):

for j:=1 to L1 do

begin read R1j into bufferM1;

for k:=1 to L2 into

begin read R2k into bufferM2;

for s:=1 to L3 into

begin read R3s into bufferM3;

create join of bufferMi, 1i 3;

write result
end

end
end

Query languages 1 19

Nested loops - more relations

Ex.:

a) p1 = 7, p2 = 14, p3 = 21, M‘ = 11

 dividing M‘ = <5, 5, 1>

b) p1  ...  p5, M‘ = 16

 dividing M‘ = <4, 4, 4, 3, 1>

Query languages 1 20

Sort-merge join
Idea: sorting, merging (two-pass algorithm)

Appropriate: if R and S are sorted

• min. M = 3, 2. phase requires pR + pS reads

• Requires auxiliary space for sorting

• Result is sorted

0001

0002

0002

0002

0004

0005

0005

0002

0002

0002

0003

0005

0005

R(...,A,...)
S(…,A,...)

Query languages 1 21

Sort-merge
• M = 3 (with use of external sorting)

 ~ 2pR log(pR) + 2pS log(pS) + pR + pS

without writing the result

• M  pS (two-pass algorithm)

(1) Sorted runs of length 2M pages are created (with a
priority queue) and are written to disk;
 length of run is  2pS

 for S there is at most pS/2pS runs, for R also not more than
pS/2pS

 totally at most pS

(2) For each run, a page is allocated in memory and these
pages are concurrently merged;

 3(pR + pS) without writing the result

Query languages 1 22

Principle of a priority queue

12

4

3

5

2

8

11

bufferI bufferOCONTINER

1. C and bufferI are filled up by tuples from R.

2. From C tuples u are selected such that u.A  v.A, v in bufferO (1)

a rank in ascending order by values A.

3. Free place in K is filled up by a new tuple from bufferI. If bufferI = , then a new

page R is read. If bufferO is full, then the given run on the disk is erlarged. If no

tuple from the container fulfills (1), then the current state of bufferO is the last

page of the run.

In this way, it is possible to create runs of length in average 2M pages.

Query languages 1 23

Sort-merge
• variant with pointers

R is sorted by pointers

S is read only once, it has not to be sorted

 3pR + pS without writing the result

Comparison:

• pR - pS  is big  nested loops is better

• pR - pS  is small  sort-merge is better

• restricting selections  better with scanning

Query languages 1 24

Hash joins

Appropriate:

• indexes for R.A and S.A are not available

• result does not need to be sorted on A

– classical hashing

– GRACE algorithm

– simple hashing

– recursive partition of relations

– hybrid hashing

Query languages 1 25

Classical hash join
Assumption: R fits in M pages

M = pR *F + 1 + 1, where F is coefficient greater than 1

(1) Hash R into main memory;

(2) Read S sequentially;

Hash s.A and direct access read r  R;

(3) if s.A = r.A then begin u:= r * s; WRITE(u) end

 pR + pS reads

Query languages 1 26

Partitioned hash join
Assumption: R does not fit in M pages

Idea: R and S are partitioned into disjunctive subsets in such

way, that R tuples in partition i will only match S tuples in

partition i.

Two pass algorithm:

(1) Partition R and S on disk;

(2) Hash R part (R parts) into M-2 pages;

Read the related S part;

Hash s.A and by direct access search for matches in R;

Generate the result;

Query languages 1 27

Example:
4 6 1 9 19 14 17 11 18S(A)

6 10 15 7 13 18 16 17R(A)

K mod 3

R0 S0

6 6

15 9

18 18

R1 S1

10 4

7 1

13 19

16

R2 S2

17 14

17

11

6 18 17R*S

Query languages 1 28

GRACE algorithm
• „school“ version

Data structures: tuples R a S, buckets of pointers HRi, HSi,

i  {0,1,…,m-1}

Hash function h: dom(A)  <0,m-1>

Algorithm:

for k:=1 to nR do begin i :=h(R[k].A); HRi := HRi  {k} end

for k:=1 to nS do begin i :=h(S[k].A); HSi := HSi  {k} end

for i:=0 to m-1 do

begin POMR := ; POMS := ;

foreach j  HRi do begin r:=R[j]; POMR:=POMR{r} end;

foreach j  HSi do begin s:=S[j]; POMS:=POMS{s} end;

Query languages 1 29

GRACE algorithm

foreach s  POMS do /* in RAM */

begin foreach r  POMR do

begin if s.A = r.A then begin u:= r * s;

WRITE(u)

end

end

end

end

 pR + pS + nR + nS read

appropriate: when pR /m + pS/m < M

Query languages 1 30

GRACE with storing partitioned relations

• M  (pR*F)

(1) Choose h such that R can be partitioned into m = (pR*F)

partition;

(2) Read R a hash into (output) bufferi, (0  i  m-1);

if bufferi is full then WRITE(bufferi);

(3) Do (2) for S;

(4) for i :=0 to m-1 do begin

(4.1) Read Ri and hash it into space of size (pR*F);

(4.2) Read s  Si a hash s.A.

If there is r  Ri a s.A = r.A, then generate the result.

end

Query languages 1 31

GRACE with storing partitioned relations

Justification of 4.1: Assumption - Ri  of the same size

pR/m = pR/ (pR*F) = (pR/F)

Ri requires space F(pR/F) = (pR*F)

 3(pR + pS) I/O operations

Appropriate: when pR /m + pS/m < M

Remarks:

• Si can be arbitrary. They require 1 page of memory;

• A problem, when V(A,R) is small;

• appropriate in situations, when R(K,…), S(K1,K,…);

• If Ri resp. Si does not fit in M-2 pages  recursion

i.e. Ri is partitioned into Ri0, Ri1,...,Ri(k-1) sets of pages;

Query languages 1 32

Simple hashing

Assumption: pR*F > M-2, A is UNIQUE

Idea: special case of GRACE, when R  R1, R2

Algorithm:

repeat begin choose h; read R and hash r.A; M-2 buffers

create R1, other tuples into R2 on disk;

read S and hash s.A;

if h(s.A) falls into space R1

then begin if s.A = r.A then generate result end

else store s into S2 on disk;

R:=R2 ; S:= S2 end

until R2  ;

Query languages 1 33

Hybrid hashing

Idea: combination of GRACE and simple hashing,

R is partitioned into parts R1, R2 ,…, Rk, R0 such that

R0 fits into RAM.

Partition of M-2 pages: bufferi =1 (1ik), buffer0=pR0

Algorithm:

(1) Choose h;

(2) Read R and hash r.A; create Ri (0ik);

/*R0 is in buffer0*/

(3) Read S and hash s.A; create Si (1ik);

if h(s.A) falls into space S0 then create join;

(4) for i:=1 to k do create join by GRACE;

Query languages 1 34

Comparing algorithms
Assumptions:

M > pS for sort-merge

M > pR for hashing

Notation: alg1 >> alg2  alg1 is better than alg2

 Sort-
merge

GRACE Simple
hashing

Hybrid
hashing

GRACE >> >>
(for smaller M)

Simple
hashing

>> >>
(for greater M)

Hybrid
hashing

>> >> >>

Query languages 1 35

Division

Df.: R and S with schemes 1 and 2  1, respectively.

T = R S = R[1 - 2] - ((R[1 - 2]  S) - R)[1 - 2]

Ex.:

after sorting

-..

A B

1 2

1 3

3 4

3 3

3 6

3 2

8 2

R RS B

2

4

3

A B

3 6

3 2

8 2

1 2

1 3

3 4

3 3

T A

3

Query languages 1 36

Division by hashing

Idea: Buckets HSi for values from S.B are created. The

values from R.A are stored into them. Values from HSi

contribute to the result.

Algorithm: (elements of the hash table are, e.g., of type

array or set, they represent buckets)

(1) Read S, calculate h(s.B) and denote the space (bucket)

HSs.B, foreach s.B do HSs.B:= ;

(2) for j:=1 to nR do begin r:=R[j];

if there is a bucket for h(r.B)

then HSr.B:= HSr.B  {r.A} end

(3) foreach HSs.B do sort(HSs.B); /*is not necessary*/

(4) Create HSi and generate T;

Query languages 1 37

Other operations

GROUP BY

• index on A - over index we obtain groups

• sorting by R.A

• by hashing (as in division)

foreach a R[A] do create a bucket + variable for

aggregation function calculation;

DISTINCT

also via hashing

