NDBI001: Query Languages I

http://www.ksi.mff.cuni.cz/~svoboda/courses/231-NDBI001/

Lecture

Query Evaluation

Martin Svoboda
martin.svoboda@matfyz.cuni.cz
14. 11. 2023

Charles University, Faculty of Mathematics and Physics

Lecture Outline

Algorithms

- Access methods
- External sort
- Nested loops join
- Sort-merge join
- Hash join

Evaluation

- Query evaluation plans
- Optimization techniques

Introduction

SQL queries

- SELECT statements

Introduction

Relational algebra

- Basic and inferred operations
- Selection σ_{φ}, projection $\pi_{a_{1}, \ldots, a_{n}}$, renaming $\rho_{b_{1} / a_{1}, \ldots, b_{n} / a_{n}}$
- Set operations: union \cup, intersection \cap, difference
- Inner joins: cross join \times, natural join \bowtie, theta join \bowtie_{φ}
- Left / right natural / theta semijoin $\ltimes, \rtimes, \ltimes_{\varphi}, \rtimes_{\varphi}$
- Left / right natural / theta antijoin $\triangleright, \triangleleft, \triangleright_{\varphi}, \triangleleft_{\varphi}$
- Division \div
- Extended operations
- Left / right / full outer natural join $\triangle \searrow, \bowtie, ~ \ \searrow$
- Left / right / full outer theta join $\bowtie_{\varphi}, \bowtie_{\varphi}, \aleph_{\varphi}$
- Sorting, grouping and aggregation, distinct, ...

Naïve Algorithms

Selection: $\sigma_{\varphi}(E)$

- Iteration over all tuples and removal of those filtered out Projection: $\pi_{a_{1}, \ldots, a_{n}}(E)$
- Iteration over all tuples and removal of excluded attributes
- But also removal of duplicates within the traditional model

Distinct

- Sorting of all tuples and removal of adjacent duplicates

Inner joins: $E_{R} \times E_{S}, E_{R} \bowtie E_{S}, E_{R} \bowtie_{\varphi} E_{S}$

- Iteration over all the possible combinations via nested loops

Sorting

- Quick sort, heap sort, bubble sort, insertion sort, ...

Challenges

Blocks

- Tuples stored in data files are not accessible directly
- Since we have read / write operations for whole blocks only
- That is true for all types of files...
- And so not just data files for tables
- But also files for index structures or system catalog

Latency

- Traditional magnetic hard drives are extremely slow
- Efficient management of cached pages is hence essential

Memory

- Size of available system memory is always limited
\Rightarrow external algorithms are needed

Objectives

Query evaluation plan

- Based on the database context and available memory...
... suitable evaluation algorithms need to be selected...
... so that the overall evaluation cost is minimal
Database context
- Relational schema: tables, columns, data types
- Integrity constraints: primary / unique / foreign keys, ...
- Data organization: heap / sorted / hashed file
- Index structures: B^{+}tree, bitmap index, hash index
- Available statistics: min / max values, histograms, ...

Objectives

Available system memory

- Number of pages allocated for the execution of a given query
- There are two possible scenarios...
- Having a particular memory size...
- Propose its usage and estimate the evaluation cost
- Having a particular cost expectation...
- Determine the required memory and propose its usage

Evaluation algorithms

- Access methods
- Sorting: external sort approaches
- Joining: nested loops, merge join, and hash join approaches

Objectives

Cost estimation

- Expressed in terms of read / write disk operations
- Since hard drives are extremely slow, as already stated...
- And so everything else can boldly be ignored
- We are interested in estimates only
- Since it is unlikely we could provide accurate calculations
- But still...
- The more accurate estimates, the better evaluation plans
- And there can really be huge differences in their efficiency...
- Even up to several orders of magnitude!
- In other words...
- Query optimization is crucial for any database system
- As well as we also need to know what we are doing...

Available Statistics

Environment

- B: size of a block / page, usually $\approx 4 k B$
- M : number of available system memory pages

Relation \mathcal{R}

- n_{R} : number of tuples
- s_{R} : average / fixed tuple size
- $b_{R} \approx\left\lfloor B / s_{R}\right\rfloor$: blocking factor
- Number of tuples that can be stored within one block
- $p_{R} \approx\left\lceil n_{R} / b_{R}\right\rceil$: number of blocks
- $V_{R . A}$: cardinality of the active domain of attribute A
- Number of distinct values of A occurring in \mathcal{R}
- $\min _{R . A}$ and $\max _{R . A}$: minimal and maximal values for A

Access Methods

Data Files

Internal structure

- Blocks of data files for tables are divided into slots
- Each slot is intended for storing exactly one tuple
- By the way, they can easily be uniquely identified
- Using a pair of block and slot logical ordinal numbers
- Fixed-size slots
- Usage status of each slot just needs to be remembered

- Variable-size slots
- When at least one variable-size attribute is involved
- Slot beginnings and lengths need to be remembered

Access Methods

Access method

- Particular approach for finding the intended tuples
- I.e., reading blocks with such tuples into the system memory
- Directly from data files for tables
- But also indirectly using index structures
- Full scan (sequential read) is possible under all circumstances
- However, we can do better in certain cases based on...
- Involved selection conditions
- Particular data file organization
- Available index structures (if any)
- I.e., number of blocks to be read can significantly be reduced
- And so the evaluation cost
- Since only relevant blocks are considered instead all of them

Access Methods

Data file organization

- Heap file, sorted file, hashed file

Index structures

- B^{+}tree, ...

Selection conditions

- Equality tests with respect to unique / non-unique attributes
- $A=v$, where v is a particular value (not another attribute)
- Range queries for one-sided / two-sided intervals
- $v_{1} \leq A, A \leq v_{2}$, and $\left(v_{1} \leq A\right) \wedge\left(A \leq v_{2}\right)$
- Analogously for other comparison operators ($\geq,<,>$)
- As well as their mutual combinations in two-sided intervals
- However, only fixed boundary values are assumed again

Heap File

Heap file

- Tuples are put into individual slots entirely arbitrarily
- I.e., we do not have any specific knowledge of their position

Selection costs

- Full scan is inevitable in almost all situations
- $c=p_{R}$
- Equality test with respect to a unique attribute
- $c=\left\lceil p_{R} / 2\right\rceil$
- Since we can stop at the moment a given tuple is found
- However, uniform distribution of data and queries is assumed
- And values outside of the active domain may also be queried

Sorted File

Sorted file

- Tuples are ordered with respect to a particular attribute

Selection costs

- Binary search (half-interval search) can be used in general
- However, only when the same attribute is queried, of course
- I.e., the same attribute as the one used for sorting
- Otherwise, sequential read as in a heap file would be needed
- Equality test
- $c=\left\lceil\log _{2} p_{R}\right\rceil$ for a unique attribute
- $c=\left\lceil\log _{2} p_{R}\right\rceil+\left\lceil p_{R} / V_{R . A}\right\rceil$ for a non-unique attribute

Sorted File

Selection costs (cont'd)

- Range query for two-sided intervals $\left[v_{1}, v_{2}\right]$ and other

- For "continuous" domains...
- Number of values between any two of them is not limited
- At least potentially
- In practical terms, there can simply be far too many of them
- E.g.: FLOAT, VARCHAR, ...
- $c=\left\lceil\log _{2} p_{R}\right\rceil+\left\lceil p_{R} \cdot\left(v_{2}-v_{1}\right) /\left(\max _{R . A}-\min _{R . A}\right)\right\rceil$
- Boundary types (inclusive / exclusive) are unimportant

Sorted File

Selection costs (cont'd)

- Range query for two-sided intervals $\left[v_{1}, v_{2}\right]$ and other

- For "discrete" domains...
- Number of values between any two of them is finite
- E.g.: INTEGER, CHAR, DATE, ...
- $c=\left\lceil\log _{2} p_{R}\right\rceil+\left\lceil p_{R} \cdot\left(v_{2}-v_{1}+\varepsilon\right) /\left(\max _{R . A}-\min _{R . A}+1\right)\right\rceil$
$-\varepsilon$ is 1 for closed intervals, -1 for open (unless $v_{1}=v_{2}$), and 0 otherwise, i.e., half-open and zero-sized open

Sorted File

Selection costs (cont'd)

- Range query for one-sided intervals $\left(-\infty, v_{2}\right]$ and $\left(-\infty, v_{2}\right)$

- $c=\left\lceil p_{R} \cdot\left(v_{2}-\min _{R . A}\right) /\left(\max _{R . A}-\min _{R . A}\right)\right\rceil$
- $c=\left\lceil p_{R} \cdot\left(v_{2}-\min _{R . A}+\varepsilon\right) /\left(\max _{R . A}-\min _{R . A}+1\right)\right\rceil$
- Range query for one-sided intervals $\left[v_{1}, \infty\right)$ and $\left(v_{1}, \infty\right)$
- Analogously...
- $c=\left\lceil p_{R} \cdot\left(\max _{R . A}-v_{1}\right) /\left(\max _{R . A}-\min _{R . A}\right)\right\rceil$
- $c=\left\lceil p_{R} \cdot\left(\max _{R . A}-v_{1}+\varepsilon\right) /\left(\max _{R . A}-\min _{R . A}+1\right)\right\rceil$

Hashed File

Hashed file

- Tuples are put into disjoint buckets (logical groups of blocks)
- Based on a selected hash function over a particular attribute
- E.g., $h(A)=A \bmod 3$

18	42	75	36	82	34	49	25	53	20	23	53
93	18	6						11	71		
$h(A)=0$				$h(A)=1$				$h(A)=2$			

- Hash function
- Its domain are values of a given attribute A
- Its range provides H distinct values
- There is exactly one bucket for each one of them
- All tuples in a bucket always share the same hash value

Hashed File

File statistics

- H_{R} : number of buckets
- $C_{R} \approx\left\lceil p_{R} / H_{R}\right\rceil$: expected bucket size
- Measured as a number of blocks in a bucket

Selection costs

- Equality test when the hashing attribute is queried
- Only the corresponding bucket needs to be accessed
- $c=C_{R}$ for a non-unique attribute
- $c=\left\lceil C_{R} / 2\right\rceil$ for a unique attribute
- Similar assumptions as in the case of heap files
- Any other condition

$$
c=p_{R}
$$

- I.e., full scan is needed

B^{+}Tree Index

B^{+}tree index structure = self-balanced search tree

- Logarithmic height is guaranteed (the same across all leaves)
- Moreover, very high fan-out is assumed
- l.e., our trees will tend to be significantly wider than taller
- \Rightarrow search times will not only be logarithmic, but also really low

Logical structure

- Internal node (including a non-leaf root node)
- Contains an ordered sequence of dividing values and pointers to child nodes representing the sub-intervals they determine
- Leaf node
- Contains individual values and pointers to tuples in data file
- Leaves are also interconnected by pointers in both directions

B $^{+}$Tree Index

B^{+}tree index structure (cont'd)

- Sample index for relation \mathcal{R} and its attribute A

B^{+}Tree Index

Physical structure

- Each node is physically represented by one index file block
- And so they are treated the same way as data file blocks
- I.e., loaded into the system memory one by one, etc.

Index statistics

- $m_{R . A}$: maximal number of children (order of tree)
- Usually up to small hundreds in practice
- Actual number is guaranteed to be at least $\left\lceil m_{R . A} / 2\right\rceil$
- Except for the root node
- $I_{\text {R.A }}$: index height
- Usually just $\approx 2-3$ for typical real-world tables
- $p_{R . A}$: number of leaf nodes

B $^{+}$Tree Index

Search algorithm

- Index is traversed from its root toward the corresponding leaf
- Data tuple then needs to be fetched from the data file

Non-Clustered B^{+}Tree Index

Non-clustered index

- Order of items within the leaves and data file is not the same
- I.e., data file is organized as a heap file of hashed file

Non-Clustered B^{+}Tree Index

Selection costs

- Equality test for a unique / non-unique attribute

```
- \(c=I_{R . A}+1\)
- \(c=I_{R . A}+\left\lceil p_{R . A} / V_{R . A}\right\rceil+\min \left(p_{R},\left\lceil n_{R} / V_{R . A}\right\rceil\right)\)
```

- Range query for two-sided intervals $\left[v_{1}, v_{2}\right]$ and other
- $c=I_{R . A}+\left\lceil p_{R . A} \cdot\left(v_{2}-v_{1}\right) /\left(\max _{R . A}-\min _{R . A}\right)\right\rceil+$ $\min \left(p_{R},\left\lceil n_{R} \cdot\left(v_{2}-v_{1}\right) /\left(\max _{R . A}-\min _{R . A}\right)\right\rceil\right)$
- Analogously for discrete domains
- However, for small domains $V_{R . A}$ or large intervals...
- Full scan of the data file is better
- I.e., index is not utilized at all
- Conditions not involving the indexed attribute
- Full scan again, of course

Clustered B^{+}Tree Index

Clustered index

- On the contrary, order of items is (at least almost) the same
- I.e., data file is a sorted file (with respect to the same attribute)

Clustered B $^{+}$Tree Index

Selection costs

- Equality tests
- $c=I_{R . A}+1$ for a unique attribute
- $c=I_{R . A}+\left\lceil p_{R} / V_{R . A}\right\rceil$ for a non-unique attribute
- Range query for two-sided intervals $\left[v_{1}, v_{2}\right]$ and other
- $c=I_{R . A}+\left\lceil p_{R} \cdot\left(v_{2}-v_{1}\right) /\left(\max _{R . A}-\min _{R . A}\right)\right\rceil$
- Analogously for discrete domains
- Range query for one-sided intervals
- Data file is read directly as an ordinary sorted file
- Conditions not involving the indexed attribute
- Full scan again, of course

Examples

Sample scenario \#1

- Movie (id, title, year, ...)
- Basic statistics
- $n_{M}=100000$ tuples, $b_{M}=10, p_{M}=10000$ blocks
- $V_{M . i d}=n_{M}=100000$ values (since they are unique)
- Heap file
- Sorted file (using ids)
- Hashed file
- $h($ M.id $)=M . i d \bmod 50$
- $H_{M}=50$ buckets, $C_{M}=200$ blocks
- B^{+}tree index (using ids)
- $m_{M . i d}=100$ followers
- $I_{M . i d}=3, p_{M . i d}=1500$ blocks

Examples

Equality test: movie with a particular identifier

- Heap file

$$
c=\left\lceil p_{M} / 2\right\rceil=5000
$$

- Sorted file
- $c=\left\lceil\log _{2} p_{M}\right\rceil=14$
- Hashed file
- $c=\left\lceil C_{M} / 2\right\rceil=100$
- Non-clustered index (B^{+}tree $\&$ heap file)
- $c=I_{\text {M. year }}+1=4$
- Clustered index (B^{+}tree \& sorted file)
- $c=I_{\text {M. year }}+1=4$

Examples

Sample scenario \#2

- Movie (id, title, year, ...)
- Basic statistics
- $n_{M}=100000$ tuples, $b_{M}=10, p_{M}=10000$ blocks
- $V_{\text {M.year }}=50$ values
- $\min _{\text {M. year }}=1943, \max _{\text {M.year }}=2022$ (i.e., 80 values)
- Heap file
- Sorted file (using years)
- Hashed file
- $h($ M. year $)=$ M.year $\bmod 20$
- $H_{M}=20$ buckets, $C_{M}=500$ blocks
- B^{+}tree index (using years)
- $m_{M \text {.year }}=100$ followers
- $I_{M . \text { year }}=3, p_{M . \text { year }}=1500$ blocks

Examples

Equality test: movies filmed in a particular year

- Heap file
- $c=p_{M}=10000$
- Sorted file

$$
\text { - } c=\left\lceil\log _{2} p_{M}\right\rceil+\left\lceil p_{M} / V_{M . \text { year }}\right\rceil=214
$$

- Hashed file

$$
\text { - } c=C_{M}=500
$$

- Non-clustered index (B^{+}tree \& heap file)

$$
\begin{aligned}
& \text { - } c=I_{M . \text { year }}+\left\lceil p_{M . y e a r} / V_{M . y e a r}\right\rceil+\min \left(p_{M},\left\lceil n_{M} / V_{M . \text { year }}\right\rceil\right) \\
& =2033
\end{aligned}
$$

- Clustered index (B^{+}tree \& sorted file)

$$
c=I_{M . \text { year }}+\left\lceil p_{M} / V_{M . \text { year }}\right\rceil=203
$$

Examples

Range query: movies filmed during years $\left[y_{1}=2016, y_{2}=2020\right]$

- Heap file
- $c=p_{M}=10000$
- Sorted file
- Let $r \leftarrow\left(y_{2}-y_{1}+1\right) /\left(\max _{M . y e a r}-\min _{M . y e a r}+1\right)=5 / 80$
- $c=\left\lceil\log _{2} p_{M}\right\rceil+\left\lceil p_{M} \cdot r\right\rceil=639$
- Hashed file
- $c=p_{M}=10000$
- Non-clustered index (B^{+}tree \& heap file)
- $c=I_{\text {M.year }}+\left\lceil p_{M . \text {.year }} \cdot r\right\rceil+\min \left(p_{M},\left\lceil n_{M} \cdot r\right\rceil\right)=6347$
- Clustered index (B^{+}tree \& sorted file)
- $c=I_{\text {M.year }}+\left\lceil p_{M} \cdot r\right\rceil=628$

External Sort

External Sort

N -way external merge sort

- Sort phase (pass 1)
- Groups of input blocks are loaded into the system memory
- Tuples in these blocks are then sorted
- Any in-memory in-place sorting algorithm can be used
- E.g.: quick sort, heap sort, bubble sort, insertion sort, ...
- Created initial runs are written into a temporary file
- Merge phase (passes 2 and higher)
- Groups of runs are loaded into the memory and merged
- Newly created (longer) runs are written back on a hard drive
- Merging is finished when exactly one run is obtained
- And so the entire input table is sorted

Sort Phase

Pass 1

- Input data file
- Relational table \mathcal{R}
- E.g., $n_{R}=18$ tuples, $b_{R}=4$ tuples/block, $p_{R}=5$ blocks

- System memory layout
- Input buffer \mathcal{I}
- E.g., size $M=2$ pages

Sort Phase

Pass 1

- Groups of M blocks are presorted and so initial runs created
- Input blocks from \mathcal{R} are first loaded to \mathcal{I}
- Individual tuples in \mathcal{I} are then sorted
- Created runs are stored to a temporary file \mathcal{R}^{1}

Sort Phase

Pass 1

- Resulting runs in \mathcal{R}^{1} within our sample scenario

Merge Phase

Pass 2

- Groups of M runs are iteratively merged together
- Blocks from these input runs are gradually loaded into \mathcal{I}
- Minimal items are then iteratively selected and moved to \mathcal{O}
- Merged (longer) runs are written to a new temporary file \mathcal{R}^{2}

Merge Phase

Passes 2 and 3

- Merging continues until just a single run is acquired
- And so the entire input table is sorted

Algorithm

Sort phase (pass 1)

${ }^{1} p \leftarrow 1$
2 foreach group of blocks B_{1}, \ldots, B_{M} (if any) from \mathcal{R} do
3 read these blocks to \mathcal{I}
4 sort all items in \mathcal{I}
$5 \quad$ write all blocks from \mathcal{I} as a new run to \mathcal{R}^{p}

Algorithm

Merge phase (passes 2 and higher)
while \mathcal{R}^{p} has more then just one run do
$p \leftarrow p+1$
foreach group of runs R_{1}, \ldots, R_{M} (if any) from \mathcal{R}^{p-1} do start constructing a new run in \mathcal{R}^{p}
read the first block from each run R_{x} to $\mathcal{I}[x]$
while \mathcal{I} contains at least one item do select the minimal item and move it to \mathcal{O} if the corresponding $\mathcal{I}[x]$ is empty then read the next block from R_{x} (if any) to $\mathcal{I}[x]$
if \mathcal{O} is full then write \mathcal{O} to \mathcal{R}^{p} and empty \mathcal{O}
if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{R}^{p} and empty \mathcal{O}

Summary

Memory layout

- Sort phase (pass 1): M
- Input buffer I: M pages

- Merge phase (passes 2 and higher): $M+1$
- Input buffer I: $M \geq 2$ pages
- Output buffer $\mathcal{O}: 1$ page

Summary

Time complexity

- Single pass (regardless of the phase)
- $c_{\text {read }}=c_{\text {write }}=p_{R}$
- Number of passes
- $t=\left\lceil\log _{M}\left(p_{R}\right)\right\rceil$
- Overall cost
- $c_{\text {ES }}=t \cdot\left(c_{\text {read }}+c_{\text {write }}\right)=\left\lceil\log _{M}\left(p_{R}\right)\right\rceil \cdot 2 p_{R}$

Limitation of the overall number of passes

- In general...
- $M=\left\lceil\sqrt[t]{p_{R}}\right\rceil$
- Specifically for $t=2$ (i.e., exactly 2 passes)
- $M=\left\lceil\sqrt{p_{R}}\right\rceil$

Improved Approach

N -way external merge sort with priority queue

- Sort phase is modified
- Instead of fixed-size initial runs...
- ... we generate them using a priority queue
- In particular, min-heap data structure is used
- The aim is to make the initial runs longer
- Memory layout: $M+1+1$
- Queue container $\mathcal{C}: M \geq 1$ pages
- Input buffer I: 1 page
- Output buffer \mathcal{O} : 1 page

Sort Phase

Pass 1

- Once the queue is initialized, runs are generated on the fly
- Minimal item greater than or equal to the last value is always extracted and replaced with another item from the input file

Sort Phase

Pass 1 (cont'd)

- Two runs are obtained in our scenario

Impact summary

- Created initial runs will tend to be longer
- $2 M$ blocks on average (instead of just M)
- p_{R} in the best case
- M in the worst case
- \Rightarrow number of the runs will tend to be lower

Algorithm

Improved sort phase (pass 1)
1 read blocks $\mathcal{R}[1], \ldots, \mathcal{R}[M]$ (if any) from \mathcal{R} to \mathcal{C}
2 read block $\mathcal{R}[M+1]$ (if any) from \mathcal{R} to \mathcal{I}
3 while \mathcal{C} contains at least one item do
4 start constructing a new run in \mathcal{R}^{1}, put $v \leftarrow-\infty$
while \mathcal{C} contains at least one item $i \geq v$ do let i be the minimal one, move i to \mathcal{O}, put $v \leftarrow i$ move the next item from \mathcal{I} (if any) to \mathcal{C} if \mathcal{I} is empty then read the next block from \mathcal{R} (if any) to \mathcal{I} if \mathcal{O} is full then write \mathcal{O} to \mathcal{R}^{1} and empty \mathcal{O}
if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{R}^{1} and empty \mathcal{O}

Priority Queue

Min-heap data structure

- Complete binary tree
- Key associated with each node must be less than or equal to keys of all its child nodes
- l.e., the root node contains the minimal item among them all
- Array representation is possible
- Using a straightforward index arithmetic

Queue Container

Queue container \mathcal{C}

- Two separate min-heap structures are in fact used
- Active heap with items greater than or equal to the last value
- And so values that can still be (actually all really will be) used in the currently constructed run
- Inactive heap with items not satisfying the condition
- Both are represented as arrays
- Directly inside the container blocks
- Container initialization (line 1)
- Active heap is built from the input items, inactive heap is empty

Queue Container

Queue container \mathcal{C} (cont'd)

- Whenever an item is added to the container (line 7)
- It is added to the active / inactive heap based on the condition

- Whenever the active heap is fully depleted (line 5)
- I.e., the current run terminated, both the heaps are swapped

Nested Loops Join

Nested Loops

Binary nested loops

- Universal approach for all types of inner joins
- Natural join, cross join, theta join
- I.e., arbitrary joining condition can be involved
- Support possible duplicates
- Requires no index structures
- Not the best option in all situations, though
- Suitable for tables with significantly different sizes

Basic idea

- Outer loop: iteration over the blocks of the first table
- Inner loop: iteration over the blocks of the second table

Nested Loops

Sample input data

- Tables \mathcal{R} and \mathcal{S} to be joined using a value equality test

\mathcal{R}	21	84	56	19	41	72	69	35	56	84									
\mathcal{S}	31	56	75	43	88	21	43	14	92	52	25	81	72	37	64	35	14	64	

Basic setup

- Memory layout: $1+1+1$
- Input buffer $\mathcal{I}_{R}: 1$ page
- Input buffer $\mathcal{I}_{S}: 1$ page
- Output buffer \mathcal{O} : 1 page

Nested Loops

Basic setup ($1+1+1$)

- Another pair of loops is used for joining tuples in the memory

Algorithm

Basic setup $(1+1+1)$

Observations

Time complexity

- Basic setup $(1+1+1)$
- $c_{\mathrm{NL}}=p_{R}+p_{R} \cdot p_{S}$
- \Rightarrow smaller table should always be taken as the outer one

General setup

- Multiple pages are used for both the input buffers
- Memory layout: $M_{R}+M_{S}+1$
- Input buffer $\mathcal{I}_{R}: M_{R}$ pages
- Input buffer $\mathcal{I}_{S}: M_{S}$ pages
- Output buffer $\mathcal{O}: 1$ page

Algorithm

General setup $\left(M_{R}+M_{S}+1\right)$
1 foreach group of blocks $R_{1}, \ldots, R_{M_{R}}$ (if any) from \mathcal{R} do
2 read these blocks into \mathcal{I}_{R}
foreach group of blocks $S_{1}, \ldots, S_{M_{S}}$ (if any) from \mathcal{S} do
read these blocks into \mathcal{I}_{S}
foreach item r in \mathcal{I}_{R} do
foreach item s in \mathcal{I}_{S} do
if r and s satisfy the join condition then join r and s and put the result to \mathcal{O} if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}

10 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

Observations

Time complexity

- General setup $\left(M_{R}+M_{S}+1\right)$
- $c_{\mathrm{NL}}=p_{R}+\left\lceil p_{R} / M_{R}\right\rceil \cdot p_{S}$
- \Rightarrow there is no reason of having $M_{S} \geq 2$

Standard setup

- Memory layout: $M_{R}+1+1$
- Input buffer $\mathcal{I}_{R}: M_{R}$ pages
- Input buffer $\mathcal{I}_{S}: 1$ page
- Output buffer \mathcal{O} : 1 page

Standard Approach

Standard setup ($M_{R}+1+1$) with zig-zag optimization

- Multiple pages are used just for the outer table

Observations

Zig-zag optimization

- Reading of the inner table \mathcal{S}
- Odd iterations normally
- Even iterations in reverse order

Time complexity

- Standard setup $\left(M_{R}+1+1\right)$
- $c_{\mathrm{NL}}=p_{R}+\left\lceil p_{R} / M_{R}\right\rceil \cdot p_{S}$ (without zig-zag)
- $c_{\mathrm{NL}}=p_{R}+\left\lceil p_{R} / M_{R}\right\rceil \cdot\left(p_{S}-1\right)+1$ (with zig-zag)

Special Cases

Very small tables

- Smaller table fits entirely within the memory, i.e., $p_{R} \leq M_{R}$
- $c_{\mathrm{NL}}=p_{R}+p_{S}$

Non-brute-force replacement for inner loops

- \mathbf{B}^{+}tree index exists in S on attribute A that is unique in S
- $c_{\mathrm{NL}}=p_{R}+n_{R} \cdot\left(I_{S . A}+1\right)$
- If \mathbf{R} is organized as a heap
- $c_{\mathrm{NL}}=p_{R}+I_{S . A}+p_{S . A}+V_{R . A}$
- If R is sorted with respect to A
- \mathbf{S} is a hashed file over attribute A that is unique in S
- $c_{\mathrm{NL}}=p_{R}+V_{R . A} \cdot C_{S}$
- If \mathbf{R} is sorted with respect to A

Non-Binary Nested Loops

Non-binary nested loops

- Nested loops algorithm for multiple tables at once
- In particular, let us have tables $\mathcal{R}_{1}, \ldots, \mathcal{R}_{n}$ for $n \geq 2, n \in \mathbb{N}$
- Let their sizes be p_{1}, \ldots, p_{n}
- Solution
- We just need to embed more loops into each other
- Memory layout: $M_{1}+\cdots+M_{n}+1$
- Input buffers $\mathcal{I}_{i}: M_{i}$ pages for each table \mathcal{R}_{i}
- Output buffer $\mathcal{O}: 1$ page
- Overall cost with zig-zag optimization

$$
\begin{aligned}
=c_{\mathrm{NL}}= & \left(p_{1}\right)+\left(\left\lceil p_{1} / M_{1}\right\rceil \cdot\left(p_{2}-M_{2}\right)+M_{2}\right)+\cdots+ \\
& \left(\left\lceil p_{1} / M_{1}\right\rceil \ldots\left\lceil p_{n-1} / M_{n-1}\right\rceil \cdot\left(p_{n}-M_{n}\right)+M_{n}\right)
\end{aligned}
$$

Memory Setup

Memory layout: $M_{1}+\cdots+M_{n}+1$

- Optimization problem
- Finding integer M_{i} minimizing the overall cost c_{NL}
- Heuristics
- Let $M \geq n$ be all the available pages (for input buffers)
- Let $p_{1} \leq \cdots \leq p_{n}$ (without loss of generality)
- Allocate one page for the innermost table, i.e., $M_{n}=1$
- Allocate the remaining pages uniformly to $\mathcal{R}_{1}, \ldots, \mathcal{R}_{n-1}$
- I.e., let $m=\lfloor(M-1) /(n-1)\rfloor$
- Then put $M_{i}=m$ for each $i \in\{1, \ldots, n-1\}$
- It may happen that some pages will still be unallocated
- There will be exactly $u=(M-1)-(n-1) \cdot m$ of them
- Assign these remaining pages (if any) between smaller tables
- I.e., $M_{i}+=1$ for each $i \in\{1, \ldots, u\}$

Memory Setup

Memory layout (cont'd)

- Example \#1
- $n=3$ tables, $M=11$ pages (for input buffers)
- Allocation: $\langle 5,5,1\rangle$

- Example \#2
- $n=5$ tables, $M=11$ pages
- Allocation: $\langle 3,3,2,2,1\rangle$

Sort-Merge Join

Sort-Merge Join

Sort-merge join algorithm (or just merge join)

- Inner joins based on value equality tests only
- Basic version without duplicates
- Could be extended to support them, though
- Suitable for tables with relatively similar sizes
- Especially when they are already sorted
- Or when the final result is expected to be sorted

Phases

- Sort phase
- Both tables are externally sorted, one by one (if not yet)
- Join phase
- Items are joined while simulating the merge of the two tables

Basic Approach

Sample input data

- Input tables \mathcal{R} and \mathcal{S}

Sort phase

- Resulting sorted tables

Basic Approach

Join phase

- Blocks from the sorted tables are processed one by one

Algorithm

Join phase

read block $\mathcal{R}^{\prime}[1]$ to \mathcal{I}_{R} and block $\mathcal{S}^{\prime}[1]$ to \mathcal{I}_{S}
while both \mathcal{I}_{R} and \mathcal{I}_{S} contain at least one item do
let r be the minimal item in \mathcal{I}_{R} and s minimal item in \mathcal{I}_{S} if r and s can be joined then
join r and s and put the result to \mathcal{O}
if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
remove both r from \mathcal{I}_{R} and s from \mathcal{I}_{S}
else remove the lower one of r from \mathcal{I}_{R} or s from \mathcal{I}_{S}
if \mathcal{I}_{R} is empty then read the next block from \mathcal{R}^{\prime} (if any) if \mathcal{I}_{S} is empty then read the next block from \mathcal{S}^{\prime} (if any)
if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

Observations

Join phase

- Memory layout: $1+1+1$
- Input buffer $\mathcal{I}_{R}: 1$ page
- Input buffer $\mathcal{I}_{S}: 1$ page
- Output buffer \mathcal{O} : 1 page

Time complexity

- Sort phase
- Join phase
- $c_{\mathrm{MJ}}=p_{R}+p_{S}$

Extended Version

Duplicate items

- Possible duplicates in one table only
- Let it be \mathcal{S} (without loss of generality)
- Algorithm modification is straightforward...
- Having successfully joined r and s, we just remove s from \mathcal{I}_{S} and not r from \mathcal{I}_{R} (line 7)

Extended Version

Duplicate items

- Possible duplicates in both tables
- All matching pairs of r and s just need to be joined...
- Unfortunately, size of input buffers might not be sufficient
- Since we may span block boundaries, even repeatedly

Integrated Approach

2-pass integrated sort-merge join with priority queue

- Sort phase (pass 1)
- Tables are processed one by one
- They are not sorted entirely, though
- Only initial runs are constructed
- Using just the sort phase (pass 1) of the external sort algorithm
- Priority queue is involved to make these runs longer
- And so their overall number lower
- Join phase (pass 2)
- The same idea as in the basic sort-merge approach
- We only have more runs within each presorted table

Integrated Approach

Sort phase (pass 1)

- Resulting initial runs within tables \mathcal{R}^{1} and \mathcal{S}^{1}

Integrated Approach

Join phase (pass 2)

- All runs from both the tables \mathcal{R}^{1} and \mathcal{S}^{1} are merged at once

Algorithm

Join phase (pass 2)

read $\mathcal{R}_{x}^{1}[1]$ from each run in \mathcal{R}^{1} to $\mathcal{I}_{R}[x]$, the same for \mathcal{S}^{1}
2 while both \mathcal{I}_{R} and \mathcal{I}_{S} contain at least one item do let r be the minimal item in \mathcal{I}_{R} and s minimal item in \mathcal{I}_{S} if r and s can be joined then join r and s and put the result to \mathcal{O} if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} and empty \mathcal{O} remove both r from \mathcal{I}_{R} and s from \mathcal{I}_{S} else remove the lower one of r from \mathcal{I}_{R} or s from \mathcal{I}_{S} if the given $\mathcal{I}_{R}[x]$ is empty then refill it from \mathcal{R}_{x}^{1} if the given $\mathcal{I}_{S}[x]$ is empty then refill it from \mathcal{S}_{x}^{1}
if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

Observations

Join phase (pass 2)

- Memory layout: $M_{R}+M_{S}+1$
- Input buffer $\mathcal{I}_{R}: M_{R}$ pages $=$ number of runs in \mathcal{R}^{1}
- Input buffer $\mathcal{I}_{S}: M_{S}$ pages $=$ number of runs in \mathcal{S}^{1}
- Output buffer $\mathcal{O}: 1$ page

Time complexity

- Sort phase: $c_{\text {sort }}=2 p_{R}+2 p_{S}$
- Join phase: $c_{\text {join }}=p_{R}+p_{S}$
- Overall cost: $c_{\mathrm{MJ}}=c_{\text {sort }}+c_{\text {join }}=3\left(p_{R}+p_{S}\right)$

Observations

Optimized setup

- Motivation
- Balanced memory usage across both phases
- Sort phase (pass 1)
- Required memory: $M+1+1$ pages
- Let $M=\lceil\sqrt{p}\rceil$, where $p=\max \left(p_{R}, p_{S}\right)$
- As if we wanted 2 passes for the external sort
- If M pages are used for the priority queue container...
- Expected length of initial runs should be $2 M$
- And so the expected number of all runs $p_{S} / 2 M+p_{R} / 2 M \leq$ $p / 2 M+p / 2 M \approx 2 p / 2 M=p / M \approx p / \sqrt{p} \approx \sqrt{p} \approx M$
- Join phase (pass 2)
- Required memory: $M_{R}+M_{S}+1$ pages
- $\Rightarrow M_{R}+M_{S} \approx M$

Observations

Optimized setup (cont’d)

- In other words.
- The same number of M pages should be sufficient for both...
- Queue container \mathcal{C} during pass 1, and
- Input buffers \mathcal{I}_{R} and \mathcal{I}_{S} during pass 2

Hash Join

Hash Join

Hash join approaches

- Basic principle
- Items of the first table are hashed into the system memory
- Items of the second table are then attempted to be joined
- Limitations
- Inner joins based on value equality tests only
- Including possible duplicates
- Not suitable for small active domains
- Particular approaches
- Classic hash join, Simple hash join, Partition hash join, Grace hash join, and Hybrid hash join

Classic Hashing

Classic hash join

- Build phase
- Smaller table (let it be \mathcal{R}) is hashed into the system memory
- I.e., it is sequentially loaded into the memory, block by block
- All its tuples are then emplaced into the hash container
- Hash function h is assumed for this purpose
- Its domain are values of the joining attribute A
- Its range provides H distinct values
- Hash container internally contains H buckets
- Its overall size will inevitably be somewhat larger than p_{R}
- Let us say $M=\left\lceil F \cdot p_{R}\right\rceil$ pages for some small factor F
- Probe phase
- Items from the larger table \mathcal{S} are attempted to be joined

Build Phase

Build phase

- Tuples from the smaller table are hashed into the memory
- E.g., hash function $h(A)=A \bmod 2$ is assumed

Probe Phase

Probe phase

- Tuples from the larger table are attempted to be joined

Algorithm

Build phase

1 foreach block R from \mathcal{R} do
$2 \quad$ read R into \mathcal{I}
foreach item r in \mathcal{I} do
calculate hash value $h \leftarrow h(r . A)$
add r into bucket h in \mathcal{H}

Algorithm

Probe phase

1 foreach block S from \mathcal{S} do
2 read S into \mathcal{I}
3 foreach item s in \mathcal{I} do
$4 \quad$ calculate hash value $h \leftarrow h(s . A)$
5 foreach item r in bucket h in \mathcal{H} do
if r and s can be joined then
join r and s and put the result to \mathcal{O}
if \mathcal{O} is full then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

9 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}

Observations

Memory layout

- Build phase: $M+1$
- Hash container $\mathcal{H}: M=\left\lceil F \cdot p_{R}\right\rceil$ pages
- Input buffer I: 1 page

- Probe phase: $M+1+1$
- Hash container $\mathcal{H}: M$ pages (preserved from the build phase)
- Input buffer I: 1 page
- Output buffer $\mathcal{O}: 1$ page

Observations

Time complexity

- Build and probe phases
- $c_{\text {build }}=p_{R}$
- $c_{\text {probe }}=p_{S}$
- Overall cost
- $c_{\mathrm{CH}}=c_{\text {build }}+c_{\text {probe }}=p_{R}+p_{S}$

Summary

- Interesting approach as for its efficiency
- However, usable only when the smaller table can entirely be hashed into the system memory...

Simple Hashing

Simple hash join

- Basic idea
- During each pass, just a subset of all tuples is considered
- These are processed via analogous build and probe routines
- The remaining tuples are postponed for the following passes
- Partition function p is assumed for this separation
- Its domain are again values of the joining attribute A
- Its range provides P distinct values
- Obvious requirement
- Both functions p and h need to be mutually orthogonal
- E.g.: $p(A)=A \bmod 4$ and $h(A)=A \bmod 2$ will not work
- Because all items in a partition would either be even or odd

Build Phase

Build phase (partition 0)

- Items from the smaller table are either hashed or postponed
- E.g., partition function $p(A)=A \bmod 4$ and hash function $h(A)=(A / 4) \bmod 2$ are assumed

Probe Phase

Probe phase (partition 0)

Algorithm

Overall procedure

```
1 put }\mp@subsup{\mathcal{R}}{}{0}\leftarrow\mathcal{R
2 put }\mp@subsup{\mathcal{S}}{}{0}\leftarrow\mathcal{S
3 foreach partition }p\in{0,\ldots,P-1} d
4 execute build phase for partition p over }\mp@subsup{\mathcal{R}}{}{p}\mathrm{ and create
postponed }\mp@subsup{\mathcal{R}}{}{p+1
execute probe phase for partition pover S}\mp@subsup{\mathcal{S}}{}{p}\mathrm{ and create
postponed S S }\mp@subsup{}{}{p+1
empty hash container }\mathcal{H
```


Algorithm

Build phase (for partition K)

1 foreach block R from \mathcal{R}^{K} do
2 read R into \mathcal{I}
3 foreach item r in \mathcal{I} do
$4 \quad$ calculate partition value $p \leftarrow p(r . A)$
5
if $p=K$ then
calculate hash value $h \leftarrow h(r . A)$
add r into bucket h in \mathcal{H}
else
add r into partition buffer \mathcal{P}
if \mathcal{P} is full then write \mathcal{P} to \mathcal{R}^{K+1} and empty \mathcal{P}
11 if \mathcal{P} is not empty then write \mathcal{P} to \mathcal{R}^{K+1} and empty \mathcal{P}

Algorithm

Probe phase (for partition K)
1 foreach block S from \mathcal{S}^{K} do
2 read S into \mathcal{I}
3 foreach item s in \mathcal{I} do
calculate partition value $p \leftarrow p(s . A)$
if $p=K$ then
calculate hash value $h \leftarrow h(s . A)$ foreach item r in bucket h in \mathcal{H} do
if r and s can be joined then
join r and s and put the result to \mathcal{O} if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}

Algorithm

Probe phase (for partition K) (cont'd)

Observations

Memory layout

- Build phase: $M+1+1$
- Hash container $\mathcal{H}: M=\left\lceil F \cdot\left(p_{R} / P\right)\right\rceil$ pages
- Input buffer I: 1 page
- Partition buffer \mathcal{P} : 1 page

Observations

Memory layout

- Probe phase: $M+1+1+1$
- Hash container $\mathcal{H}: M$ pages (preserved from the build phase)
- Input buffer I: 1 page
- Partition buffer \mathcal{P} : 1 page
- Output buffer $\mathcal{O}: 1$ page

Observations

Time complexity

- Build and probe phases
- $c_{\text {build }} \approx\left(p_{R}+\frac{P-1}{P} p_{R}\right)+\left(\frac{P-1}{P} p_{R}+\frac{P-2}{P} p_{R}\right)+\cdots+\left(\frac{1}{P} p_{R}\right)$

$$
\begin{aligned}
& =p_{R}+2 \frac{1}{P}[(P-1)+(P-2)+\cdots+(1)] p_{R} \\
& =p_{R}+2 \frac{1}{P}\left[\frac{(P-1)+(1)}{2} \cdot(P-1)\right] p_{R}=p_{R}+(P-1) p_{R} \\
& =P \cdot p_{R}
\end{aligned}
$$

- Analogously $c_{\text {probe }}=P \cdot p_{S}$
- Overall cost
- $c_{\mathrm{SH}}=c_{\mathrm{build}}+c_{\text {probe }}=P \cdot\left(p_{R}+p_{S}\right)$

Summary

- We are now able to deal even with larger tables
- However, overall cost is still not efficient enough...

Partition Hashing

Partition hash join

- Basic principle
- Both tables are first partitioned
- Using partition function p again
- Pairs of the corresponding partitions are then joined together
- Using the classic hash join approach
- Or actually even nested loops if desired

Overall procedure

1 split \mathcal{R} and create partitions $\mathcal{R}_{0}, \ldots, \mathcal{R}_{P-1}$
2 split \mathcal{S} and create partitions $\mathcal{S}_{0}, \ldots, \mathcal{S}_{P-1}$
3 foreach partition $p \in\{0, \ldots, P-1\}$ do
$4 \quad$ join partitions \mathcal{R}_{p} and \mathcal{S}_{p}

Partition Phase

Partition phase (for table \mathcal{R})

- Tuples of a given table are split to disjoint partitions

Join Phase

Partition phase

- Resulting partitions for our sample scenario

Join phase

- Pairs of the corresponding partitions are then joined together
- \mathcal{R}_{0} and $\mathcal{S}_{0}, \mathcal{R}_{1}$ and \mathcal{S}_{1}, \ldots

Algorithm

Partition phase

- Table \mathcal{R} is assumed, partitioning of \mathcal{S} is analogous
foreach block R from \mathcal{R} do
2 read R into \mathcal{I}
foreach item r in \mathcal{I} do
calculate partition value $p \leftarrow p(r . A)$ add r into partition buffer \mathcal{P}_{p}
if \mathcal{P}_{p} is full then write \mathcal{P}_{p} to \mathcal{R}_{p} and empty \mathcal{P}_{p}
7 foreach partition $p \in\{0, \ldots, P-1\}$ do
$8 \quad$ if \mathcal{P}_{p} is not empty then write \mathcal{P}_{p} to \mathcal{R}_{p} and empty \mathcal{P}_{p}

Observations

Memory layout

- Partition phase: $1+P$
- Input buffer I: 1 page
- Partition buffers \mathcal{P} : P pages

Time complexity

- Partitioning phase
- $c_{\text {split }} \approx 2 \cdot p_{R}+2 \cdot p_{S}$
- Overall cost (with classic hash join involved)
- $c_{\mathrm{PH}}=c_{\mathrm{split}}+P \cdot c_{\mathrm{CH}} \approx c_{\mathrm{split}}+P\left[\frac{p_{R}}{P}+\frac{p_{S}}{P}\right] \approx 3 \cdot\left(p_{R}+p_{S}\right)$

Grace Hashing

Grace hash join

- Just ordinary partition hash join
- ... with balanced memory requirements across all the phases

Memory setup

- Let $m \approx \sqrt{F \cdot p_{R}}$
- I.e., square root of the size of an in-memory container that would roughly be needed for hashing of the smaller table \mathcal{R}
- Partition function p is chosen to ensure that $P=m$
- $\Rightarrow m$ partitions will be created (for \mathcal{R} as well as \mathcal{S})
- \Rightarrow expected size of each partition of \mathcal{R} should be...

$$
-s=p_{R} / P=p_{R} / m=p_{R} / \sqrt{F \cdot p_{R}} \approx \sqrt{p_{R} / F} \text { pages }
$$

- \Rightarrow space needed for hashing each of these partitions...

$$
-F \cdot s=F \cdot \sqrt{p_{R} / F} \approx \sqrt{F \cdot p_{R}} \approx m \text { pages }
$$

Grace Hashing

Memory setup (cont'd)

- l.e., size P of partition buffers \mathcal{P} (partition phase) and size M of hash container \mathcal{H} (build and probe phases) are equal to m

Hybrid Hashing

Hybrid hash join

- Basically an improvement of the simple hash join approach
- Instead of using just one buffer for all items to be postponed...
- ... we directly split them to separate partitions
- I.e., as in the partition hash join approach
- In other words...
- Partitions 0 are joined directly during the first pass
- Using the altered build and probe phases
- All the remaining partitions are pairwise joined subsequently
- Using the classic hash join approach

Build Phase

Build phase

- Items from the smaller table are either hashed or postponed
- However, when they are to be postponed, they are branched to individual separated partitions

Probe Phase

Probe phase

Algorithm

Overall procedure

1 execute build phase over \mathcal{R}, hash items from partition 0 and create postponed partitions $\mathcal{R}_{1}, \ldots, \mathcal{R}_{P-1}$
2 execute probe phase over \mathcal{S}, join items from partition 0 and create postponed partitions $\mathcal{S}_{1}, \ldots, \mathcal{S}_{P-1}$
3 foreach partition $p \in\{1, \ldots, P-1\}$ do
4 join partitions \mathcal{R}_{p} and \mathcal{S}_{p}

Algorithm

Build phase

Algorithm

Build phase (cont'd)

- 4 -

11 foreach partition $p \in\{1, \ldots, P-1\}$ do
12 if \mathcal{P}_{p} is not empty then write \mathcal{P}_{p} to \mathcal{R}_{p} and empty \mathcal{P}_{p}

Algorithm

Probe phase

1 foreach block S from \mathcal{S} do
2 read S into \mathcal{I}
3 foreach item s in I do
calculate partition value $p \leftarrow p(s . A)$

if $p=0$ then

calculate hash value $h \leftarrow h(s . A)$
foreach item r in bucket h in \mathcal{H} do
if r and s can be joined then join r and s and put the result to \mathcal{O} if \mathcal{O} is full then write \mathcal{O} to \mathcal{T}, empty \mathcal{O}

Algorithm

Probe phase (cont'd)

- 4 A

11
12
13
else
add s into partition buffer \mathcal{P}_{p} if \mathcal{P}_{p} is full then write \mathcal{P}_{p} to \mathcal{S}_{p} and empty \mathcal{P}_{p}

14 if \mathcal{O} is not empty then write \mathcal{O} to \mathcal{T} and empty \mathcal{O}
15 foreach partition $p \in\{1, \ldots, P-1\}$ do
16 if \mathcal{P}_{p} is not empty then write \mathcal{P}_{p} to \mathcal{S}_{p} and empty \mathcal{P}_{p}

Observations

Memory layout

- Build phase: $M+1+(P-1)$
- Hash container $\mathcal{H}: M=\left\lceil F \cdot\left(p_{R} / P\right)\right\rceil$ pages
- Input buffer I: 1 page
- Partition buffers $\mathcal{P}: P-1$ pages

Observations

Memory layout

- Probe phase: $M+1+(P-1)+1$
- Hash container $\mathcal{H}: M$ pages (preserved from the build phase)
- Input buffer I: 1 page
- Partition buffers $\mathcal{P}: P-1$ pages
- Output buffer $\mathcal{O}: 1$ page

Observations

Time complexity

- Build and probe phases for partition 0
- $c_{\text {build }} \approx p_{R}+p_{R} \cdot \frac{P-1}{P}=p_{R} \cdot\left(1+\frac{P-1}{P}\right)=p_{R} \cdot\left(2-\frac{1}{P}\right)$
- Analogously $c_{\text {probe }} \approx p_{S} \cdot\left(2-\frac{1}{P}\right)$
- Overall cost (with classic hash join involved)

$$
\begin{aligned}
c_{\mathrm{HH}} & =c_{\mathrm{build}}+c_{\text {probe }}+(P-1) \cdot c_{\mathrm{CH}} \\
& \approx p_{R} \cdot\left(2-\frac{1}{P}\right)+p_{S} \cdot\left(2-\frac{1}{P}\right)+(P-1)\left[\frac{p_{R}}{P}+\frac{p_{S}}{P}\right] \\
& \approx\left(3-\frac{2}{P}\right) \cdot\left(p_{R}+p_{S}\right)
\end{aligned}
$$

Query Evaluation

Sample Query

Database schema

- Movie (id, title, year, ...)
- Actor (movie, actor, character, ...)
- FK: Actor[movie] \subseteq Movie[id]

Sample query

- Actors and characters they played in movies filmed in 2000
- SELECT title, actor, character FROM Movie JOIN Actor WHERE (year $=2000$) AND (id = movie)
- (Movie \times Actor) $(($ year $=2000) \wedge(i d=$ movie $))$ [title, actor, character]
- $\pi_{\text {title,actor, character }}\left(\varphi_{(\text {year }=2000) \wedge(\text { id }=\text { movie })}(\right.$ Movie \times Actor $\left.)\right)$

Sample Query

Sample query (cont'd)

- Actors and characters they played in movies filmed in 2000
- $\pi_{\text {title }, \text { actor }, \text { character }}\left(\varphi_{(\text {year }=2000) \wedge(\text { id }=\text { movie })}(\right.$ Movie \times Actor $\left.)\right)$

Query Evaluation

Basic idea

- SQL query \rightarrow RA query \rightarrow evaluation plan \rightarrow query result

Evaluation process

- (1) Scanning [scanner]
- Lexical analysis is performed over the input SQL expression
- Lexemes are recognized and then tokens generated
- (2) Parsing [parser]
- Syntactic analysis is performed
- Derivation tree is constructed according to the SQL grammar
- (3) Translation
- Query tree with relational algebra operations is constructed

Query Evaluation

Evaluation process (cont'd)

- (4) Validation [validator]
- Semantic validity is checked
- Compliance of relation schemas with intended operations
- (5) Optimization [optimizer]
- Alternative evaluation plans are devised and compared
- In order to find the most efficient plan
- Based on their evaluation cost estimates
- (6) Code generation [generator]
- Execution code is generated for the chosen plan
- (7) Execution [processor]
- Intended query is finally evaluated
- And the yielded result provided to the user

Query Evaluation

Query tree

- Internal tree structure
- Leaf nodes = input tables
- Inner nodes = individual RA operations ($\sigma, \pi, \times, \bowtie, \ldots$)
- Root node represents the entire query
- Nodes are evaluated from leaves toward the root

Query evaluation plan

- Query tree
- For each inner node...
- Calculated statistics (number of tuples, blocking factor, ...)
- Selected algorithm (limited by context and available memory)
- Estimated cost
- Overall cost

Sample Plan \#1

Cross join

$n_{1}=n_{M} \cdot n_{A}=100000000000$
$b_{1}=\left(b_{M} \cdot b_{A}\right) /\left(b_{M}+b_{A}\right)=8$
$p_{1}=n_{1} / b_{1}=12500000000$
Nested loops
$M_{1}=25+1+1=27$
$c_{1}^{r}=p_{M}+\left(p_{M} / 25\right) \cdot p_{A}=10010000$
$c_{1}^{\mathrm{W}}=p_{1}=12500000000$

Selection $($ year $=2000) \wedge($ id $=$ movie $)$
$n_{2}=n_{1} \cdot\left(1 / V_{M . \text { year }}\right) \cdot\left(1 / n_{M}\right)=20000$
$b_{2}=b_{1}=8$
$p_{2}=n_{2} / b_{2}=2500$
$c_{2}^{r}=p_{1}=12500000000$
$c_{2}^{\mathrm{W}}=p_{2}=2500$
B^{+}tree index (year)
$m_{\text {M. year }}=100$
$I_{M \text {. year }}=3$

Evaluation Plan Cost

Overall evaluation cost

- Let us first assume that all intermediate results are always written to temporary files and so each involved operation...
- Reads its inputs from / writes its output to a hard drive
- Overall cost then equals to the sum of all the partial costs

Cost of Plan \#1

- $M=25+1+1$ memory pages
- $c=\left[c_{1}^{\mathrm{r}}+c_{1}^{\mathrm{w}}\right]+\left[c_{2}^{\mathrm{r}}+c_{2}^{\mathrm{W}}\right]+\left[c_{3}^{\mathrm{r}}\right]$
- $c=\left[p_{M}+\left(p_{M} / 25\right) \cdot p_{A}+p_{1}\right]+\left[p_{1}+p_{2}\right]+\left[p_{2}\right]$
- $c=[10010000+12500000000]+[12500000000+2500]+$ [2 500]
- $c=25010015000$

Sample Query

Intuitive optimization

- Actors and characters they played in movies filmed in 2000
- SQL expression

SELECT title, actor, character
FROM Movie JOIN Actor ON (id = movie)
WHERE (year = 2000)

- RA expression
$\pi_{\text {title, actor, character }}\left(\varphi_{(\text {year }=2000)}\left(\right.\right.$ Movie $\bowtie{ }_{\text {(id=movie })}$ Actor $\left.)\right)$

Sample Plan \#2

Theta join [id = movie]
$n_{1}=n_{A}=1000000$
$b_{1}=\left(b_{M} \cdot b_{A}\right) /\left(b_{M}+b_{A}\right)=8$
$p_{1}=n_{1} / b_{1}=125000$
Nested loops
$M_{1}=25+1+1=27$
$c_{1}^{x}=p_{M}+\left(p_{M} / 25\right) \cdot p_{A}=10010000$
$c_{1}^{\mathrm{W}}=p_{1}=125000$

Selection (year $=2000$)
$n_{2}=n_{1} \cdot\left(1 / V_{M \text {.year }}\right)=20000$
$b_{2}=b_{1}=8$
$p_{2}=n_{2} / b_{2}=2500$
$c_{2}^{r}=p_{1}=125000$
$c_{2}^{W}=p_{2}=2500$

Sample Plan \#2

Cost of Plan \#2

- Again $M=25+1+1$ memory pages
- $c=\left[c_{1}^{\mathrm{r}}+c_{1}^{\mathrm{W}}\right]+\left[c_{2}^{\mathrm{r}}+c_{2}^{\mathrm{W}}\right]+\left[c_{3}^{\mathrm{r}}\right]$
- $c=\left[p_{M}+\left(p_{M} / 25\right) \cdot p_{A}+p_{1}\right]+\left[p_{1}+p_{2}\right]+\left[p_{2}\right]$
- $c=[10010000+125000]+[125000+2500]+[2500]$
- $c=10265000$
- That is approximately 2400 times better than the first plan

Pipelining

Pipelining mechanism

- Intermediate results are passed between the operations directly without the usage of temporary files on a disk
- And so just within the system memory
- It may even be possible to do it in-place without extra pages
- Unfortunately, such an approach is not always possible...

Cost of Plan \#2 with pipelining

- Still $M=25+1+1$ memory pages
- $c=\left[c_{1}^{r}+X^{2}\right]+\left[\psi_{8}^{*}+\psi^{2}\right]+\left[\psi^{*}\right]$
- Joined tuples are filtered and projected immediately in-place
- $c=10010000$

Query Optimization

Objective = finding the most optimal query evaluation plan

- It is not possible to consider all plans, though
- Simply because there are far too many of them
- And so pruning and heuristics need to be incorporated

Optimization strategies

- Algebraic
- Proposal of alternative plans using query tree transformations
- Statistical
- Estimation of costs and result sizes based on available statistics
- Syntactic
- Manual modification of query expressions by users themselves
- In order to involve plans that would otherwise be unreachable
- Breaches the principle of declarative querying, though

Statistical Optimization

Statistical Optimization

Objective

- Capability of calculating necessary result characteristics...
- Of both the final result as well as all intermediate ones
- I.e., all individual nodes within a given evaluation plan tree
- ... so that the overall cost can be estimated
- And thus alternative plans mutually compared

Basic statistics

- Data file for table \mathcal{R}
- n_{R} number of tuples, s_{R} tuple size, b_{R} blocking factor
- p_{R} number of pages
- Hashed file: H_{R} number of buckets, C_{R} bucket size
- Index file for attribute A from table \mathcal{R}
- B^{+}tree: $I_{R . A}$ tree height, $p_{R . A}$ number of leaf nodes

Statistical Optimization

Additional statistics

- Provide deeper insight into the active domain
- May even be implicitly derivable from index structures
- Unfortunately, they may also be missing or unavailable
- Especially as for intermediate results
- $V_{R . A}$ number of distinct values
- $\min _{R . A}$ and $\max _{R . A}$ minimal and maximal values
- Histograms
- Provide even more accurate understanding of the domain
- And so better estimates
- Especially useful for non-uniform distributions

Histograms

Histogram = approximate representation of data distribution

- Active domain is split into sub-intervals called buckets
- Usually consecutive and non-overlapping
- Frequency of values is determined for each one of them
- I.e., count of values that fall into that bucket

Sample data

- Integer values from interval $[15,26]$ and their frequencies

Histograms

Equi-width histogram

- Buckets have equal widths (count of distinct values)
- Discrete domains: average frequencies are stored
- So that frequency $f_{E . A}(v)$ can be retrieved for any value v
- Continuous domains: probabilities are stored instead
- So that probability $t_{E . A}(b)$ can be retrieved for any bucket b

Histograms

Equi-depth histogram

- Buckets are designed so that they have equal depths
- I.e., absolute frequencies are the same
- Or at least almost the same
- Since real-world data will likely not be nice enough
- We also need to explicitly store bucket placement information
- Since it is not derivable automatically

Size Estimates: Selection

Selection: $T=\sigma_{\varphi}(E)$

Tuple size

- $s_{T}=s_{E}$
- Tuples are just filtered out and so their size remains untouched

Blocking factor

- $b_{T}=b_{E}$

Number of tuples

- Basic idea: $n_{T}=\left\lceil n_{E} \cdot r_{\varphi}\right\rceil$
- $r_{\varphi} \in[0,1]$ is an estimated reduction factor
- Describes how much the original tuples will be reduced
- Depends on a particular condition φ
- As well as particular available statistics...

Size Estimates: Selection

Reduction factors

- Equality test with respect to a unique attribute
- $r_{\varphi}=1 / n_{E}$ (and so $n_{T}=1$)
- Equality test with respect to a non-unique attribute
- $r_{\varphi}=1 / V_{E . A}$
- $r_{\varphi}=f_{E . A}(v) / n_{E}$ if histogram for discrete domains is available
- As a consequence, $n_{T}=f_{E . A}(v)$
- $r_{\varphi}=t_{E . A}(\operatorname{bucket}(v))$ analogously for continuous domains
- $r_{\varphi}=1 / 10$ when no information is available at all
- Estimates using constants in general
- May work well, not bad, as well as totally wrong...
- But when nothing better is available, it must simply suffice
- Of course, particular constant is just a matter of discussion

Size Estimates: Selection

Reduction factors (cont'd)

- Range query for two-sided intervals $I=\left[v_{1}, v_{2}\right]$ and other

```
- \(r_{\varphi}=\left(v_{2}-v_{1}+\varepsilon\right) /\left(\max _{E . A}-\min _{E . A}+1\right)\)
- \(r_{\varphi}=\left(\sum_{v \in I} f_{E . A}(v)\right) / n_{E}\)
- \(r_{\varphi}=\left(v_{2}-v_{1}\right) /\left(\max _{E . A}-\min _{E . A}\right)\)
- \(r_{\varphi}=\sum_{b \in \operatorname{buckets}(I)} t_{E . A}(b)\)
- \(r_{\varphi}=1 / 4\)
```

- Range query for one-sided intervals $\left(-\infty, v_{2}\right]$ and $\left(-\infty, v_{2}\right)$
- Works analogously...
- $r_{\varphi}=1 / 2$
- Unfortunately, there are certain undesired consequences...
- E.g., reduction factors of $A \leq 1$ and $A \leq 1000$ are the same
- Range query for one-sided intervals $\left[v_{1}, \infty\right)$ and $\left(v_{1}, \infty\right)$
- Works analogously again...

Size Estimates: Selection

Reduction factors (cont'd)

- Conjunction: $\varphi_{1} \wedge \varphi_{2}$
- $r_{\varphi}=r_{\varphi_{1}} \cdot r_{\varphi_{2}}$
- Independence of both conditions is assumed
- Disjunction: $\varphi_{1} \vee \varphi_{2}$
- $r_{\varphi}=r_{\varphi_{1}}+r_{\varphi_{2}}-r_{\varphi_{1}} \cdot r_{\varphi_{2}}$
- Negation: $\neg \varphi_{1}$
- $r_{\varphi}=1-r_{\varphi_{1}}$

Improved estimates might also be useful for access methods

- Since it is also about selection
- However, technical possibilities of data files must be respected

Size Estimates: Projection

Projection: $T=\pi_{a_{1}, \ldots, a_{n}}(E)$

Tuple size

- s_{T} is simply calculated using sizes of all preserved attributes Blocking factor
- $b_{T}=\left\lfloor B / s_{T}\right\rfloor$

Number of tuples

- Default SQL projection without the DISTINCT modifier
- I.e., removal of potential duplicates is not performed
- $n_{T}=n_{E}$
- With duplicates removal enabled
- $n_{T}=n_{E}$ if at least one key of E is preserved
- ...

Size Estimates: Joins

Inner joins: $T=E_{R} \times E_{S}$ or $E_{R} \bowtie E_{S}$ or $E_{R} \bowtie_{\varphi} E_{S}$

Tuple size

- $s_{T} \approx s_{R}+s_{S}$
- Less for natural join since shared attributes are not repeated

Blocking factor

- $b_{T} \approx\left\lfloor\frac{B}{s_{T}}\right\rfloor \approx\left\lfloor\frac{B}{s_{R}+s_{S}}\right\rfloor \approx\left\lfloor\frac{B}{B / b_{R}+B / b_{S}}\right\rfloor \approx\left\lfloor\frac{b_{R} \cdot b_{S}}{b_{R}+b_{S}}\right\rfloor$
- Can be calculated exactly from the actual resulting tuple size
- As well as estimated just using the original blocking factors

Number of tuples

- $n_{T}=\left\lceil n_{R} \cdot n_{S} \cdot r_{\varphi}\right\rceil$ with $r_{\varphi} \in[0,1]$ for joining condition φ
- Similar approach with reduction factors as in selections

Size Estimates: Joins

Reduction factors

- Cross join
- $r_{\varphi}=1$ (hence $n_{T}=n_{R} \cdot n_{S}$)
- Foreign key lookup
- Let us assume that φ traverses a foreign key from \mathcal{R} to \mathcal{S}
- Then for each tuple $r \in \mathcal{R}$ there must exist exactly one $s \in \mathcal{S}$
- And so $r_{\varphi}=1 / n_{S}$ (hence $n_{T}=n_{R}$)
- Equality test over an attribute A in \mathcal{S}
- $r_{\varphi}=1 / V_{S . A}$
- $r_{\varphi}=1 / n_{S}$ specifically for a unique attribute (again $n_{T}=n_{R}$)

Algebraic Optimization

Equivalence Rules: Selection

Commutativity of selection

- $\sigma_{\varphi_{2}}\left(\sigma_{\varphi_{1}}(E)\right) \equiv \sigma_{\varphi_{1}}\left(\sigma_{\varphi_{2}}(E)\right)$
- Mutual order of selections can be changed
- Condition with higher selectivity can be applied first
- I.e., condition which yields a fewer number of tuples

Cascade of selections

- $\sigma_{\varphi_{2}}\left(\sigma_{\varphi_{1}}(E)\right) \equiv \sigma_{\varphi_{1} \wedge \varphi_{2}}(E)$
- Direction \rightarrow
- Selections can be merged together into just one
- Via a conjunction over the original conditions
- Direction \leftarrow
- Conjunctive selection can be split into separate selections

Equivalence Rules: Projection

Cascade of projections

- $\pi_{A_{2}}\left(\pi_{A_{1}}(E)\right) \equiv \pi_{A_{2}}(E)$
- \rightarrow : only the outermost projection actually matters
- And so the inner one can entirely be omitted as meaningless

Commutativity of selection and projection

- $\pi_{A}\left(\sigma_{\varphi}(E)\right) \equiv \sigma_{\varphi}\left(\pi_{A}(E)\right)$
- Selection and projection can be mutually swapped
- \leftarrow : without any limitation
- \rightarrow : only when all attributes in φ are still available
- When this assumption is not satisfied...
- $\pi_{A}\left(\sigma_{\varphi}(E)\right) \equiv \pi_{A}\left(\sigma_{\varphi}\left(\pi_{A \cup S}(E)\right)\right)$
- Attributes S from E are those that are needed for the selection

Equivalence Rules: Joins

Commutativity of joins

- Cross join: $E_{1} \times E_{2} \equiv E_{2} \times E_{1}$
- Natural join: $E_{1} \bowtie E_{2} \equiv E_{2} \bowtie E_{1}$
- Theta join: $E_{1} \bowtie_{\varphi} E_{2} \equiv E_{2} \bowtie_{\varphi} E_{1}$
- Operands of inner joins can be mutually swapped
- Such a thing is not possible for outer joins

Associativity of joins

- Inner joins are also associative (again, not outer)
- $\left(E_{1} \times E_{2}\right) \times E_{3} \equiv E_{1} \times\left(E_{2} \times E_{3}\right)$
- $\left(E_{1} \bowtie E_{2}\right) \bowtie E_{3} \equiv E_{1} \bowtie\left(E_{2} \bowtie E_{3}\right)$
- $\left(E_{1} \bowtie_{\varphi_{12}} E_{2}\right) \bowtie_{\varphi_{13} \wedge \varphi_{23}} E_{3} \equiv E_{1} \bowtie_{\varphi_{12} \wedge \varphi_{13}}\left(E_{2} \bowtie_{\varphi_{23}} E_{3}\right)$
- Assuming that each $\varphi_{i j}$ only involves attributes from E_{i} and E_{j}

Equivalence Rules: Joins

Integration of selection into joins

- Any inner join can be rewritten using theta join...
- ... and then combined with selection
- Intended for conditions of joining nature
- I.e., conditions that involve attributes from both the operands
- $\sigma_{\varphi_{S}}\left(E_{1} \times E_{2}\right) \equiv E_{1} \bowtie_{\varphi_{S}} E_{2}$
- $\sigma_{\varphi_{S}}\left(E_{1} \bowtie_{\varphi_{J}} E_{2}\right) \equiv E_{1} \bowtie_{\varphi_{J} \wedge \varphi_{S}} E_{2}$
- $\sigma_{\varphi_{S}}\left(E_{1} \bowtie E_{2}\right) \equiv E_{1} \bowtie_{\varphi_{N} \wedge \varphi_{S}} E_{2}$
- φ_{N} involves pairwise equality tests for all the shared attributes
- I.e., attributes occurring in both the operands

Equivalence Rules: Joins

Distribution of selection over joins

- Let us have an inner join wrapped by a selection...
- ... and this selection contains a condition of filtering nature
- l.e., condition with attributes from just one join operand
- It can then be executed before the join over just that operand
- And so the join evaluation cost can be decreased
- $\sigma_{\varphi_{S}}\left(E_{1} \times E_{2}\right) \equiv \sigma_{\varphi_{S}}\left(E_{1}\right) \times E_{2}$
- Assuming that, in particular, φ_{S} involves attributes from E_{1} only
- $\sigma_{\varphi_{S}}\left(E_{1} \bowtie E_{2}\right) \equiv \sigma_{\varphi_{S}}\left(E_{1}\right) \bowtie E_{2}$
- $\sigma_{\varphi_{S}}\left(E_{1} \bowtie_{\varphi_{J}} E_{2}\right) \equiv \sigma_{\varphi_{S}}\left(E_{1}\right) \bowtie_{\varphi_{J}} E_{2}$

Equivalence Rules: Joins

Distribution of projection over joins

- Let us assume that attributes A_{1} are from E_{1} and A_{2} from E_{2}
- $\pi_{A_{1} \cup A_{2}}\left(E_{1} \times E_{2}\right) \equiv \pi_{A_{1}}\left(E_{1}\right) \times \pi_{A_{2}}\left(E_{2}\right)$
- $\pi_{A_{1} \cup A_{2}}\left(E_{1} \bowtie E_{2}\right) \equiv \pi_{A_{1}}\left(E_{1}\right) \bowtie \pi_{A_{2}}\left(E_{2}\right)$
- \rightarrow : only works when all joining attributes are still available
- $\pi_{A_{1} \cup A_{2}}\left(E_{1} \bowtie E_{2}\right) \equiv \pi_{A_{1} \cup A_{2}}\left(\pi_{A_{1} \cup N}\left(E_{1}\right) \bowtie \pi_{A_{2} \cup N}\left(E_{2}\right)\right)$
- Attributes N are those that are needed for the natural join
- Despite looking strange, the impact may be significant
- Since unnecessary attributes are removed earlier
- $\pi_{A_{1} \cup A_{2}}\left(E_{1} \bowtie_{\varphi} E_{2}\right) \equiv \pi_{A_{1}}\left(E_{1}\right) \bowtie_{\varphi} \pi_{A_{2}}\left(E_{2}\right)$
- \rightarrow : analogous assumption again
- $\pi_{A_{1} \cup A_{2}}\left(E_{1} \bowtie_{\varphi} E_{2}\right) \equiv \pi_{A_{1} \cup A_{2}}\left(\pi_{A_{1} \cup J_{1}}\left(E_{1}\right) \bowtie_{\varphi} \pi_{A_{2} \cup J_{2}}\left(E_{2}\right)\right)$
- Attributes J_{i} from E_{i} are those needed for the theta join

Equivalence Rules: Set Operations

Commutativity of set operations

- $E_{1} \cup E_{2} \equiv E_{2} \cup E_{1}$
- $E_{1} \cap E_{2} \equiv E_{2} \cap E_{1}$
- Set difference is not commutative

Associativity of set operations

- $\left(E_{1} \cup E_{2}\right) \cup E_{3} \equiv E_{1} \cup\left(E_{2} \cup E_{3}\right)$
- $\left(E_{1} \cap E_{2}\right) \cap E_{3} \equiv E_{1} \cap\left(E_{2} \cap E_{3}\right)$
- Set difference is also not associative

Equivalence Rules: Set Operations

Distribution of selection over set operations

- $\sigma_{\varphi}\left(E_{1} \cup E_{2}\right) \equiv \sigma_{\varphi}\left(E_{1}\right) \cup \sigma_{\varphi}\left(E_{2}\right)$
- $\sigma_{\varphi}\left(E_{1} \cap E_{2}\right) \equiv \sigma_{\varphi}\left(E_{1}\right) \cap \sigma_{\varphi}\left(E_{2}\right)$
- $\sigma_{\varphi}\left(E_{1} \backslash E_{2}\right) \equiv \sigma_{\varphi}\left(E_{1}\right) \backslash \sigma_{\varphi}\left(E_{2}\right)$

Distribution of projection over set operations

- $\pi_{A}\left(E_{1} \cup E_{2}\right) \equiv \pi_{A}\left(E_{1}\right) \cup \pi_{A}\left(E_{2}\right)$
- Such a thing is not possible for intersection and difference

Recommendations

Basic heuristics

- Push filtering selections as close as possible to leaves
- To throw away not needed tuples as soon as possible
- Push projections toward leaves the same way
- So that size of intermediate results is decreased
- Integrate joining selections into joins
- I.e, rewrite other types of joins to theta joins
- Simplify cascades of projections or selections
- Transform sub-queries to joins whenever possible
- Since optimization only works for simple SELECT blocks
- Exploit commutativity and associativity of operations
- Especially joins but also set operations

Examples

Sample transformations

- $\pi_{\text {title,actor, character }}(\varphi($ year $=2000) \wedge($ id $=$ movie $) ~($ Movie \times Actor $)) / / \# 1$
- $\pi_{\text {title,actor,character }}\left(\varphi_{(\text {id }=\text { movie })} \quad\left(\varphi_{(\text {year }=2000)} \quad(\right.\right.$ Movie \times Actor $\left.\left.)\right)\right)$
- $\pi_{\text {title,actor, character }}\left(\varphi_{(\text {year }=2000)}\left(\varphi_{(\text {id }=\text { movie })} \quad(\right.\right.$ Movie \times Actor $\left.\left.)\right)\right)$
- $\pi_{\text {title,actor,character }}\left(\varphi_{(\text {year }=2000)} \quad\left(\right.\right.$ Movie $\bowtie_{(i d=m o v i e)}$ Actor $\left.)\right) / / \# 2$
- $\pi_{\text {title,actor,character }}\left(\varphi_{(\text {year }=2000)}(\right.$ Movie $) \bowtie_{(\text {id }=\text { movie })}$ Actor $)$
- $\pi_{\text {title,actor,character }}\left(\pi_{\text {id, title }}\left(\varphi_{(\text {year }=2000)}(\right.\right.$ Movie $\left.)\right) \bowtie_{(\text {id }=\text { movie })}$
$\pi_{\text {movie,actor,character }}($ Actor $\left.)\right) / / \# 3$

Algebraic Optimization

Objective

- Capability of finding alternative query evaluation plans
- Based on the so far introduced equivalence rules
- As well as other not covered rules and heuristics
- Ultimate challenge
- Space of all possible plans may be enormous
- And so significant pruning must be involved

Basic strategy for SPJ queries = select-project-join queries

- They allow to be approached at two separate levels...
- Single-relation plans / multi-relation plans
- But still an NP-complete problem

Alternative Plans

Single-relation plans

- Finding the best access method for each individual table
- Including optional filtering selections and projections

Multi-relation plans

- Finding the best join plan for a given set of tables
- Only binary joins are usually assumed
- And so we just need to take into account all possible orderings
- Since inner joins are commutative and associative

Observation

- Optimal plan may not consist of optimal sub-plans
- And so it may happen that the truly best plan will not be found

Algorithm

Basic top-down approach

- Finding the best plan for a set of relations S
- Using a dynamic programming method
if the best plan for S is already calculated then
$\mathcal{P} \leftarrow$ fetch the best plan for S
return \mathcal{P}
4 else
if S contains just a single relation \mathcal{R} then $\mathcal{P} \leftarrow$ find the best access method for \mathcal{R} store \mathcal{P} as the best plan for S return \mathcal{P}

Algorithm

Basic top-down approach (cont'd)

- 4 -

9 else
foreach $S_{L} \subseteq S$ such that $S_{L} \neq \emptyset \wedge S_{L} \neq S$ do $\mathcal{P}_{L} \leftarrow$ recursively find the best plan for S_{L} $\mathcal{P}_{R} \leftarrow$ recursively find the best plan for $S \backslash S_{L}$ $\mathcal{P} \leftarrow$ find the best join plan over \mathcal{P}_{L} and \mathcal{P}_{R} if \mathcal{P} is so far the best plan for S (if any) then store \mathcal{P} as the best plan for S
$\mathcal{P} \leftarrow$ fetch the best plan for S return \mathcal{P}

Left-Deep Linear Trees

Only left-deep linear trees are usually taken into account...

- Linear tree
- Each non-leaf node must have at least one child with relation
- Left-deep linear tree
- Moreover, that child must be the right-hand one
- Since that also increases the chance of attainable pipelining

$((A \bowtie B) \bowtie(C \bowtie D))$

$(((A \bowtie B) \bowtie C) \bowtie D)$

Algorithm

Restricted top-down approach

- For left-deep linear trees only
- This means there will be just $O\left(n \cdot 2^{n}\right)$ instead of $O\left(3^{n}\right)$ plans
if the best plan for S is already calculated then
$2 \quad \mathcal{P} \leftarrow$ fetch the best plan for S
return \mathcal{P}
4 else
$5 \quad$ if S contains just a single relation \mathcal{R} then
$6 \quad \mathcal{P} \leftarrow$ find the best access method for \mathcal{R}
7
8 store \mathcal{P} as the best plan for S return \mathcal{P}

Algorithm

Restricted top-down approach (cont'd)

- 4 -

9 else
foreach single relation $\mathcal{R} \in S$ do
$\mathcal{P}_{L} \leftarrow$ recursively find the best plan for $S \backslash\{\mathcal{R}\}$ $\mathcal{P}_{R} \leftarrow$ recursively find the best plan for $\{\mathcal{R}\}$ $\mathcal{P} \leftarrow$ find the best join plan over \mathcal{P}_{L} and \mathcal{P}_{R} if \mathcal{P} is so far the best plan for S (if any) then store \mathcal{P} as the best plan for S
$\mathcal{P} \leftarrow$ fetch the best plan for S
return \mathcal{P}

Algorithm

Restricted bottom-up approach

- We proceed by induction on the number of relations
- All single-relation plans are found first
- Then gradually all multi-relation plans
- The best plan for n relations is found by considering all possible means of joining any of its $n-1$ relations with the 1 remaining

1 foreach single relation $\mathcal{R} \in S$ do
$2 \quad \mathcal{P} \leftarrow$ find the best access method for \mathcal{R}
${ }^{3}$ St

Algorithm

Restricted bottom-up approach (cont'd)

- 4 -

4 foreach pass $p \in\{2, \ldots,|S|\}$ do
$5 \quad$ foreach $T \subseteq S$ such that $|T|=p$ do foreach single relation $\mathcal{R} \in T$ do
$\mathcal{P}_{L} \leftarrow$ fetch the best plan for $T \backslash\{\mathcal{R}\}$ $\mathcal{P}_{R} \leftarrow$ fetch the best plan for $\{\mathcal{R}\}$
$\mathcal{P} \leftarrow$ find the best join plan over \mathcal{P}_{L} and \mathcal{P}_{R}
if \mathcal{P} is so far the best plan for T (if any) then store \mathcal{P} as the best plan for T
$12 \mathcal{P} \leftarrow$ fetch the best plan for S
13 return \mathcal{P}

Query Evaluation

Sample Plan \#3

Sample Plan \#3

Cost of Plan \#3 with pipelining

- $M=25+1+1$ memory pages for buffers $\mathcal{I}_{1}, \mathcal{I}_{2}$ and \mathcal{O}
- I.e., still the same amount of system memory pages used

- \mathcal{I}_{2} is used for index traversal and then reading of movies
- All filtered and projected movies are put into \mathcal{I}_{1}
- Actors are read into \mathcal{I}_{2}, their projection is postponed
- Joined tuples are put into \mathcal{O} and projected
- $c=\left[I_{\text {M.year }}+p_{M} \cdot\left(1 / V_{\text {M. year }}\right)\right]+\left[p_{A}\right]$
- $c=[203]+[25000]$
- $c=25203$
- That is approximately 400 times better than the second plan
- And so almost 1 million times better than the first plan

Explain Statements

EXPLAIN statement

- Allows to retrieve the evaluation plan for a given query
- When ANALYZE modifier is provided...
- Query is also executed and the actual run times are returned

Example

- EXPLAIN

SELECT title, actor, character
FROM Movie JOIN Actor
WHERE (year = 2000) AND (id = movie)

Observations

False assumptions and simplifications

- Size of tuples
- Real-world tuples usually have variable size
- Because data types such as VARCHAR are often used
- That complicates internal block structure and cost estimates
- Unused slots
- Not all slots within data file blocks may really be used
- I.e., there can be gaps because of, e.g., deleted tuples
- And so the actual file size may be greater than assumed
- Inner fragmentation
- It may not be possible to utilize inner block space entirely
- I.e., there can be unused space after the last slot
- Or even around the slots in case of variable-size tuples

Observations

False assumptions and simplifications (cont'd)

- Overflow areas in sorted files
- New tuples are usually not inserted to their correct positions
- Instead, special dedicated area is used for that purpose
- So that time-complicated insertion (up to linear) is avoided
- Only time to time the whole file is reorganized (resorted)
- Overflow areas in hashed files
- Allocated size of buckets may not be sufficient
- Outer fragmentation
- Layout of file blocks on a hard drive may not be continuous
- That may significantly increase time costs
- Because of repeated seeks and rotational delays

Observations

False assumptions and simplifications (cont'd)

- Impact of caching manager
- Blocks we require may already be loaded into the memory
- And so the actual cost may be lower
- Extent of available statistics
- Not all statistics we worked with may be available
- Or derivable in case of inner nodes
- And so less accurate estimates can then be made
- Lazy maintenance of statistics
- Statistics we do have may already be obsolete
- Simply because some of them are updated only occasionally

Observations

False assumptions and simplifications (cont'd)

- Non-uniform distribution
- Assumption of uniform distribution is often not realistic
- And it is not just about the data
- But also queries
- Independence of conditions
- When reduction factors for conditions are estimated...
- Their independence is assumed
- But this may not be realistic again
- Cost estimation in general
- Our formulae provide only estimates, not precise calculations
- Moreover, there was a lot of simplification
- And the statistics we relied on may really be unavailable
- And so despite the effort, they may not always work well

Conclusion

Evaluation algorithms

- Access methods
- Sorting
- External merge sort with / without priority queue
- Joining
- Binary / non-binary nested loops join with / without zig-zag
- Basic / integrated sort-merge join
- Classic / simple / partition / grace / hybrid hash join

Query evaluation and optimization

- Evaluation plans
- Cost estimates, pipelining
- Statistical / algebraic optimization

