
Query Languages 2 1

Query languages 2 (NDBI006)
Information Retrieval

Jaroslav Pokorný

MFF UK, Praha

pokorny@ksi.mff.cuni.cz

Query Languages 2 2

Development of IS

Sources:

▪ formation of texts directly in a computer

▪ Need: searching, not only browsing,

▪ not always possible to index documents manually

▪ development of big memories (CD ROM, WORM)

▪ development of communications (Internet)

1970 19801950 1960 1990 2000

systems for processing

secondary information systems for

processing fulltexts digital

libraries

Query Languages 2 3

Content

1. Introduction

2. Measuring relevance

3. Boolean model

4. Vector model

5. Feedback

6. Thesaurus

7. Conclusion

Query Languages 2 4

Information retrieval

database - a collection of documents (unstructured, no schema)

query - requirement formulated in a language is usually entered

with a text sample (word, expression, part of a word, or even

the entire text) or several samples (conjunctive query)

More generally: Boolean expressions

answer (set of hits) - texts matching the query

hit relevance – extent measure, how the hit matches the user

request

Answer restriction - maximum M

- at most M most relevant ones

- entering a threshold value 

Query Languages 2 5

Information retrieval

Field: Information Retrieval (IR)

IR is all about finding what you want when what
you want is hidden in the mass of what you
don't want.

More precisely:

To find to the query relevant documents

Field: Information Filtering

To retrieve to the document D profiles in such
way, that D is for them relevant.

Query Languages 2 6

IR - basic architecture

Subsystems: making text accessible (1)

text delivery (2)

(1) see information services

secondary information vs. fulltexts

query tuning

indexer researcher

user

IR

document input,

document description

(descriptors choice)

output

requirement,

specification

historical model

Query Languages 2 7

IR - basic architecture

Subsystems: making text accessible (1)

text delivery (2)

(1) see information services

secondary information vs. fulltexts

query tuning

indexer

user

IR

document input,

document description

(descriptors choice)

output

requirement,

specification

current model

Query Languages 2 8

Measuring relevance

recall R

#retrieved relevant documents
R =

#relevant documents in the set of all documents

precision P

#retrieved relevant documents
P =

#retrieved documents

Query Languages 2 9

Measuring relevance

P
1

R 1

precision-recall curve

Query Languages 2 10

Boolean model

▪ Document representation: as a set of terms

▪ Querying:
- formally: with Boolean expressions

- style: exact matching

▪ Finding terms - practice:
▪ removal of stop-words (very common words such

as “a”, “an”, “the”, “it” etc.) from the set of terms

results in reduction 30-50% (C.J. van Rijsbergen)

▪ linguistic processing (tokenization)

▪ Creation of the inverted index

Query Languages 2 11

Boolean model

One of possible syntaxes:
<term>

<attribute_name> = <attribute_value> /comparison/

<function_name>(<term>), /application of function/

X AND Y retrieve D, containing X and Y as well.

X OR Y retrieve D, containing either X or Y.

X XOR Y retrieve D, containing either X or Y but X AND Y is not TRUE

NOT Y retrieve D, not containing Y
X adj Y retrieve D, in which X occurs followed by Y
X (n)words Y retrieve D, in which X occurs followed by Y

in maximal distance n words
X sentence Y retrieve D, in which X and Y occur in the same sentence

Query Languages 2 12

Boolean model

Language

. for any character.

* character followed by * corresponds to any number of
occurrences (including zero) of this character. For example, xy*
corresponds to x, xy, xyy etc.

+ character followed by + corresponds to any number of
occurrences (except of empty) of this character. For example,
xy+ corresponds to xy, xyy, xyyy etc.

[] Characters in [] correspond to any single character, který is
in parentheses given, but not to another. For example, [xyz]
corresponds to x, y or z.

[^] ^ at the beginning of a string in [] means negation (not). For
example, [^xyz] corresponds to any character except x, y or z.

[-] – between characters in [] indicates range characters. For
example [a-x] corresponds to any character between a and x.

Query Languages 2 13

Boolean model: P vs. R

▪ By refining the query in Boolean model, we obtain

greater P, but smaller R.

Example: experiment (Blair, Maron,1985) – 40 000 legal texts

Goal: not only high P, but also R.

Results: P → 80%, R → 20%

Problem of synonyms – the use of natural language, cannot be

captured by a thesaurus.

Example: accident, mishap, collision, car accident, "something

happened there", ...

▪ automatic indexing does not eliminate these problems

Query Languages 2 14

Boolean model: problems

▪ Thus far, our queries have all been Boolean.

o Documents either match or don’t.

▪ Good for expert users with precise understanding of their

needs and the collection.

o Also good for applications: Applications can easily consume 1000s of

results.

▪ Not good for the majority of users.

o Most users incapable of writing Boolean queries (or they are, but they

think it’s too much work).

o Most users don’t want to wade through 1000s of results. This is

particularly true of web search

Query Languages 2 15

Boolean model: problems

What affects the P and R relationship?

Problems with manually indexed systems:

uncertainty

▪ in indexing influence of the indexer

▪ in the choice of terms for query influence of the user

Example: p1, p2 probabilities, that user uses terms t1, t2

q1, q2 probabilities, that terms t1, t2 occur in D

 p, that the user chooses t1, t2 and D with t1, t2 is selected, is

p1* p2 * q1 * q2

For example, R = 0,6 * 0,7 * 0,5 * 0,6 = 0,126  R < 13%

 for i=5, pi = qi = 0,5  R = 0,1%

 from 1000 relevant Ds, only 1 is chosen!

Query Languages 2 16

Boolean model: problems
prediction criterion - how to ensure agreement between the

selection of terms for query and documents (today: similarity of

ontologies)

– method: removing uncertainty

maximum criterion - 20-50 hits can be handled

Problems: AND gives too few; OR gives too many

Problems with fulltext DB :

– DB size (vs. maximum criterion)

– selecting terms for query

– revaluation of the elimination of indexers

– the indeterminacy of the questioner remains

– unilateral behavior of the user

– tendency to change the last decision, keep first steps

Query Languages 2 17

Boolean model: problems

C

D

A
B

E

A  B  C  E

A  B  C  D

hit

Query Languages 2 18

Boolean model: problems

Solving uncertainty in the choice of terms for query:

▪ we find D with high relevance for user (D is known + is known,

that occurs in DB),

▪ terms for query are selected from D,

▪ removing terms or their replacement by disjunctions.

 reducing the indeterminacy of the user.

Query Languages 2 19

Boolean model: problems

Solution of unilateral behavior of the user by weighting:

Example: terms probability (weight)

Author: Pokorný 0,3

Date: 1995-1999 0,7

Journals: CW 0,2

Artificial Intelligence 0,5

ERCIM News 0,2

Keywords: XML 0,6

databases 0,8

query languages 1 0,9

Total number of conjunctive queries is 255.

Query Languages 2 20

Boolean model: problems

Products of probabilities for

2 terms 3 terms max. for 1, 2, ...

pqu * pda = 0,72 pqu * pda * pdat = 0,5 0,9

pqu * pdat = 0,63 pqu * pdat * pxm = 0,38 0,72

pqu * pdat = 0,56 pqu * pda * par = 0,4 0,5

… … 0,3

0,15

Algorithm: - create groups for all combinations

- calculate for groups maxima

- is fulfilled the maximum criterion?

- offer to the user

Query Languages 2 21

Boolean model: other problems

▪ Non-intuitive results
– A AND B AND C AND D AND E

D not containing only one z the terms listed will not be
selected.

– A OR B OR C OR D OR E

Ds containing only one from the terms listed are understood
as equally significant as documents containing all terms
listed.

▪ It does not allow control of the output size.

▪ all Ds satisfying the query are seen as equally
important; it is not possible to rank them by degree of
relevance.

Query Languages 2 22

Boolean model: other problems

▪ It is difficult to implement automatic feedback, i.e.

automatically modify query based on D marked in

answer as relevant.

▪ Expressive power of the Boolean model is restricted.

Any set {D} describable by terms, can be, in principle,

selected by an appropriate Boolean query. But it is

not guaranteed, that for any set of documents {D}

that are of interest to the user, it is simple to

formulate a Boolean query in practice.

▪ More of an art than a science.

Query Languages 2 23

What next?

Thesis:

Classical Boolean systems can be extended by

functions affecting the maximum criterion; however, it

is not possible to simultaneously reach high P and R

as well without additional information.

Query Languages 2 24

IR models - overview

Non-overlapping lists

Proximal nodes

Structured models

Retrieval:

ad hoc

filtering

Browsing

U

s

e

r

t

a

s

k

Clasic models

Boolean

vector

probabilistic

Set Theoretic

fuzzy

extended Boolean

Probabilistic

inference networks

belief networks

Algebraic

generalized ector

Latent Semantic Index

neural networks

Browsing

flat

structure guided

hypertext

Query Languages 2 25

Vector model
Assumption: collection of m documents D, n different terms t1...tn
Each document Di  D is represented by vector

Di = (wi1, wi2, ..., win), where wij  <0;1>n

wij is a weight assigned to term tj in identification of document Di.

D is representable by term-document matrix

w11 w12 ... w1n

w21 w22 ... w2n

D = ...

...

wm1w m2 ... w mn

Zero means the term has no significance in the Di or it simply
doesn’t exist there.

Query Languages 2 26

Vector model

▪ querying:
- formally: with a query vector

- partial match search

method: by similarity function (coefficient)

query expression Q in vector model

Q = (q1, q2, ..., qn), where qj  <0;1>.

▪ problem: how to measure the degree of similarity?
- It is possible to rank the retrieved documents in the order of

presumed relevance.

- It is possible to enforce a certain threshold so that the size
of the retrieved set can be controlled

Query Languages 2 27

Vector model

Angle vs. distance
▪ Why not distance?

▪ Experiment: we take document D and connect it once more to D.

Document D′ is created.

"Semantically" D and D′ have the same content.

▪ The Euclidean distance between points in space between D and D′ (point

spaces) would be large.

▪ Angle between D and D′ (as vectors) is 0, i.e., it corresponds to maximal

similarity.

▪ Key idea: rank documents D in decreasing order of the angle between

query and document.

▪ Appropriate measure: cosine – descending function for the interval [0o,

180]. Then use cosine(query, D).

Query Languages 2 28

Vector model

Similarity coefficient (angl. similarity) of query Q and
document Di

(a) Sim(Q,Di) = k=1,..,n(qk * wik) (scalar product)

(b) Sim(Q,Di) = k=1,..,n(qk * wik)/(k=1,..,n(wik)
2 * k=1,..,n(qk)

2)

(cosine measure)

The divisor in (b) is the normalization factor,

(c) Sim(Q,Di) = 2k=1,..,n(qk * wik)/(k=1,..,n(wik)
2 + k=1,..,n(qk)

2)

(Dice coefficient)

Postulate: documents that are in the vector space "close to each
other" tell about the same things

Query Languages 2 29

Vector model

geometric interpretation

Remark: binary vector model (i.e., the only nonzero wik in Di and

Q are equal to 1).

For all three cases Sim =

▪  Q  Di

▪ ( Q  Di)( Q *  Di)

▪ 2( Q  Di)( Q +  Di)

Di

Q



term 1

term 2

term 3

Query Languages 2 30

Vector model

Advantages: R and P can be increased by up to 20%.

Pragmatic approach: one-word terms + appropriate weighting

method

TFij term frequency tj in document Di

NTFij normalized term frequency tj in document Di

((TFij/max TFik)+1)/2

where max is accross all terms in i-th row of matrix D.

Disadvantage: a term with high TF in many Di  smaller P

Query Languages 2 31

Vector model

IDF inverse document frequency of term decreases with the

increasing number of documents to which the term is

assigned.

IDF for term tj is defined as

IDFj = log(m/DFj) + 1

where m is the total number of documents in D and DFj is

document frequency of term tj in D, i.e. number of documents

containing term tj.

Remark:

▪ for document ranking the logarithm base is not important

▪ IDF is really inverse w.r.t. DF.

Query Languages 2 32

Vector model

Behavior:

▪ term occurs in all documents  log(1) = 0 (term belongs to

words with no significance)

▪ term occurs only in 1 document  IDF = log m +1

Example: IDF = 2 for m = 10 , IDF = 5 for m = 10 000, etc.

Intuition: importance of a term is high when it occurs a lot in a

given document and rarely in others. In short, commonality

within a document measured by TF is balanced by rarity

between documents measured by IDF.

Query Languages 2 33

Vector model

 TF-IDF matrix

wij = TDij = TFij * IDFj or wij = NTFij * IDFj

Notation in literature: tf-idf, tf.idf, tf x idf

Remark: it is not good to keep too small term weights (to the
threshold value).

▪ Q can be entered as a document.

▪ The best weights for Q:

qk = (0,5 + (0,5* TFk)/max TF) * IDFk

where TFk is term frequency of tk in Q, max TF is maximum
frequency of a term in Q and IDFk is IDF of term tk in D.

Query Languages 2 34

Vector model

Special cases for Q and D:

▪ only set of terms is specified  qk = IDFk

▪ approximations of long queries: qk = TFk

▪ short documents  approximation of weights with 0, 1

▪ long documents  a unit of selection is a passage

Query Languages 2 35

Vector model: problems

▪ assumption: term independency

▪ missing syntactic information (phrases, word oder, distances)

▪ missing semantics: polysemy, synonymy are still not solved

History: a part of the SMART system (1970)

Today:

▪ Apache Lucene – combining vector and Boolean model

▪ OpenSearch (software) (2021) – based on Apache License

2.0

Query Languages 2 36

Vector model in a Boolean system -

example of implementation

Assumptions:

▪ index file with inverted lists

▪ in inverted lists TFji (we model wji with them)

▪ file containing IDFj

▪ file SCORE[1:m]

▪ weights of query terms are equal to 1

Algorithm:

(1) According to query terms access inverted lists.

(1.1) Change sums in SCORE.

(2) Order SCORE and return, e.g., 20 highest.

Query Languages 2 37

Vector model in Boolean system -

example of implementation

.

.

tj

.

.

i,TFij k,TFkj ...

inverted list

for term tj

SCORE[1:m]

index

file

i si

… tj,IDFj …

file of inverse frequencies

Query Languages 2 38

Vector model and signatures – example

of implementation

Assumptions:

▪ Dj has bj blocks, the query has Q terms

▪ signature file - for each block there is a signature

▪ file containing IDFi (we use them to model qi - DF is

enough)

▪ file SCORE[1:20] (the top 20 are maintained)

Algorithm: Do for all D:

(1) Reset POM.

(2) Signature of each from b blocks of text D compare with Q signatures of

the query. Save results to POM.

(3) for each ti of the query calculate bci = j=1…bmaxPOM[i,j]

(4) Calculate s = i=1…Q(bci qi)/b

Query Languages 2 39

Vector model and signatures – example

of implementation

SCORE[1:20]

file of

signatures

i si

… ti,qi …

file of inverse frequencies

1 0 … 1 1 0 … 1

POM[1:Q; 1:max]

1

2

i

Q



b1



bj

max  bj  1
POM[i,k] = 1  ti  blokk, bj  k  1

Query Languages 2 40

Complexity of indexing by vector model

▪ creating vectors and indexing document with

n units is O(n),

▪ indexing m such documents is O(m n),

▪ counting IDFs can be done in the same pass,

▪ computing the lengths of vectors is also O(m

n).

▪  total time complexity is O(m n).

Query Languages 2 41

Example 1 – Text extender in DB/2

CREATE TABLE ARTICLES(

journal VARCHAR(50),

title VARCHAR(50),

date DATE,

article_text FULLTEXT)

SELECT journal, date, title

FROM ARTICLES

WHERE CONTAINS(article_text, ‘(“database” AND

(“SQL”  “SQL92”) AND NOT “dBASE”)‘) = 1;

Query Languages 2 42

Example 1 – Text extender in DB/2

Other functions: NO_OF_MATCHES (number of times the
specified pattern occurred in the text), RANK (based on
some measure).

SELECT journal, title

FROM ARTICLES

WHERE NO_OF_MATCHES (article_text, ‘database‘) > 10;

SELECT journal, date, title, RANK(article_text, ‘(“database” AND
(“SQL”  “SQL92”))’) AS relevant

FROM ARTICLES

ORDER BY relevant DESC;
possibility of

different

implementations

Query Languages 2 43

Example 2 – Fulltext in MySQL 5.1

Types of fulltext (FT) searching:
– Boolean

– FT with index

CREATE TABLE ARTICLES (

journal ARTICLES

article_text VARCHAR(200)

FULLTEXT (journal, article_text)

) engine=MyISAM

SELECT *

FROM ARTICLES

WHERE MATCH(journal, article_text)

AGAINST('database' IN NATURAL LANGUAGE MODE);

Sorting results: implicitly by relevance

FULLTEXT is an index type

Storage machine

other: InnoDB,…

Query Languages 2 44

Example 2 – Fulltext in MySQL 5.1

Types of FT searching:
– Boolean

– FT with index

SELECT *

FROM ARTICLES

WHERE MATCH(journal, article_text)

AGAINST('+database –relational' IN BOOLEAN MODE);

Sorting results:

– + (AND), - (NOT), no operator (OR)

– implicitly no sorting

Query Languages 2 45

Technics for “intelligent” IR

1. feedback

- direct feedback

- pseudo-feedback

2. extending query

- „natural“ thesaurus

- „artificial“ thesaurus

Advantages: increase R but rarely P.

Query Languages 2 46

Feedback

Intuition:

▪ vectors of relevant document and the query are

similar

▪ vectors non-relevant document and the query are not

similar;

 query reformulation based on the query answer

Assumptions: query vector

the answer contains relevant D1
r ,…, Dmr

r

non-relevant D1
n ,…, Dmn

n

q

Query Languages 2 47

Feedback

=  + i=1…mr - i=1…mn

for =1 Rocchio 71

=  +  i=1…mr -  i=1…mn

for = =  =1 Ide 71

=  +  i=1…mr - 

where , ,  are appropriate constants

q ’ q


mr
Di

r


mn
Di

n

q ’ q Di
r Di

n

q ’ q Di
r D1

n

Query Languages 2 48

Feedback - incrementally

REPEAT

1. System selects D with max. SIM(Q,D);

2. The user marks D as relevant or non-relevant;

3. IF D is relevant THEN D goes to the output list;

4. is modified by ;

UNTIL 

Query modification:

j+1 =  +  Dj Dj is relevant

 -  Dj Dj is non-relevant

q D

q qj

qj

Query Languages 2 49

Feedback – other possibilities

reweighting terms: increasing the weights of

terms in relevant documents and decreasing

the weights of terms in non-relevant

documents

pseudofeedback: assume the first k documents

as relevant and modify the query according to

them.

Query Languages 2 50

Query extension with thesaurus

▪ thesaurus (lat. treasure, treasure)

provides information about synonyms

and semantically related words and

phrases.

▪ Example: Eurovoc – for area of law and

legislation, from 2005 there is also for

Czech.

Query Languages 2 51

Thesaurus

Expressions using the thesaurus (standard ISO-2788)

NT('text') NARROWER TERM o level narrower term

NT('text',n) narrower terms o n levels

NT('text',*) all narrower terms

BT('text') BROADER TERM o level broader term

BT('text',n) broader terms o n levels

BT('text',*) all broader terms

TT('text') TOP TERM – the broadest term

SYN('text') SYNONYMS - synonyms

PT('text') PREFERRED TERM preferred term

RT('text') RELATED TERMS - related terms

Query Languages 2 52

Thesaurus

Other relations:

SN (scope note) - a note attached to the given term,

USE - to the given term assigns its preferred term,

UF - to the given term assigns its synonymous (non-

preferred) term

Other standard (for text DB):

ANSI Z39.58 Common Command Language for Online

Interactive Information Retrieval – developed by

institution NISO (National Information Standards

Organization).

Remark: real languages are only similar to these standards

Query Languages 2 53

Example: Wordnet

▪ more detailed database of semantic

relationships between words (for English, …,

Czech).

▪ developed by Prof. George Miller and his

team at university in Princeton.

▪ about 150,000 English words.

▪ Nouns, adjectives, verbs and adverbs

arranged into cca 110,000 synonymous sets

called synsets.

Query Languages 2 54

Example: Wordnet

Examples of relationship types:

▪ antonyms (opposites): in front→ behind

▪ atributation: charity → good (from noun to adjective)

▪ similarity: unconditional → absolute

▪ cause: killnig → death

▪ holonyms: chapter → text (to be a part)

▪ meronyms: computer→ cpu (to be a part)

▪ hyponyms (subordinate terms): tree → plant (specialization)

▪ hyperonyms (superordinate terms): fruit→ apple (generalization)

Query Languages 2 55

Example: Wordnet

▪ Measuring semantic similarity and relatedness
introduced for WordNet by Pedersen, et al in
2005 – (software WordNet::Similarity)

▪ Similarity coefficients
▪ Based on path lengths:

Lch, wup, Path

▪ Based on information content:

res, lin, jcn

▪ relatedness coefficients:
▪ hso, lesk, vector

Query Languages 2 56

Conclusion

Current (new) applications:

▪ text classification

▪ text extraction (summarization)

▪ digital libraries

▪ Web searching

▪ multilingual environment

▪ spam detection

▪ text plagiarism

	Snímek 1: Query languages 2 (NDBI006) Information Retrieval
	Snímek 2: Development of IS
	Snímek 3: Content
	Snímek 4: Information retrieval
	Snímek 5: Information retrieval
	Snímek 6: IR - basic architecture
	Snímek 7: IR - basic architecture
	Snímek 8: Measuring relevance
	Snímek 9: Measuring relevance
	Snímek 10: Boolean model
	Snímek 11: Boolean model
	Snímek 12: Boolean model
	Snímek 13: Boolean model: P vs. R
	Snímek 14: Boolean model: problems
	Snímek 15: Boolean model: problems
	Snímek 16: Boolean model: problems
	Snímek 17: Boolean model: problems
	Snímek 18: Boolean model: problems
	Snímek 19: Boolean model: problems
	Snímek 20: Boolean model: problems
	Snímek 21: Boolean model: other problems
	Snímek 22: Boolean model: other problems
	Snímek 23: What next?
	Snímek 24: IR models - overview
	Snímek 25: Vector model
	Snímek 26: Vector model
	Snímek 27: Vector model
	Snímek 28: Vector model
	Snímek 29: Vector model
	Snímek 30: Vector model
	Snímek 31: Vector model
	Snímek 32: Vector model
	Snímek 33: Vector model
	Snímek 34: Vector model
	Snímek 35: Vector model: problems
	Snímek 36: Vector model in a Boolean system - example of implementation
	Snímek 37: Vector model in Boolean system - example of implementation
	Snímek 38: Vector model and signatures – example of implementation
	Snímek 39: Vector model and signatures – example of implementation
	Snímek 40: Complexity of indexing by vector model
	Snímek 41: Example 1 – Text extender in DB/2
	Snímek 42: Example 1 – Text extender in DB/2
	Snímek 43: Example 2 – Fulltext in MySQL 5.1
	Snímek 44: Example 2 – Fulltext in MySQL 5.1
	Snímek 45: Technics for “intelligent” IR
	Snímek 46: Feedback
	Snímek 47: Feedback
	Snímek 48: Feedback - incrementally
	Snímek 49: Feedback – other possibilities
	Snímek 50: Query extension with thesaurus
	Snímek 51: Thesaurus
	Snímek 52: Thesaurus
	Snímek 53: Example: Wordnet
	Snímek 54: Example: Wordnet
	Snímek 55: Example: Wordnet
	Snímek 56: Conclusion

